organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′:5,6-Di-O-iso­propyl­­idene-2-C-hydro­xymethyl-D-talono-1,4-lactone

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and cArla Foods Ingredients, Viby J, Denmark
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk

(Received 10 December 2004; accepted 17 December 2004; online 8 January 2005)

A second crystalline diacetonide, the title compound, C13H20O7, has been isolated from the sequential treatment of D-tagatose with aqueous sodium cyanide, followed by acetone in the presence of acid. Structural ambiguities with regard to the size of both the lactone and ketal rings are resolved by the X-ray crystallographic analysis.

Comment

Although the branched carbon-chain lactones formed by the Kiliani extension of ketoses are not readily separated, treatment of the crude product mixture forms a series of diaceton­ides, from which the major products can be separated (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]) and their structures determined by X-ray crystallographic analysis (Cowley et al., 2004[Cowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142-o2143.]; van Ameijde et al., 2004[Ameijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140-o2141.]). Such materials have considerable potential as a new class of readily available chiral building blocks and bioactive scaffolds (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004) Compt. Rend. Chim. 7, 65-90.]; Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks (ISBN 0-471-13339-6). New York: John Wiley & Sons.]). Developments in biotechnology are leading to the ready availability of almost any ketohexose or ketopentose by a combination of microbial oxidation and enzyme-catalysed epimerizations (Granstrom et al., 2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]). In particular, D-tagatose, (1[link]), hitherto considered a rare sugar, is a healthy sweetener prepared cheaply from whey, and used in soft drinks and ready-to-eat cereals (Skytte, 2002[Skytte, U. P. (2002). Cereal Foods World, 47, 224-227.]).[link]

[Scheme 1]

The sequential treatment of D-tagatose, (1[link]), with sodium cyanide, followed by extraction of the crude lactones with acetone in the presence of sulfuric acid, gave a mixture of diacetonides; the cis-fused diacetonide (2[link]) was easily crystallized as one of two major products (Shallard-Brown et al., 2004[Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163-o2164.]). Further purification allowed the crystallization of a second diacetonide; NMR and other spectroscopic studies on this material left considerable ambiguity with regard to the ring sizes of both the acetonides and the lactone. X-ray crystallographic analysis firmly established the structure as the acetonide, (3[link]), in which there is a spiro-acetonide. It is anticipated that both the diacetonides, (2[link]) and (3[link]), will rapidly be established as ideal starting materials for a range of complex bioactive products.

[Figure 1]
Figure 1
The title mol­ecule at 120 K, with displacement ellipsoids drawn at the 50% probability level. Note the fairly large displacement parameters on fragment C6/C9/C10, suggesting some minor disorder of atoms in this part of the mol­ecule.
[Figure 2]
Figure 2
Packing diagram of the title mol­ecule, viewed along the a axis. The mol­ecules form independent hydrogen-bonded ribbons (dashed lines) parallel to a.
[Figure 3]
Figure 3
View of a section of one hydrogen-bonded ribbon (dashed lines), viewed along c.

Experimental

The title material was crystallized from diethyl ether by inward diffusion of n-hexane, to yield very fragile plate-like colourless crystals. The full experimental method is currently being prepared for publication.

Crystal data
  • C13H20O7

  • Mr = 288.30

  • Orthorhombic, P212121

  • a = 5.8303 (1) Å

  • b = 9.8983 (2) Å

  • c = 24.1599 (4) Å

  • V = 1394.27 (4) Å3

  • Z = 4

  • Dx = 1.373 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2281 reflections

  • θ = 5–30°

  • μ = 0.11 mm−1

  • T = 120 K

  • Plate, colourless

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.99, Tmax = 0.99

  • 3990 measured reflections

  • 2337 independent reflections

  • 2033 reflections with I > 2.00 u(I)

  • Rint = 0.012

  • θmax = 30.0°

  • h = −8 → 8

  • k = −13 → 13

  • l = −33 → 34

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.078

  • S = 0.96

  • 2337 reflections

  • 261 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(F2) + 0.04 + 0.32P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H18⋯O15i 0.823 (15) 1.977 (16) 2.7947 (15) 172 (2)
Symmetry code: (i) [{\script{1\over 2}}+x,{\script{1\over 2}}-y,1-z].

All H atoms were observed in a difference electron-density map. The hydroxyl H atom was placed as found and the others were positioned geometrically (C—H = 1.00 Å). All were refined with slack restraints [distance s.u. values of 0.02 Å and angle s.u. values of 2.0°; Uiso(H) = 1.2Ueq(parent), s.u. = 0.02 Å2]. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration is known from the synthesis.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2,2':5,6-Di-O-isopropylidene-2-C-hydroxmethyl-D-talono-1,4-lactone top
Crystal data top
C13H20O7Dx = 1.373 Mg m3
Mr = 288.30Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2281 reflections
a = 5.8303 (1) Åθ = 5–30°
b = 9.8983 (2) ŵ = 0.11 mm1
c = 24.1599 (4) ÅT = 120 K
V = 1394.27 (4) Å3Plate, colourless
Z = 40.30 × 0.10 × 0.05 mm
F(000) = 616
Data collection top
Nonius KappaCCD
diffractometer
2033 reflections with I > 2.00u(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 30.0°, θmin = 5.3°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 88
Tmin = 0.99, Tmax = 0.99k = 1313
3990 measured reflectionsl = 3334
2337 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters not defined
wR(F2) = 0.078 w = 1/[σ2(F2) + 0.04 + 0.32P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.96(Δ/σ)max = 0.001
2337 reflectionsΔρmax = 0.27 e Å3
261 parametersΔρmin = 0.22 e Å3
83 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1689 (3)0.01089 (13)0.52121 (6)0.0168
C20.2950 (3)0.07139 (14)0.47152 (6)0.0180
C30.3181 (3)0.05664 (14)0.43610 (6)0.0181
C40.3765 (3)0.03576 (15)0.37596 (6)0.0231
O50.2247 (3)0.05865 (10)0.35061 (4)0.0281
C60.1814 (3)0.01631 (16)0.29466 (6)0.0238
O70.3191 (2)0.10136 (12)0.28587 (4)0.0278
C80.3557 (4)0.16024 (16)0.33913 (6)0.0266
C90.2589 (4)0.12464 (19)0.25547 (7)0.0367
C100.0687 (4)0.0186 (3)0.28992 (11)0.0487
O110.09362 (19)0.12025 (11)0.44206 (4)0.0191
C120.0067 (3)0.08815 (14)0.49236 (6)0.0182
O130.1707 (2)0.13485 (11)0.50882 (5)0.0249
O140.5078 (2)0.12981 (11)0.48428 (5)0.0261
O150.0460 (2)0.10481 (10)0.55412 (4)0.0198
C160.1035 (3)0.08323 (15)0.61233 (6)0.0197
O170.2065 (2)0.04655 (10)0.61372 (4)0.0200
C180.3270 (3)0.06166 (15)0.56271 (6)0.0200
C190.2683 (4)0.19259 (17)0.63039 (8)0.0311
C200.1146 (3)0.0792 (2)0.64570 (7)0.0307
H210.200 (3)0.1372 (15)0.4519 (6)0.0244 (18)*
H310.433 (3)0.1159 (16)0.4525 (6)0.0252 (18)*
H410.537 (3)0.0016 (16)0.3746 (6)0.0322 (19)*
H810.228 (3)0.2165 (17)0.3499 (7)0.0352 (19)*
H820.495 (3)0.2165 (17)0.3399 (7)0.0371 (19)*
H910.232 (4)0.094 (2)0.2183 (7)0.0642 (19)*
H920.169 (4)0.2046 (18)0.2630 (8)0.0645 (19)*
H930.424 (3)0.141 (2)0.2611 (8)0.0645 (19)*
H1010.101 (4)0.048 (2)0.2525 (7)0.0857 (19)*
H1020.157 (4)0.0607 (19)0.2965 (10)0.0849 (19)*
H1030.116 (4)0.089 (2)0.3153 (9)0.0860 (19)*
H1810.342 (3)0.1574 (14)0.5542 (6)0.0283 (18)*
H1820.475 (3)0.0195 (16)0.5634 (6)0.0265 (18)*
H1910.311 (3)0.1772 (19)0.6686 (7)0.0546 (19)*
H1920.196 (3)0.2799 (16)0.6274 (8)0.0538 (19)*
H1930.407 (3)0.191 (2)0.6072 (8)0.0550 (19)*
H2010.075 (3)0.0641 (19)0.6844 (7)0.0531 (19)*
H2020.213 (3)0.0038 (18)0.6322 (8)0.0532 (19)*
H2030.193 (3)0.1664 (17)0.6419 (8)0.0533 (19)*
H180.509 (4)0.2061 (17)0.4707 (9)0.0471 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0214 (7)0.0135 (6)0.0156 (6)0.0019 (6)0.0006 (6)0.0003 (5)
C20.0237 (7)0.0144 (6)0.0160 (6)0.0014 (6)0.0017 (6)0.0012 (5)
C30.0209 (7)0.0157 (6)0.0176 (6)0.0019 (6)0.0014 (6)0.0005 (5)
C40.0331 (9)0.0179 (7)0.0184 (7)0.0003 (7)0.0049 (7)0.0009 (6)
O50.0520 (8)0.0181 (5)0.0141 (5)0.0081 (6)0.0012 (5)0.0004 (4)
C60.0321 (9)0.0217 (7)0.0175 (7)0.0007 (7)0.0027 (7)0.0057 (6)
O70.0420 (7)0.0240 (5)0.0175 (5)0.0070 (6)0.0060 (5)0.0030 (4)
C80.0401 (10)0.0211 (7)0.0185 (7)0.0042 (8)0.0044 (7)0.0009 (6)
C90.0634 (14)0.0295 (8)0.0172 (7)0.0065 (10)0.0052 (9)0.0019 (6)
C100.0353 (10)0.0465 (12)0.0642 (14)0.0012 (10)0.0024 (11)0.0275 (11)
O110.0224 (5)0.0172 (5)0.0178 (5)0.0032 (5)0.0013 (5)0.0018 (4)
C120.0222 (7)0.0133 (6)0.0192 (7)0.0016 (6)0.0002 (6)0.0008 (5)
O130.0238 (5)0.0203 (5)0.0306 (6)0.0022 (5)0.0056 (5)0.0022 (4)
O140.0286 (6)0.0197 (5)0.0300 (6)0.0090 (5)0.0042 (5)0.0038 (5)
O150.0276 (5)0.0165 (5)0.0154 (5)0.0068 (5)0.0019 (5)0.0016 (4)
C160.0233 (7)0.0202 (7)0.0156 (6)0.0051 (7)0.0022 (6)0.0015 (5)
O170.0272 (6)0.0181 (5)0.0146 (5)0.0054 (5)0.0018 (5)0.0014 (4)
C180.0257 (7)0.0188 (6)0.0156 (6)0.0059 (7)0.0009 (6)0.0005 (5)
C190.0359 (10)0.0214 (7)0.0358 (9)0.0021 (8)0.0144 (8)0.0034 (7)
C200.0294 (9)0.0410 (9)0.0218 (8)0.0095 (9)0.0041 (7)0.0010 (7)
Geometric parameters (Å, º) top
C1—C21.530 (2)C9—H920.968 (16)
C1—C121.530 (2)C9—H930.985 (16)
C1—O151.4179 (17)C10—H1010.969 (17)
C1—C181.539 (2)C10—H1020.953 (17)
C2—C31.535 (2)C10—H1030.967 (17)
C2—O141.4030 (19)O11—C121.3545 (18)
C2—H210.978 (14)C12—O131.2003 (19)
C3—C41.507 (2)O14—H180.823 (15)
C3—O111.4593 (18)O15—C161.4614 (17)
C3—H310.975 (14)C16—O171.4183 (18)
C4—O51.425 (2)C16—C191.512 (2)
C4—C81.525 (2)C16—C201.506 (2)
C4—H410.998 (15)O17—C181.4265 (18)
O5—C61.4376 (18)C18—H1810.974 (14)
C6—O71.431 (2)C18—H1820.960 (14)
C6—C91.500 (2)C19—H1910.967 (16)
C6—C101.503 (3)C19—H1920.963 (15)
O7—C81.4288 (19)C19—H1930.984 (16)
C8—H810.965 (15)C20—H2010.975 (15)
C8—H820.987 (15)C20—H2020.997 (16)
C9—H910.963 (16)C20—H2030.981 (16)
C2—C1—C12100.99 (11)C6—C9—H93108.9 (12)
C2—C1—O15115.24 (11)H91—C9—H93109.8 (14)
C12—C1—O15111.28 (13)H92—C9—H93111.9 (14)
C2—C1—C18113.96 (13)C6—C10—H101109.2 (13)
C12—C1—C18111.58 (11)C6—C10—H102108.9 (13)
O15—C1—C18104.07 (11)H101—C10—H102107.5 (15)
C1—C2—C398.99 (11)C6—C10—H103113.3 (13)
C1—C2—O14114.45 (12)H101—C10—H103108.7 (15)
C3—C2—O14112.67 (13)H102—C10—H103109.2 (15)
C1—C2—H21111.5 (9)C3—O11—C12108.84 (11)
C3—C2—H21109.3 (9)C1—C12—O11109.11 (12)
O14—C2—H21109.5 (9)C1—C12—O13128.93 (14)
C2—C3—C4116.37 (12)O11—C12—O13121.96 (14)
C2—C3—O11102.87 (12)C2—O14—H18107.5 (18)
C4—C3—O11110.93 (12)C1—O15—C16109.14 (10)
C2—C3—H31109.3 (9)O15—C16—O17104.61 (11)
C4—C3—H31108.6 (9)O15—C16—C19108.60 (13)
O11—C3—H31108.5 (9)O17—C16—C19111.89 (13)
C3—C4—O5111.35 (13)O15—C16—C20108.98 (13)
C3—C4—C8115.71 (13)O17—C16—C20108.71 (13)
O5—C4—C8103.27 (13)C19—C16—C20113.64 (14)
C3—C4—H41107.0 (9)C16—O17—C18106.44 (11)
O5—C4—H41110.3 (10)C1—C18—O17102.65 (12)
C8—C4—H41109.2 (9)C1—C18—H181111.9 (10)
C4—O5—C6108.79 (11)O17—C18—H181109.2 (9)
O5—C6—O7106.16 (13)C1—C18—H182110.4 (9)
O5—C6—C9109.39 (13)O17—C18—H182112.5 (9)
O7—C6—C9108.60 (14)H181—C18—H182110.1 (12)
O5—C6—C10108.02 (16)C16—C19—H191108.9 (11)
O7—C6—C10110.25 (15)C16—C19—H192110.1 (11)
C9—C6—C10114.11 (19)H191—C19—H192108.9 (13)
C6—O7—C8106.38 (11)C16—C19—H193110.4 (11)
C4—C8—O7102.00 (12)H191—C19—H193109.3 (13)
C4—C8—H81111.7 (10)H192—C19—H193109.2 (13)
O7—C8—H81111.3 (10)C16—C20—H201108.5 (12)
C4—C8—H82112.2 (10)C16—C20—H202109.3 (11)
O7—C8—H82111.7 (10)H201—C20—H202109.6 (13)
H81—C8—H82107.8 (12)C16—C20—H203108.7 (11)
C6—C9—H91108.2 (12)H201—C20—H203109.6 (13)
C6—C9—H92107.6 (12)H202—C20—H203111.1 (13)
H91—C9—H92110.4 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H18···O15i0.82 (2)1.98 (2)2.7947 (15)172 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

Financial support (to RS) provided through the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmeijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140–o2141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks (ISBN 0-471-13339-6). New York: John Wiley & Sons.  Google Scholar
First citationCowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142–o2143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004) Compt. Rend. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163–o2164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSkytte, U. P. (2002). Cereal Foods World, 47, 224–227.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds