organic compounds
(3R,4R,5S)-5-(Acetamidomethyl)-N-benzyl-3,4-dihydroxytetrahydrofuran-3-carboxamide
aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk
The title compound, C15H20N2O5, is the first example of a branched tetrahydrofuran sugar amino acid dipeptide isostere incorporated into a peptidomimetic. The contains intermolecular N—H⋯O and O—H⋯O hydrogen bonds.
Comment
δ-Tetrahydrofuran (THF) sugar amino acids (SAA) have been extensively investigated as dipeptide isosteres (Baron et al., 2004; Grotenberg et al., 2004; Raunkjr et al., 2004). Introduction of δ-THF SAA building blocks has been shown to induce secondary structural features such as β-turn-like structures (Chakraborty et al., 2004; Smith et al., 2003; Hungerford et al., 2000) and helices (Claridge et al., 1999; Osterkamp et al., 2000) in small peptidomimetics. All the previously reported δ-THF SAA scaffolds have linear carbon chains, as in (1), which has been incorporated into peptidomimetics such as (2). The synthesis of branched sugar (Hotchkiss et al., 2004) has allowed ready access to a new class of δ-THF SAA building blocks, such as (3), which contain a branched carbon chain. The monomer (3) was prepared as an oil from L-lyxonolactone in a sequence in which the branched carbon chain was introduced by the Ho (1978, 1985a,b) crossed aldol procedure, and the δ-THF ring was subsequently formed by an intramolecular alkylation. The branched scaffold (3) was transformed into the crystalline branched peptidomimetic (4).
The structure of (4) has been determined in order to remove any ambiguity in the stereochemical outcomes of either the aldol or the ring closure reactions. Additionally, the of (4) may give some indication of the secondary structural motif likely to be induced by the incorporation of the monomer (3) into peptidomimetics. The molecular structure of (4) is shown in Fig. 1. As usually expected for sugar derivatives, there are intermolecular hydrogen bonds (Table 2 and Fig. 2).
Experimental
Compound (4) was dissolved in acetone in a small glass cylinder and then crystallized as the solvent evaporated slowly to give colourless needle-like crystals.
Crystal data
|
Refinement
|
|
In the absence of significant L-lyxonolactone with known and two of the chiral centres are retained (see scheme). H atoms were located in difference density maps. Those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.98–1.01 Å, O—H = 0.95 Å and N—H = 0.95–1.00 Å), after which they were refined as riding, with Uiso(H) = 1.2Ueq(C), and Uiso(H) = 0.05 Å2 for those bonded to N and O atoms.
Friedel pairs were merged. The of (4) was assigned since the starting material wasData collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536805001467/ob6459sup1.cif
contains datablocks global, 4. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S1600536805001467/ob64594sup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C15H20N2O5 | Dx = 1.353 Mg m−3 |
Mr = 308.33 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3224 reflections |
a = 15.3802 (6) Å | θ = 5–27° |
b = 5.4473 (2) Å | µ = 0.10 mm−1 |
c = 18.0635 (8) Å | T = 120 K |
V = 1513.37 (10) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.04 × 0.02 mm |
F(000) = 656 |
Nonius KappaCCD diffractometer | 1594 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ω scans | θmax = 27.4°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −19→19 |
Tmin = 0.820, Tmax = 0.998 | k = −7→5 |
5747 measured reflections | l = −23→23 |
1973 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.034 | w = 1/[σ2(F2) + 0.02 + 0.04P], where P = (max(Fo2, 0) + 2Fc2)/3 |
wR(F2) = 0.077 | (Δ/σ)max = 0.001 |
S = 0.93 | Δρmax = 0.27 e Å−3 |
1973 reflections | Δρmin = −0.23 e Å−3 |
200 parameters | Extinction correction: Larson (1970) |
0 restraints | Extinction coefficient: 16 (5) |
Primary atom site location: structure-invariant direct methods | Absolute structure: see text |
x | y | z | Uiso*/Ueq | ||
C1 | 0.88317 (12) | 0.7829 (4) | 0.87417 (9) | 0.0223 | |
C2 | 0.97505 (11) | 0.8760 (3) | 0.85276 (9) | 0.0218 | |
C3 | 1.03223 (13) | 0.7093 (3) | 0.89934 (10) | 0.0236 | |
O4 | 0.98853 (9) | 0.4761 (2) | 0.90166 (8) | 0.0325 | |
C5 | 0.89837 (13) | 0.5078 (4) | 0.88312 (11) | 0.0253 | |
C6 | 1.12326 (12) | 0.6622 (4) | 0.86972 (10) | 0.0280 | |
N7 | 1.17646 (10) | 0.8825 (3) | 0.87016 (8) | 0.0265 | |
C8 | 1.23146 (13) | 0.9302 (4) | 0.92556 (10) | 0.0277 | |
O9 | 1.23594 (9) | 0.7976 (3) | 0.98096 (7) | 0.0359 | |
C10 | 1.28844 (14) | 1.1520 (4) | 0.91690 (12) | 0.0382 | |
O11 | 0.99245 (8) | 0.8649 (2) | 0.77563 (6) | 0.0260 | |
C12 | 0.81349 (12) | 0.8364 (3) | 0.81569 (9) | 0.0223 | |
N13 | 0.76255 (10) | 1.0272 (3) | 0.83168 (8) | 0.0270 | |
C14 | 0.69186 (12) | 1.1100 (4) | 0.78430 (10) | 0.0302 | |
C15 | 0.62532 (12) | 1.2545 (4) | 0.82810 (10) | 0.0258 | |
C16 | 0.59055 (13) | 1.4675 (4) | 0.79875 (11) | 0.0290 | |
C17 | 0.52648 (15) | 1.5955 (4) | 0.83627 (11) | 0.0364 | |
C18 | 0.49727 (14) | 1.5138 (4) | 0.90401 (11) | 0.0369 | |
C19 | 0.53254 (14) | 1.3028 (4) | 0.93495 (12) | 0.0344 | |
C20 | 0.59632 (13) | 1.1732 (4) | 0.89712 (11) | 0.0308 | |
O21 | 0.80707 (9) | 0.7148 (3) | 0.75824 (7) | 0.0310 | |
O22 | 0.86476 (8) | 0.9015 (3) | 0.94242 (6) | 0.0267 | |
H21 | 0.9824 | 1.0484 | 0.8695 | 0.0249* | |
H31 | 1.0346 | 0.7770 | 0.9505 | 0.0275* | |
H51 | 0.8628 | 0.4350 | 0.9230 | 0.0314* | |
H52 | 0.8863 | 0.4194 | 0.8351 | 0.0314* | |
H61 | 1.1528 | 0.5378 | 0.9019 | 0.0351* | |
H62 | 1.1197 | 0.6002 | 0.8182 | 0.0351* | |
H101 | 1.3496 | 1.1069 | 0.9211 | 0.0460* | |
H102 | 1.2828 | 1.2342 | 0.8676 | 0.0460* | |
H103 | 1.2789 | 1.2808 | 0.9548 | 0.0460* | |
H141 | 0.7154 | 1.2151 | 0.7437 | 0.0369* | |
H142 | 0.6659 | 0.9606 | 0.7617 | 0.0369* | |
H161 | 0.6108 | 1.5234 | 0.7492 | 0.0370* | |
H171 | 0.5021 | 1.7491 | 0.8141 | 0.0440* | |
H181 | 0.4517 | 1.6088 | 0.9321 | 0.0440* | |
H191 | 0.5124 | 1.2389 | 0.9851 | 0.0400* | |
H201 | 0.6219 | 1.0239 | 0.9186 | 0.0366* | |
H3 | 0.7724 | 1.0854 | 0.8803 | 0.0500* | |
H6 | 0.8250 | 0.7940 | 0.9658 | 0.0500* | |
H12 | 1.1800 | 0.9957 | 0.8266 | 0.0500* | |
H1 | 0.9932 | 0.6928 | 0.7664 | 0.0500* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0245 (10) | 0.0238 (9) | 0.0187 (8) | −0.0028 (9) | 0.0037 (8) | −0.0028 (8) |
C2 | 0.0248 (10) | 0.0213 (8) | 0.0192 (8) | −0.0016 (9) | 0.0011 (8) | −0.0008 (8) |
C3 | 0.0272 (10) | 0.0211 (8) | 0.0226 (9) | −0.0026 (9) | −0.0003 (8) | 0.0003 (8) |
O4 | 0.0278 (8) | 0.0248 (7) | 0.0450 (8) | −0.0026 (7) | −0.0068 (7) | 0.0071 (7) |
C5 | 0.0249 (10) | 0.0249 (10) | 0.0263 (10) | −0.0029 (9) | 0.0005 (8) | 0.0003 (9) |
C6 | 0.0288 (10) | 0.0282 (10) | 0.0270 (10) | 0.0034 (10) | −0.0045 (9) | −0.0033 (9) |
N7 | 0.0221 (8) | 0.0322 (8) | 0.0252 (8) | −0.0006 (8) | −0.0029 (7) | 0.0027 (8) |
C8 | 0.0217 (10) | 0.0331 (11) | 0.0284 (10) | 0.0027 (9) | −0.0032 (8) | 0.0007 (10) |
O9 | 0.0339 (8) | 0.0421 (9) | 0.0316 (7) | −0.0004 (8) | −0.0118 (6) | 0.0080 (7) |
C10 | 0.0323 (12) | 0.0396 (12) | 0.0428 (12) | −0.0034 (11) | −0.0087 (10) | 0.0039 (11) |
O11 | 0.0267 (7) | 0.0315 (7) | 0.0198 (6) | 0.0008 (7) | 0.0037 (6) | 0.0033 (6) |
C12 | 0.0216 (9) | 0.0232 (9) | 0.0222 (10) | −0.0032 (9) | 0.0032 (8) | −0.0013 (8) |
N13 | 0.0239 (8) | 0.0292 (8) | 0.0278 (8) | 0.0028 (8) | −0.0027 (7) | −0.0039 (8) |
C14 | 0.0256 (10) | 0.0372 (10) | 0.0276 (10) | 0.0032 (10) | −0.0002 (8) | 0.0000 (9) |
C15 | 0.0228 (10) | 0.0295 (9) | 0.0252 (9) | −0.0032 (9) | −0.0023 (8) | −0.0022 (9) |
C16 | 0.0284 (11) | 0.0308 (10) | 0.0279 (10) | 0.0009 (10) | −0.0012 (9) | −0.0004 (9) |
C17 | 0.0377 (12) | 0.0365 (11) | 0.0351 (11) | 0.0071 (11) | −0.0083 (10) | −0.0029 (10) |
C18 | 0.0291 (11) | 0.0471 (13) | 0.0344 (11) | 0.0054 (11) | −0.0015 (10) | −0.0111 (11) |
C19 | 0.0324 (11) | 0.0405 (11) | 0.0304 (10) | −0.0035 (11) | 0.0039 (9) | −0.0016 (10) |
C20 | 0.0327 (11) | 0.0298 (10) | 0.0299 (10) | −0.0009 (9) | −0.0014 (9) | 0.0010 (9) |
O21 | 0.0299 (8) | 0.0380 (7) | 0.0251 (7) | 0.0014 (7) | −0.0014 (6) | −0.0076 (7) |
O22 | 0.0281 (7) | 0.0316 (7) | 0.0204 (6) | −0.0023 (7) | 0.0040 (6) | −0.0042 (6) |
C1—C2 | 1.551 (2) | C10—H103 | 0.992 |
C1—C5 | 1.525 (3) | O11—H1 | 0.952 |
C1—C12 | 1.531 (3) | C12—N13 | 1.333 (2) |
C1—O22 | 1.421 (2) | C12—O21 | 1.235 (2) |
C2—C3 | 1.518 (3) | N13—C14 | 1.454 (2) |
C2—O11 | 1.421 (2) | N13—H3 | 0.946 |
C2—H21 | 0.993 | C14—C15 | 1.515 (3) |
C3—O4 | 1.438 (2) | C14—H141 | 0.998 |
C3—C6 | 1.522 (3) | C14—H142 | 0.994 |
C3—H31 | 0.996 | C15—C16 | 1.383 (3) |
O4—C5 | 1.436 (2) | C15—C20 | 1.397 (3) |
C5—H51 | 0.988 | C16—C17 | 1.386 (3) |
C5—H52 | 1.009 | C16—H161 | 0.996 |
C6—N7 | 1.453 (2) | C17—C18 | 1.378 (3) |
C6—H61 | 1.001 | C17—H171 | 1.000 |
C6—H62 | 0.991 | C18—C19 | 1.388 (3) |
N7—C8 | 1.334 (2) | C18—H181 | 1.009 |
N7—H12 | 1.001 | C19—C20 | 1.389 (3) |
C8—O9 | 1.236 (2) | C19—H191 | 1.020 |
C8—C10 | 1.501 (3) | C20—H201 | 0.983 |
C10—H101 | 0.975 | O22—H6 | 0.947 |
C10—H102 | 1.001 | ||
C2—C1—C5 | 102.01 (15) | C8—C10—H102 | 113.8 |
C2—C1—C12 | 113.72 (14) | H101—C10—H102 | 105.3 |
C5—C1—C12 | 111.54 (15) | C8—C10—H103 | 114.2 |
C2—C1—O22 | 104.54 (14) | H101—C10—H103 | 105.6 |
C5—C1—O22 | 112.69 (15) | H102—C10—H103 | 106.6 |
C12—C1—O22 | 111.80 (15) | C2—O11—H1 | 102.4 |
C1—C2—C3 | 101.14 (14) | C1—C12—N13 | 114.19 (15) |
C1—C2—O11 | 113.85 (14) | C1—C12—O21 | 122.15 (16) |
C3—C2—O11 | 114.10 (15) | N13—C12—O21 | 123.65 (17) |
C1—C2—H21 | 109.7 | C12—N13—C14 | 123.60 (16) |
C3—C2—H21 | 109.4 | C12—N13—H3 | 111.7 |
O11—C2—H21 | 108.5 | C14—N13—H3 | 124.1 |
C2—C3—O4 | 105.93 (15) | N13—C14—C15 | 111.03 (15) |
C2—C3—C6 | 116.01 (15) | N13—C14—H141 | 109.7 |
O4—C3—C6 | 106.97 (15) | C15—C14—H141 | 109.4 |
C2—C3—H31 | 108.3 | N13—C14—H142 | 106.7 |
O4—C3—H31 | 108.5 | C15—C14—H142 | 111.6 |
C6—C3—H31 | 110.9 | H141—C14—H142 | 108.3 |
C3—O4—C5 | 109.77 (14) | C14—C15—C16 | 119.78 (17) |
C1—C5—O4 | 106.88 (16) | C14—C15—C20 | 121.25 (17) |
C1—C5—H51 | 112.7 | C16—C15—C20 | 118.95 (19) |
O4—C5—H51 | 108.5 | C15—C16—C17 | 120.64 (19) |
C1—C5—H52 | 110.5 | C15—C16—H161 | 118.6 |
O4—C5—H52 | 108.6 | C17—C16—H161 | 120.7 |
H51—C5—H52 | 109.6 | C16—C17—C18 | 120.4 (2) |
C3—C6—N7 | 112.17 (15) | C16—C17—H171 | 119.5 |
C3—C6—H61 | 109.1 | C18—C17—H171 | 120.1 |
N7—C6—H61 | 107.5 | C17—C18—C19 | 119.8 (2) |
C3—C6—H62 | 109.7 | C17—C18—H181 | 120.6 |
N7—C6—H62 | 108.5 | C19—C18—H181 | 119.6 |
H61—C6—H62 | 109.8 | C18—C19—C20 | 119.90 (19) |
C6—N7—C8 | 121.40 (16) | C18—C19—H191 | 121.4 |
C6—N7—H12 | 122.4 | C20—C19—H191 | 118.7 |
C8—N7—H12 | 115.7 | C15—C20—C19 | 120.33 (19) |
N7—C8—O9 | 121.84 (19) | C15—C20—H201 | 119.1 |
N7—C8—C10 | 116.61 (17) | C19—C20—H201 | 120.6 |
O9—C8—C10 | 121.55 (18) | C1—O22—H6 | 103.7 |
C8—C10—H101 | 110.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
O22—H6···O9i | 0.95 | 1.75 | 2.649 (2) | 158 |
N7—H12···O21ii | 1.00 | 1.95 | 2.953 (2) | 177 |
O11—H1···O11iii | 0.95 | 1.95 | 2.886 (2) | 166 |
Symmetry codes: (i) x−1/2, −y+3/2, −z+2; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+2, y−1/2, −z+3/2. |
Footnotes
‡Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England.
Acknowledgements
Financial support (to MIS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435. CrossRef Web of Science IUCr Journals Google Scholar
Baron, R., Bakowies, D. & van Gunsteren, W. F. (2004). Angew. Chem. Int. Ed. 43, 4055–4059. Web of Science CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207. Web of Science CrossRef CAS Google Scholar
Claridge, T. D. W., Long, D. D., Hungerford, N. L., Aplin, R. T., Smith, M. D., Marquess, D. G. & Fleet, G. W. J. (1999). Tetrahedron Lett. 40, 2199–2202. Web of Science CrossRef CAS Google Scholar
Grotenberg, G. M., Timmerj, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444–3446. Web of Science CSD CrossRef PubMed Google Scholar
Ho, P. T. (1978). Tetrahedron Lett. 19, 1623–1626. CrossRef Google Scholar
Ho, P. T. (1985a). Can. J. Chem. 57, 381–381. CrossRef Web of Science Google Scholar
Ho, P. T. (1985b). Can. J. Chem. 63, 2221–2224. CrossRef CAS Web of Science Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Hungerford, N. L., Claridge, T. D. W., Watterson, M. P., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, 21, 3666–3679. Web of Science CrossRef Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Osterkamp, F., Ziemer, B., Koert, U., Wiesner, M., Raddatz, P. & Goodman, S. L. (2000). Chem. Eur. J. 6, 666–683. CrossRef PubMed CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Raunkjr, M., El Oualid, F., van der Marel, G. A., Overkleeft, H. S. & Overhand, M. (2004). Org. Lett. 6, 3167–3170. Web of Science CrossRef PubMed CAS Google Scholar
Smith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647–3655. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.