metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[(ferrocenylcarbonyl)amino]thio­phene-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland, and bDepartment of Chemistry, 80 St. George Street, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: john.gallagher@dcu.ie, peter.kenny@dcu.ie

(Received 16 November 2004; accepted 16 December 2004; online 8 January 2005)

The title compound, [Fe(C5H5)(C12H10NO3S)], was synthesized from ferrocenecarboxylic acid and methyl 2-amino­thio­phene-3-carboxyl­ate in modest yield. The substituted ring system is essentially planar through the amido­thienylcarboxyl­ate moiety, η5-(C5H4)CONH(C4H2S)CO2Me, with the amido unit at an angle of 3.60 (7)° to the five-atom thienyl group, which is oriented at an angle of 3.17 (7)° to the ester moiety. The primary hydrogen bond is an intramolecular N—H⋯O=Ccarboxyl­ate interaction [N⋯O 2.727 (2) Å], and the main intermolecular hydrogen bond involves a thienyl carboxyl­ate and the carboxyl­ate of a symmetry-related molecule [C⋯O 3.443 (3) Å].

Keywords: .

Comment

Ferrocenyl derivatives have been the subject of much attention in coordination chemistry, given the important roles which they can play, encompassing both structural and electronic capabilities. The integration of ferrocene into new hybrid compounds has greatly expanded the potential and capabilities of new materials with a range of potential applications. Here, we report the synthesis and structure of the title ferrocenoylamino­thienyl carboxyl­ate derivative, (I)[link].

[Scheme 1]

Two views of (I)[link] are depicted, with the atom-numbering scheme, in Figs. 1[link] and 2[link]. Bond lengths and angles are unexceptional and in accord with anticipated values (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The Fe—C bond lengths for the substituted cyclo­pentadienyl ring of (I)[link] are in the range 2.027 (2)–2.066 (2) Å and are similar to those observed for the unsubstituted ring [2.038 (2)–2.053 (2) Å]. The Fe⋯Cg1 and Fe⋯Cg2 distances are 1.6488 (10) and 1.6535 (10) Å, respectively, and the Cg1⋯Fe1⋯Cg2 angle is 179.36 (5)°, where Cg1 and Cg2 are the centroids of the substituted and unsubstituted C5 rings, respectively. The cyclo­pentadienyl rings deviate slightly from eclipsed geometry, as indicated by the C1nCg1⋯Cg2⋯C2n torsion angles, which are in the range 8.76 (18)–9.46 (17)° (n = 1–5).

The substituted ring system is essentially planar through the amido­thienylcarboxyl­ate moiety. The C1/O1/N1/C2 amido moiety is at an angle of 3.60 (7)° to the C2/C3/C4/C5/S1 thienyl ring, which is at an angle of 3.17 (7)° to the C3/C6/C7/O2/O3 ester group. The substituted C5 ring is at an angle of 12.03 (7)° to the four-atom amido group and 14.10 (6)° to the thienyl ring. Apart from the twisting in the interplanar angles, there is no evidence of bending in these groups due to steric effects, in contrast to 2-(ferrocenyl)thio­phene-3-carboxylic acid, where the thienyl ring bonded directly to the ferrocenyl moiety is bent significantly from linearity (Gallagher et al., 2001[Gallagher, J. F., Hudson, R. D. A. & Manning, A. R. (2001). Acta Cryst. C57, 28-30.]).

The primary hydrogen-bonding mode in (I)[link] is an intra­mol­ecular hydrogen bond involving the amido N—H with the carboxyl­ate O=C group, forming a ring with graph set S(6) (Bernstein et al., 1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and directly influencing the coplanarity of the atoms involved. Molecules of (I)[link] assemble along the b axis through a C—H⋯O=C interaction involving thienyl atom C5 and carboxyl­ate atom O2, as indicated by C5—H5⋯(O2=C2)# in Fig. 2[link] [symmetry code: (#) x, 1 + y, z]. A Cmethyl—H⋯S contact augments this about inversion centres as C7—H7⋯S1& [symmetry code: (&) 1 − x, 1 − y, 1 − z; Figs. 2[link] and 3[link]]. The closest contact involving atom Fe1 is with C12—H12, as C12—H12⋯Fe1$ [symmetry code: ($) −x, [{1\over 2}] + y, [{1\over 2}]z], although this is not depicted in Fig. 2[link]. Atom H12 is positioned such that it also forms contacts with the two C5 ring atoms, C13 and C23. Examination of the structure with PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) showed that there are no solvent accessible voids in the crystal structure.

[Scheme 2]

A search for crystal structures incorporating the amido­thienyl fragment [as O=C—N(H)—C4S] in the Cambridge Structural Database (Version 5.25, July 2004; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals a total of four derivatives (with coordinates). A related search for structures incorporating the ferrocenyl (as C5FeC5) and thio­phene groups (as C4S) yields 29 systems (the second scheme shows the structural fragments searched for in the Cambridge Structural Database) (Hudson et al., 2001[Hudson, R. D. A., Asselsbergh, I., Clays, K., Cuffe, L. P., Gallagher, J. F., Manning, A. R., Persoons, A. & Wostyn, K. (2001). J. Organomet. Chem. 637, 435-444.]). In comparison, a search with ferrocene and pyridyl (as C5N) gives 317 structures, indicating the paucity of data for S-heteroaromatic donors as ligands in ferrocene chemistry when compared with typical heteroaromatic systems containing N donors such as pyridine (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Figure 1]
Figure 1
A view of (I)[link] with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular hydrogen bond is shown dashed.
[Figure 2]
Figure 2
A view of the primary interactions in the crystal structure of (I)[link]. Atoms labelled with the suffixes #, * and & are at the symmetry positions (x, 1 + y, z), (x, y − 1, z) and (1 − x, 1 − y, 1 − z), respectively.
[Figure 3]
Figure 3
A stereoview of the hydrogen-bonded dimer generated by the C—H⋯S contact.

Experimental

Methyl 2-N-(ferrocenoylamido)-thienyl-3-carboxyl­ate, (I)[link], was synthesized in low yield from the starting materials ferrocene carboxylic acid and methyl 2-amino­thienyl-3-carboxyl­ate using standard procedures. Full synthetic details, together with electrochemical studies, will be published in a full paper to follow this structure report.

Crystal data
  • [Fe(C5H5)(C12H10NO3S)]

  • Mr = 369.21

  • Monoclinic, P21/c

  • a = 7.1714 (4) Å

  • b = 8.1184 (3) Å

  • c = 26.4299 (14) Å

  • β = 95.721 (2)°

  • V = 1531.09 (13) Å3

  • Z = 4

  • Dx = 1.602 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4398 reflections

  • θ = 2.6–27.5°

  • μ = 1.14 mm−1

  • T = 150 (1) K

  • Block, red

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan(DENZO-SMN; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.747, Tmax = 0.797

  • 6362 measured reflections

  • 3420 independent reflections

  • 2749 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 27.6°

  • h = −9 → 9

  • k = −10 → 10

  • l = −34 → 34

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.079

  • S = 1.04

  • 3420 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.022P)2 + 1.1497P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

  • Extinction correction: none

Table 1
Selected geometric parameters (Å, °)

S1—C2 1.725 (2)
S1—C5 1.730 (2)
O1—C1 1.232 (2)
C1—N1 1.370 (3)
C1—C11 1.471 (3)
N1—C2 1.376 (3)
N1—H1 0.80 (2)
C2—C3 1.381 (3)
C3—C4 1.430 (3)
C3—C6 1.463 (3)
C4—C5 1.348 (3)
C6—O2 1.218 (2)
C6—O3 1.345 (3)
O3—C7 1.446 (3)
C2—S1—C5 90.93 (11)
C1—N1—C2 125.81 (19)
C1—N1—H1 120.9 (17)
C2—N1—H1 113.3 (17)
O1—C1—N1 121.1 (2)
O1—C1—C11 123.0 (2)
N1—C1—C11 115.88 (18)
N1—C2—C3 124.49 (19)
S1—C2—N1 123.54 (16)
S1—C2—C3 111.94 (15)
C2—C3—C4 111.75 (19)
C2—C3—C6 121.37 (18)
C4—C3—C6 126.9 (2)
C3—C4—C5 112.7 (2)
S1—C5—C4 112.68 (17)
O2—C6—O3 123.12 (19)
O2—C6—C3 124.9 (2)
O3—C6—C3 112.01 (18)
C6—O3—C7 115.83 (18)
C1—C11—C12 123.62 (18)
C1—C11—C15 128.61 (19)
C1—C11—Fe1 121.52 (15)
O1—C1—N1—C2 2.1 (4)
C1—N1—C2—S1 2.7 (3)
N1—C2—C3—C6 1.0 (3)
C2—C3—C6—O2 3.6 (3)
O2—C6—O3—C7 0.6 (3)
O1—C1—C11—C12 14.8 (3)
N1—C1—C11—C15 8.5 (3)
O1—C1—C11—Fe1 100.9 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.80 (2) 2.08 (2) 2.727 (2) 137 (2)
C5—H5⋯O2i 0.95 2.53 3.442 (3) 161
C7—H7C⋯S1ii 0.98 2.89 3.682 (3) 139
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1.

The H atom bound to N refined to an N—H distance of 0.80 (2) Å. All H atoms bound to C atoms were treated as riding, with methyl C—H = 0.98 Å and aromatic C—H = 0.95 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the remainder.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65-65.]); software used to prepare material for publication: PREP8 (Ferguson, 1998[Ferguson, G. (1998). PREP8. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97, NRCVAX (Gabe et al., 1989) and PREP8 (Ferguson, 1998).

Methyl 2-[(ferrocenylcarbonyl)amino]thiophene-3-carboxylate top
Crystal data top
[Fe(C5H5)(C12H10NO3S)]F(000) = 760
Mr = 369.21Dx = 1.602 Mg m3
Monoclinic, P21/cMelting point: 406 K
Hall symbol: -p 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.1714 (4) ÅCell parameters from 4398 reflections
b = 8.1184 (3) Åθ = 2.6–27.5°
c = 26.4299 (14) ŵ = 1.14 mm1
β = 95.721 (2)°T = 294 K
V = 1531.09 (13) Å3Block, red
Z = 40.30 × 0.24 × 0.20 mm
Data collection top
Kappa-CCD
diffractometer
3420 independent reflections
Radiation source: fine-focus sealed X-ray tube2749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ scans, and ω scans with κ offsetsθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 99
Tmin = 0.747, Tmax = 0.797k = 1010
6362 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.022P)2 + 1.1497P]
where P = (Fo2 + 2Fc2)/3
3420 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Experimental. ? #Insert any special details here.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Planes data ###########

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

-7.0757(0.0013)x + 0.8840(0.0089)y + 5.7824(0.0286)z = 2.4878(0.0093)

* 0.0015 (0.0014) C11 * -0.0011 (0.0014) C12 * 0.0003 (0.0014) C13 * 0.0007 (0.0014) C14 * -0.0013 (0.0014) C15 - 1.6484 (0.0010) Fe1 - 0.1950 (0.0065) S1

Rms deviation of fitted atoms = 0.0011

7.0858(0.0014)x - 0.9118(0.0096)y - 5.3747(0.0304)z = 0.9389(0.0099)

Angle to previous plane (with approximate e.s.d.) = 0.92 (5)

* -0.0005 (0.0014) C21 * -0.0007 (0.0014) C22 * 0.0015 (0.0014) C23 * -0.0018 (0.0014) C24 * 0.0014 (0.0014) C25 - 1.6533 (0.0010) Fe1 - 3.0752 (0.0069) S1

Rms deviation of fitted atoms = 0.0013

-6.7929(0.0022)x + 0.3781(0.0143)y + 10.8365(0.0210)z = 4.0157(0.0125)

Angle to previous plane (with approximate e.s.d.) = 12.95 (7)

* 0.0078 (0.0013) C1 * -0.0039 (0.0007) O1 * -0.0076 (0.0013) N1 * 0.0037 (0.0006) C2 - 1.6307 (0.0057) Fe1 0.1081 (0.0041) S1

Rms deviation of fitted atoms = 0.0061

-6.7724(0.0020)x - 0.1234(0.0081)y + 11.1286(0.0203)z = 3.8475(0.0129)

Angle to previous plane (with approximate e.s.d.) = 3.60 (7)

* 0.0021 (0.0012) C2 * -0.0019 (0.0014) C3 * 0.0005 (0.0015) C4 * 0.0008 (0.0013) C5 * -0.0015 (0.0010) S1

Rms deviation of fitted atoms = 0.0015

-6.8893(0.0018) x- 0.2013(0.0083)y + 9.8050(0.0219)z = 3.1076(0.0132)

Angle to previous plane (with approximate e.s.d.) = 3.17 (7)

* -0.0013 (0.0011) C3 * -0.0011 (0.0018) C6 * -0.0023 (0.0011) C7 * 0.0012 (0.0007) O2 * 0.0035 (0.0015) O3 - 1.1763 (0.0056) Fe1 0.0819 (0.0039) S1

Rms deviation of fitted atoms = 0.0021

Distances #########

Distance M.·O

3.8706 (0.0015) Fe1 - O1 4.9649 (0.0016) Fe1 - O2 7.0874 (0.0016) Fe1 - O3

Distance M.·S

5.9696 (0.0006) Fe1 - S1

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.16371 (4)0.19319 (3)0.315967 (11)0.02178 (10)
S10.13405 (8)0.81350 (6)0.43619 (2)0.02950 (14)
O10.0049 (2)0.63043 (18)0.35130 (6)0.0356 (4)
C10.0283 (3)0.4947 (3)0.37176 (8)0.0265 (5)
N10.1081 (3)0.4804 (2)0.42088 (7)0.0269 (4)
C20.1645 (3)0.6090 (2)0.45275 (8)0.0244 (4)
C30.2463 (3)0.5907 (2)0.50198 (8)0.0247 (4)
C40.2831 (3)0.7463 (3)0.52632 (9)0.0311 (5)
C50.2306 (3)0.8747 (3)0.49581 (9)0.0335 (5)
C60.2829 (3)0.4276 (3)0.52436 (8)0.0264 (5)
O20.2543 (2)0.29772 (17)0.50188 (6)0.0304 (4)
O30.3519 (2)0.43670 (18)0.57351 (6)0.0332 (4)
C70.3932 (4)0.2810 (3)0.59872 (10)0.0409 (6)
C110.0268 (3)0.3392 (2)0.34582 (8)0.0254 (5)
C120.0719 (3)0.3256 (2)0.29233 (8)0.0255 (5)
C130.1029 (3)0.1574 (3)0.28034 (8)0.0277 (5)
C140.0771 (3)0.0647 (3)0.32608 (8)0.0284 (5)
C150.0296 (3)0.1759 (3)0.36684 (8)0.0275 (5)
C210.4260 (3)0.2832 (3)0.33899 (10)0.0347 (5)
C220.3873 (3)0.2982 (3)0.28540 (10)0.0343 (5)
C230.3515 (3)0.1381 (3)0.26496 (9)0.0339 (5)
C240.3676 (3)0.0246 (3)0.30608 (9)0.0334 (5)
C250.4142 (3)0.1139 (3)0.35174 (10)0.0353 (5)
H10.127 (3)0.392 (3)0.4336 (9)0.027 (6)*
H40.33850.75800.56030.037*
H50.24500.98660.50600.040*
H7A0.27610.22120.60180.061*
H7B0.45720.30090.63270.061*
H7C0.47420.21530.57880.061*
H120.07970.41420.26870.031*
H130.13540.11380.24730.033*
H140.08950.05130.32890.034*
H150.00430.14750.40170.033*
H210.45480.37100.36220.042*
H220.38560.39790.26650.041*
H230.32200.11170.23010.041*
H240.35020.09120.30350.040*
H250.43390.06850.38500.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02385 (17)0.01945 (16)0.02158 (16)0.00004 (12)0.00008 (11)0.00039 (12)
S10.0384 (3)0.0188 (3)0.0318 (3)0.0011 (2)0.0062 (2)0.0011 (2)
O10.0568 (11)0.0212 (8)0.0286 (8)0.0034 (8)0.0031 (7)0.0018 (6)
C10.0316 (12)0.0237 (11)0.0247 (11)0.0032 (9)0.0058 (9)0.0007 (8)
N10.0377 (11)0.0176 (9)0.0253 (10)0.0012 (8)0.0027 (8)0.0004 (7)
C20.0258 (11)0.0191 (10)0.0293 (11)0.0010 (8)0.0079 (9)0.0001 (8)
C30.0245 (11)0.0207 (10)0.0292 (11)0.0004 (8)0.0043 (9)0.0015 (8)
C40.0312 (12)0.0277 (11)0.0339 (13)0.0007 (10)0.0006 (10)0.0068 (10)
C50.0390 (14)0.0209 (11)0.0404 (14)0.0023 (10)0.0025 (11)0.0080 (10)
C60.0217 (11)0.0277 (11)0.0299 (11)0.0017 (9)0.0031 (9)0.0002 (9)
O20.0355 (9)0.0209 (8)0.0343 (9)0.0019 (7)0.0000 (7)0.0005 (6)
O30.0385 (9)0.0287 (8)0.0307 (9)0.0052 (7)0.0058 (7)0.0017 (7)
C70.0416 (15)0.0358 (14)0.0433 (15)0.0072 (11)0.0061 (11)0.0099 (11)
C110.0287 (12)0.0212 (10)0.0269 (11)0.0032 (8)0.0056 (9)0.0002 (8)
C120.0266 (11)0.0241 (11)0.0252 (11)0.0034 (9)0.0004 (9)0.0015 (8)
C130.0242 (11)0.0305 (12)0.0275 (11)0.0004 (9)0.0025 (9)0.0034 (9)
C140.0294 (12)0.0222 (10)0.0345 (12)0.0054 (9)0.0068 (10)0.0005 (9)
C150.0340 (13)0.0256 (11)0.0237 (11)0.0003 (9)0.0074 (9)0.0027 (8)
C210.0239 (12)0.0312 (13)0.0469 (14)0.0038 (9)0.0066 (10)0.0077 (10)
C220.0262 (12)0.0327 (12)0.0450 (14)0.0042 (10)0.0075 (10)0.0035 (11)
C230.0268 (12)0.0415 (13)0.0343 (13)0.0010 (10)0.0079 (10)0.0056 (10)
C240.0262 (12)0.0260 (12)0.0470 (14)0.0048 (9)0.0014 (10)0.0062 (10)
C250.0277 (12)0.0333 (12)0.0423 (14)0.0045 (10)0.0093 (10)0.0016 (10)
Geometric parameters (Å, º) top
Fe1—C112.027 (2)C2—C31.381 (3)
Fe1—C122.047 (2)C3—C41.430 (3)
Fe1—C132.066 (2)C3—C61.463 (3)
Fe1—C142.058 (2)C4—C51.348 (3)
Fe1—C152.030 (2)C6—O21.218 (2)
Fe1—C212.053 (2)C6—O31.345 (3)
Fe1—C222.051 (2)O3—C71.446 (3)
Fe1—C232.047 (2)C11—C121.423 (3)
Fe1—C242.038 (2)C11—C151.439 (3)
Fe1—C252.048 (2)C12—C131.414 (3)
S1—C21.725 (2)C13—C141.420 (3)
S1—C51.730 (2)C14—C151.421 (3)
O1—C11.232 (2)C21—C221.421 (3)
C1—N11.370 (3)C21—C251.419 (3)
C1—C111.471 (3)C22—C231.421 (3)
N1—C21.376 (3)C23—C241.421 (3)
N1—H10.80 (2)C24—C251.419 (3)
C11—Fe1—C1541.53 (8)O1—C1—N1121.1 (2)
C11—Fe1—C24164.24 (9)O1—C1—C11123.0 (2)
C15—Fe1—C24125.77 (9)N1—C1—C11115.88 (18)
C11—Fe1—C1240.87 (8)N1—C2—C3124.49 (19)
C15—Fe1—C1268.96 (9)S1—C2—N1123.54 (16)
C24—Fe1—C12153.41 (9)S1—C2—C3111.94 (15)
C11—Fe1—C23153.75 (9)C2—C3—C4111.75 (19)
C15—Fe1—C23163.40 (9)C2—C3—C6121.37 (18)
C24—Fe1—C2340.69 (9)C4—C3—C6126.9 (2)
C12—Fe1—C23119.39 (9)C3—C4—C5112.7 (2)
C11—Fe1—C25126.74 (9)S1—C5—C4112.68 (17)
C15—Fe1—C25107.34 (10)O2—C6—O3123.12 (19)
C24—Fe1—C2540.63 (9)O2—C6—C3124.9 (2)
C12—Fe1—C25164.79 (9)O3—C6—C3112.01 (18)
C23—Fe1—C2568.37 (10)C6—O3—C7115.83 (18)
C11—Fe1—C22119.58 (9)C1—C11—C12123.62 (18)
C15—Fe1—C22154.39 (9)C1—C11—C15128.61 (19)
C24—Fe1—C2268.27 (10)C12—C11—C15107.55 (18)
C12—Fe1—C22108.37 (9)C12—C11—Fe170.30 (12)
C23—Fe1—C2240.57 (9)C15—C11—Fe169.34 (12)
C25—Fe1—C2268.20 (10)C1—C11—Fe1121.52 (15)
C11—Fe1—C21108.05 (9)C13—C12—C11108.23 (18)
C15—Fe1—C21119.64 (10)C13—C12—Fe170.60 (12)
C24—Fe1—C2168.23 (9)C11—C12—Fe168.83 (12)
C12—Fe1—C21127.41 (9)C12—C13—C14108.46 (19)
C23—Fe1—C2168.25 (10)C12—C13—Fe169.17 (12)
C25—Fe1—C2140.50 (9)C14—C13—Fe169.55 (12)
C22—Fe1—C2140.52 (10)C13—C14—C15108.03 (18)
C11—Fe1—C1468.84 (9)C13—C14—Fe170.15 (12)
C15—Fe1—C1440.67 (8)C15—C14—Fe168.62 (12)
C24—Fe1—C14107.36 (9)C14—C15—C11107.72 (19)
C12—Fe1—C1468.16 (9)C14—C15—Fe170.71 (12)
C23—Fe1—C14126.18 (9)C11—C15—Fe169.13 (12)
C25—Fe1—C14119.31 (9)C25—C21—C22108.0 (2)
C22—Fe1—C14163.91 (9)C25—C21—Fe169.58 (13)
C21—Fe1—C14153.90 (10)C22—C21—Fe169.69 (13)
C11—Fe1—C1368.32 (9)C23—C22—C21108.1 (2)
C15—Fe1—C1368.29 (9)C23—C22—Fe169.57 (13)
C24—Fe1—C13119.36 (9)C21—C22—Fe169.79 (13)
C12—Fe1—C1340.23 (8)C24—C23—C22107.7 (2)
C23—Fe1—C13107.98 (9)C24—C23—Fe169.31 (13)
C25—Fe1—C13153.56 (9)C22—C23—Fe169.86 (13)
C22—Fe1—C13127.08 (9)C25—C24—C23108.3 (2)
C21—Fe1—C13164.62 (9)C25—C24—Fe170.06 (13)
C14—Fe1—C1340.30 (8)C23—C24—Fe170.00 (13)
C2—S1—C590.93 (11)C24—C25—C21107.9 (2)
C1—N1—C2125.81 (19)C24—C25—Fe169.31 (13)
C1—N1—H1120.9 (17)C21—C25—Fe169.92 (13)
C2—N1—H1113.3 (17)
O1—C1—N1—C22.1 (4)Fe1—C11—C15—C1460.46 (15)
C11—C1—N1—C2177.78 (19)C12—C11—C15—Fe160.19 (15)
C1—N1—C2—C3179.3 (2)C1—C11—C15—Fe1114.5 (2)
C1—N1—C2—S12.7 (3)C11—Fe1—C15—C14118.59 (19)
C5—S1—C2—N1177.87 (19)C24—Fe1—C15—C1474.09 (16)
C5—S1—C2—C30.30 (18)C12—Fe1—C15—C1480.57 (14)
N1—C2—C3—C4177.8 (2)C23—Fe1—C15—C1442.8 (4)
S1—C2—C3—C40.4 (2)C25—Fe1—C15—C14115.06 (14)
N1—C2—C3—C61.0 (3)C22—Fe1—C15—C14169.35 (19)
S1—C2—C3—C6179.11 (16)C21—Fe1—C15—C14157.42 (13)
C2—C3—C4—C50.2 (3)C13—Fe1—C15—C1437.23 (13)
C6—C3—C4—C5178.9 (2)C24—Fe1—C15—C11167.32 (13)
C3—C4—C5—S10.0 (3)C12—Fe1—C15—C1138.03 (12)
C2—S1—C5—C40.17 (19)C23—Fe1—C15—C11161.4 (3)
C2—C3—C6—O23.6 (3)C25—Fe1—C15—C11126.34 (13)
C4—C3—C6—O2177.8 (2)C22—Fe1—C15—C1150.8 (3)
C2—C3—C6—O3176.03 (19)C21—Fe1—C15—C1183.99 (15)
C4—C3—C6—O32.5 (3)C14—Fe1—C15—C11118.59 (19)
O2—C6—O3—C70.6 (3)C13—Fe1—C15—C1181.36 (13)
C3—C6—O3—C7179.72 (19)C11—Fe1—C21—C25125.96 (15)
O1—C1—C11—C1214.8 (3)C15—Fe1—C21—C2582.05 (16)
N1—C1—C11—C12165.4 (2)C24—Fe1—C21—C2537.74 (15)
O1—C1—C11—C15171.4 (2)C12—Fe1—C21—C25167.19 (14)
N1—C1—C11—C158.5 (3)C23—Fe1—C21—C2581.71 (15)
O1—C1—C11—Fe1100.9 (2)C22—Fe1—C21—C25119.3 (2)
N1—C1—C11—Fe179.2 (2)C14—Fe1—C21—C2547.4 (3)
C15—Fe1—C11—C12118.51 (18)C13—Fe1—C21—C25160.3 (3)
C24—Fe1—C11—C12159.5 (3)C11—Fe1—C21—C22114.71 (14)
C23—Fe1—C11—C1249.6 (3)C15—Fe1—C21—C22158.62 (13)
C25—Fe1—C11—C12167.86 (13)C24—Fe1—C21—C2281.59 (15)
C22—Fe1—C11—C1284.13 (15)C12—Fe1—C21—C2273.48 (16)
C21—Fe1—C11—C12126.87 (13)C23—Fe1—C21—C2237.62 (14)
C14—Fe1—C11—C1280.67 (13)C25—Fe1—C21—C22119.3 (2)
C13—Fe1—C11—C1237.23 (12)C14—Fe1—C21—C22166.72 (18)
C24—Fe1—C11—C1541.0 (4)C13—Fe1—C21—C2241.0 (4)
C12—Fe1—C11—C15118.51 (18)C25—C21—C22—C230.0 (3)
C23—Fe1—C11—C15168.12 (19)Fe1—C21—C22—C2359.25 (16)
C25—Fe1—C11—C1573.63 (16)C25—C21—C22—Fe159.23 (16)
C22—Fe1—C11—C15157.36 (13)C11—Fe1—C22—C23157.33 (14)
C21—Fe1—C11—C15114.61 (14)C15—Fe1—C22—C23166.48 (19)
C14—Fe1—C11—C1537.85 (13)C24—Fe1—C22—C2337.85 (14)
C13—Fe1—C11—C1581.28 (14)C12—Fe1—C22—C23114.03 (14)
C15—Fe1—C11—C1123.4 (2)C25—Fe1—C22—C2381.76 (15)
C24—Fe1—C11—C182.5 (4)C21—Fe1—C22—C23119.3 (2)
C12—Fe1—C11—C1118.0 (2)C14—Fe1—C22—C2339.3 (4)
C23—Fe1—C11—C168.4 (3)C13—Fe1—C22—C2373.27 (17)
C25—Fe1—C11—C149.8 (2)C11—Fe1—C22—C2183.34 (15)
C22—Fe1—C11—C133.9 (2)C15—Fe1—C22—C2147.1 (3)
C21—Fe1—C11—C18.82 (19)C24—Fe1—C22—C2181.48 (14)
C14—Fe1—C11—C1161.28 (19)C12—Fe1—C22—C21126.64 (13)
C13—Fe1—C11—C1155.28 (19)C23—Fe1—C22—C21119.3 (2)
C15—C11—C12—C130.2 (2)C25—Fe1—C22—C2137.57 (14)
C1—C11—C12—C13175.2 (2)C14—Fe1—C22—C21158.6 (3)
Fe1—C11—C12—C1359.83 (15)C13—Fe1—C22—C21167.40 (13)
C15—C11—C12—Fe159.58 (15)C21—C22—C23—C240.2 (3)
C1—C11—C12—Fe1115.4 (2)Fe1—C22—C23—C2459.18 (15)
C11—Fe1—C12—C13119.47 (18)C21—C22—C23—Fe159.38 (16)
C15—Fe1—C12—C1380.85 (14)C11—Fe1—C23—C24168.31 (19)
C24—Fe1—C12—C1348.3 (3)C15—Fe1—C23—C2440.2 (4)
C23—Fe1—C12—C1383.27 (15)C12—Fe1—C23—C24156.80 (13)
C25—Fe1—C12—C13159.4 (3)C25—Fe1—C23—C2437.73 (13)
C22—Fe1—C12—C13126.24 (14)C22—Fe1—C23—C24119.0 (2)
C21—Fe1—C12—C13167.27 (14)C21—Fe1—C23—C2481.46 (14)
C14—Fe1—C12—C1337.01 (13)C14—Fe1—C23—C2473.52 (17)
C15—Fe1—C12—C1138.63 (12)C13—Fe1—C23—C24114.40 (14)
C24—Fe1—C12—C11167.72 (19)C11—Fe1—C23—C2249.3 (3)
C23—Fe1—C12—C11157.26 (13)C15—Fe1—C23—C22159.3 (3)
C25—Fe1—C12—C1140.0 (4)C24—Fe1—C23—C22119.0 (2)
C22—Fe1—C12—C11114.29 (13)C12—Fe1—C23—C2284.16 (16)
C21—Fe1—C12—C1173.26 (16)C25—Fe1—C23—C2281.31 (15)
C14—Fe1—C12—C1182.46 (13)C21—Fe1—C23—C2237.58 (14)
C13—Fe1—C12—C11119.47 (18)C14—Fe1—C23—C22167.44 (14)
C11—C12—C13—C140.1 (2)C13—Fe1—C23—C22126.56 (14)
Fe1—C12—C13—C1458.60 (15)C22—C23—C24—C250.3 (3)
C11—C12—C13—Fe158.73 (15)Fe1—C23—C24—C2559.84 (16)
C11—Fe1—C13—C1237.81 (12)C22—C23—C24—Fe159.52 (16)
C15—Fe1—C13—C1282.67 (13)C11—Fe1—C24—C2541.6 (4)
C24—Fe1—C13—C12157.47 (13)C15—Fe1—C24—C2574.01 (17)
C23—Fe1—C13—C12114.53 (13)C12—Fe1—C24—C25169.21 (18)
C25—Fe1—C13—C12168.06 (19)C23—Fe1—C24—C25119.1 (2)
C22—Fe1—C13—C1273.63 (16)C22—Fe1—C24—C2581.40 (15)
C21—Fe1—C13—C1241.3 (4)C21—Fe1—C24—C2537.62 (14)
C14—Fe1—C13—C12120.23 (18)C14—Fe1—C24—C25115.04 (15)
C11—Fe1—C13—C1482.42 (13)C13—Fe1—C24—C25157.23 (14)
C15—Fe1—C13—C1437.56 (12)C11—Fe1—C24—C23160.7 (3)
C24—Fe1—C13—C1482.30 (15)C15—Fe1—C24—C23166.86 (13)
C12—Fe1—C13—C14120.23 (18)C12—Fe1—C24—C2350.1 (3)
C23—Fe1—C13—C14125.24 (13)C25—Fe1—C24—C23119.1 (2)
C25—Fe1—C13—C1447.8 (3)C22—Fe1—C24—C2337.74 (14)
C22—Fe1—C13—C14166.14 (13)C21—Fe1—C24—C2381.52 (15)
C21—Fe1—C13—C14161.6 (3)C14—Fe1—C24—C23125.82 (14)
C12—C13—C14—C150.0 (3)C13—Fe1—C24—C2383.63 (15)
Fe1—C13—C14—C1558.33 (15)C23—C24—C25—C210.3 (3)
C12—C13—C14—Fe158.36 (15)Fe1—C24—C25—C2159.50 (16)
C11—Fe1—C14—C1381.02 (13)C23—C24—C25—Fe159.80 (16)
C15—Fe1—C14—C13119.66 (18)C22—C21—C25—C240.2 (3)
C24—Fe1—C14—C13115.19 (14)Fe1—C21—C25—C2459.11 (16)
C12—Fe1—C14—C1336.95 (12)C22—C21—C25—Fe159.29 (16)
C23—Fe1—C14—C1374.26 (16)C11—Fe1—C25—C24166.99 (13)
C25—Fe1—C14—C13157.76 (13)C15—Fe1—C25—C24125.20 (14)
C22—Fe1—C14—C1343.6 (4)C12—Fe1—C25—C24161.4 (3)
C21—Fe1—C14—C13169.00 (19)C23—Fe1—C25—C2437.78 (14)
C11—Fe1—C14—C1538.63 (13)C22—Fe1—C25—C2481.60 (15)
C24—Fe1—C14—C15125.16 (13)C21—Fe1—C25—C24119.2 (2)
C12—Fe1—C14—C1582.70 (13)C14—Fe1—C25—C2482.60 (16)
C23—Fe1—C14—C15166.08 (13)C13—Fe1—C25—C2449.3 (3)
C25—Fe1—C14—C1582.58 (15)C11—Fe1—C25—C2173.81 (17)
C22—Fe1—C14—C15163.2 (3)C15—Fe1—C25—C21115.60 (15)
C21—Fe1—C14—C1549.3 (2)C24—Fe1—C25—C21119.2 (2)
C13—Fe1—C14—C15119.66 (18)C12—Fe1—C25—C2142.2 (4)
C13—C14—C15—C110.2 (2)C23—Fe1—C25—C2181.41 (15)
Fe1—C14—C15—C1159.46 (15)C22—Fe1—C25—C2137.59 (14)
C13—C14—C15—Fe159.27 (15)C14—Fe1—C25—C21158.21 (14)
C12—C11—C15—C140.3 (2)C13—Fe1—C25—C21168.44 (19)
C1—C11—C15—C14174.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.80 (2)2.08 (2)2.727 (2)137 (2)
C5—H5···O2i0.952.533.442 (3)161
C7—H7C···S1ii0.982.893.682 (3)139
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

SA, JFG and PTMK thank Dublin City University and the Department of Education, Ireland, for funding the National Institute for Cellular Biotechnology (PRTLI programme, round 3, 2001–2008).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1998). PREP8. University of Guelph, Canada.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGallagher, J. F., Hudson, R. D. A. & Manning, A. R. (2001). Acta Cryst. C57, 28–30.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHudson, R. D. A., Asselsbergh, I., Clays, K., Cuffe, L. P., Gallagher, J. F., Manning, A. R., Persoons, A. & Wostyn, K. (2001). J. Organomet. Chem. 637, 435–444.  Web of Science CSD CrossRef Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65–65.  CrossRef IUCr Journals Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds