organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2C-Methyl-D-arabinono-1,4-lactone monohydrate

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: francesco.punzo@chemistry.oxford.ac.uk

(Received 10 December 2004; accepted 10 January 2005; online 22 January 2005)

The title compound, C6H10O5·H2O, formed by the hydro­lysis of a δ-lactone, is shown unequivocally to be a γ-lactone. The diol has a trans configuration.

Comment

The potential of the Kiliani ascension of ketoses to provide readily available branched scaffolds has been recognized (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]). A further class of branched carbohydrate building blocks may be available from the reaction of cyanide on 1-deoxy­ketoses, themselves prepared by addition of organometallic reagents to sugar lactones. The protected 1-deoxy-D-ribulose, (1[link]), was treated with sodium cyanide and gave a single diastereomeric product, (2[link]), the structure of which was established by X-ray crystallography (Punzo et al., 2005[Punzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o127-o129.]). During the isolation of (2[link]), some loss of the protecting acetonide group afforded an unprotected lactone (3[link]), which was eventually crystallized. NMR and other structural studies on (3[link]) could not firmly determine the size of the lactone ring; X-ray crystallographic analysis established that (3[link]) is a 1,4-lactone (Fig. 1[link]). It is noteworthy that none of the epimeric ribonolactone, (4[link]), was isolated during the course of the synthesis. As usually expected for sugar derivatives, hydrogen bonding (Table 2[link]) occurs between mol­ecules, and the water of crystallization is involved in this network (Fig. 2[link]).[link]

[Scheme 1]
[Figure 1]
Figure 1
The asymmetric unit of (3[link]), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram of (3[link]), viewed down the a axis. Hydro­gen bonds are indicated by dashed lines.

Experimental

Compound (3[link]) was crystallized by dissolving it in diethyl ether, adding a few drops of cyclo­hexane and allowing the slow competitive evaporation of the two solvents until clear colourless crystals formed. Water was used as solvent during the synthesis of the compound. Moreover the compound was exposed to air before and after crystallization.

Crystal data
  • C6H10O5·H2O

  • Mr = 180.16

  • Orthorhombic, P212121

  • a = 8.1624 (3) Å

  • b = 8.5569 (3) Å

  • c = 11.6000 (5) Å

  • V = 810.20 (5) Å3

  • Z = 4

  • Dx = 1.477 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1300 reflections

  • θ = 5–30°

  • μ = 0.13 mm−1

  • T = 120 K

  • Plate, colourless

  • 0.30 × 0.20 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.97, Tmax = 0.99

  • 2296 measured reflections

  • 1361 independent reflections

  • 1201 reflections with I > 2 σ(I)

  • Rint = 0.013

  • θmax = 30.0°

  • h = −11 → 11

  • k = −11 → 12

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.071

  • S = 0.98

  • 1361 reflections

  • 109 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + 0.03 + 0.17P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: see text

Table 1
Selected bond lengths (Å)

C1—C2 1.537 (2)
C1—C5 1.528 (2)
C1—O10 1.4169 (17)
C1—C11 1.526 (2)
C2—C3 1.525 (2)
C2—O9 1.4167 (18)
C3—O4 1.4695 (18)
C3—C7 1.516 (2)
O4—C5 1.3363 (18)
C5—O6 1.2106 (17)
C7—O8 1.4261 (19)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H5⋯O12 0.92 1.81 2.7191 (16) 175
O8—H7⋯O6i 0.97 1.78 2.7235 (15) 163
O9—H9⋯O8i 0.96 1.76 2.7157 (15) 169
O12—H12⋯O9ii 0.94 2.01 2.9138 (16) 163
O12—H1⋯O10iii 0.91 2.00 2.8613 (16) 157
Symmetry codes: (i) [1-x,{\script{1\over 2}}+y,{\script{3\over 2}}-z]; (ii) [1-x,y-{\script{1\over 2}},{\script{3\over 2}}-z]; (iii) [x-{\script{1\over 2}},{\script{1\over 2}}-y,1-z].

In the absence of significant anomalous scattering, Friedel pairs were merged. The absolute configuration was assigned since the starting material was D-erythronolactone with known absolute configuration. H atoms were located in difference density maps. Those attached to C atoms were repos­itioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.97–1.01 Å and O—H = 0.91–0.97 Å), after which they were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 0.05 Å2 for those bonded to the O atoms.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2 C-Methyl-D-arabinono-1,4-lactone top
Crystal data top
C6H10O5·H2ODx = 1.477 Mg m3
Mr = 180.16Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1300 reflections
a = 8.1624 (3) Åθ = 5–30°
b = 8.5569 (3) ŵ = 0.13 mm1
c = 11.6000 (5) ÅT = 120 K
V = 810.20 (5) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.04 mm
F(000) = 384
Data collection top
Nonius KappaCCD
diffractometer
1201 reflections with I > 2u(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 30.0°, θmin = 5.3°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1111
Tmin = 0.97, Tmax = 0.99k = 1112
2296 measured reflectionsl = 1616
1361 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(F2) + 0.03 + 0.17P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.98(Δ/σ)max = 0.000246
1361 reflectionsΔρmax = 0.23 e Å3
109 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: see text
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.77461 (19)0.14456 (17)0.69407 (12)0.0165
C20.64570 (18)0.21334 (16)0.77623 (13)0.0168
C30.63386 (19)0.08861 (18)0.86979 (13)0.0181
O40.66325 (13)0.05809 (12)0.80726 (9)0.0179
C50.73681 (18)0.02955 (17)0.70652 (13)0.0165
O60.76709 (13)0.13251 (12)0.63819 (9)0.0197
C70.4700 (2)0.0739 (2)0.93035 (13)0.0213
O80.33569 (13)0.06498 (13)0.85204 (10)0.0220
O90.68542 (15)0.35975 (12)0.82592 (9)0.0220
O100.76159 (13)0.19458 (12)0.57800 (8)0.0194
C110.95038 (18)0.1741 (2)0.73335 (14)0.0230
O120.47338 (14)0.06611 (15)0.50844 (10)0.0282
H210.54060.21740.73540.0207*
H310.72520.10020.92530.0238*
H710.45320.16650.98240.0260*
H720.47270.02430.97820.0260*
H1111.02190.11590.68150.0286*
H1120.96990.28750.72840.0286*
H1130.96100.13600.81140.0286*
H50.66430.15520.55150.0500*
H70.28850.16800.84110.0500*
H90.67670.44240.76980.0500*
H120.42290.01450.54970.0500*
H10.38990.11930.47350.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (7)0.0167 (6)0.0144 (6)0.0014 (6)0.0008 (6)0.0019 (6)
C20.0178 (7)0.0151 (6)0.0175 (6)0.0019 (6)0.0000 (6)0.0012 (6)
C30.0218 (7)0.0172 (7)0.0153 (7)0.0006 (6)0.0013 (6)0.0010 (6)
O40.0221 (5)0.0148 (5)0.0169 (5)0.0015 (4)0.0016 (4)0.0004 (4)
C50.0129 (6)0.0182 (7)0.0184 (7)0.0009 (6)0.0036 (6)0.0017 (5)
O60.0227 (5)0.0167 (5)0.0198 (5)0.0013 (5)0.0001 (5)0.0019 (4)
C70.0232 (7)0.0222 (7)0.0185 (7)0.0007 (7)0.0014 (6)0.0007 (7)
O80.0203 (5)0.0186 (5)0.0270 (6)0.0006 (5)0.0003 (5)0.0015 (5)
O90.0304 (6)0.0151 (5)0.0205 (5)0.0022 (5)0.0002 (5)0.0031 (4)
O100.0236 (5)0.0196 (5)0.0150 (5)0.0026 (5)0.0009 (4)0.0019 (4)
C110.0190 (7)0.0258 (8)0.0242 (8)0.0028 (7)0.0033 (6)0.0003 (7)
O120.0221 (5)0.0318 (6)0.0307 (6)0.0026 (6)0.0065 (5)0.0094 (6)
Geometric parameters (Å, º) top
C1—C21.537 (2)C7—O81.4261 (19)
C1—C51.528 (2)C7—H711.006
C1—O101.4169 (17)C7—H721.007
C1—C111.526 (2)O8—H70.970
C2—C31.525 (2)O9—H90.964
C2—O91.4167 (18)O10—H50.916
C2—H210.980C11—H1110.975
C3—O41.4695 (18)C11—H1120.985
C3—C71.516 (2)C11—H1130.967
C3—H310.990O12—H120.935
O4—C51.3363 (18)O12—H10.914
C5—O61.2106 (17)
C2—C1—C5100.17 (12)C1—C5—O4110.58 (12)
C2—C1—O10114.98 (12)C1—C5—O6127.33 (14)
C5—C1—O10111.66 (12)O4—C5—O6122.09 (13)
C2—C1—C11113.27 (12)C3—C7—O8112.81 (12)
C5—C1—C11108.84 (13)C3—C7—H71109.5
O10—C1—C11107.71 (12)O8—C7—H71108.6
C1—C2—C3102.51 (12)C3—C7—H72107.8
C1—C2—O9115.74 (12)O8—C7—H72108.8
C3—C2—O9110.11 (12)H71—C7—H72109.3
C1—C2—H21108.3C7—O8—H7109.9
C3—C2—H21108.2C2—O9—H9110.9
O9—C2—H21111.4C1—O10—H5105.8
C2—C3—O4103.66 (11)C1—C11—H111107.1
C2—C3—C7116.35 (13)C1—C11—H112107.3
O4—C3—C7107.56 (12)H111—C11—H112111.8
C2—C3—H31110.2C1—C11—H113107.9
O4—C3—H31106.5H111—C11—H113110.6
C7—C3—H31111.8H112—C11—H113111.9
C3—O4—C5110.42 (11)H12—O12—H1105.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H5···O120.921.812.7191 (16)175
O8—H7···O6i0.971.782.7235 (15)163
O9—H9···O8i0.961.762.7157 (15)169
O12—H12···O9ii0.942.012.9138 (16)163
O12—H1···O10iii0.912.002.8613 (16)157
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+1/2, z+1.
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPunzo, F., Watkin, D. J., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o127–o129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds