organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis­[2,4-bis­­(heptyl­­oxy)­phenyl]­pyridine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, England
*Correspondence e-mail: n.w.alcock@warwick.ac.uk

(Received 16 December 2004; accepted 13 January 2005; online 22 January 2005)

The title 2,6-disubstituted pyridine, C41H61NO4, with a crystallographic twofold axis, has an arrangement of mol­ecules well organized to undergo multiple cyclo­metallation reactions.

Comment

2,6-Disubstituted pyridines are ideally set up to undergo multiple cyclo­metallations, reactions of considerable interest to us (Cave et al., 1999[Cave, G. W. V., Alcock, N. W. & Rourke, J. P. (1999). Organometallics, 18, 1801-1803.], 2000[Cave, G. W. V., Fanizzi, F. P., Deeth, R. J., Errington, W. & Rourke, J. P. (2000). Organometallics, 19, 1355-1364.]). In addition to their ability to undergo multiple cyclo­metallations, such compounds have also been shown to be activated by other reagents (Cave et al., 1998[Cave, G. W. V., Hallett, A. J., Errington, W. & Rourke, J. P. (1998). Angew. Chem. Int. Ed. 37, 3270-3272.]).[link]

[Scheme 1]

The title mol­ecule, (I[link]) (Fig. 1[link]), has crystallographic twofold symmetry and the aliphatic chains are each in an extended form. Within the unit cell, the mol­ecules are aligned in an antiparallel fashion (Figs. 2[link] and 3[link]).

[Figure 1]
Figure 1
View of the title mol­ecule, showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. Both disorder components are shown in all Figures.
[Figure 2]
Figure 2
Packing diagram of (I[link]), viewed down the a axis. H atoms have been omitted.
[Figure 3]
Figure 3
Packing diagram of (I[link]), viewed down the b axis. H atoms have been omitted.

Experimental

1-Chloro-2,4-bis­(heptyl­oxy)­benzene (15.0 g, 48.0 mmol) was added dropwise to a stirred solution of magnesium (1.22 g, 50.0 mmol) and methyl iodide (0.30 g, 2.11 mmol) in tetra­hydro­furan (THF, 25 ml) under an inert atmosphere. The resulting Grignard reagent was transferred via a cannula to a stirred solution of 2,6-di­chloro­pyridine (2.96 g, 20.0 mmol) and tetrakis­(tri­phenyl­phosphine)­palladium (0.45 g, 0.50 mmol) in THF (25 ml). The reaction mixture was then heated under reflux (24 h) under an inert atmosphere. Excess Grignard was destroyed with water (20 ml) and hydro­chloric acid (5 ml, 2 M). The neutralized (aqueous NaOH) reaction mixture was extracted with diethyl ether (2 × 200 ml) and dried (saturated NaCl and magnesium sulfate). The solvent was removed under vacuum and the product crystallized out as white needle-like crystals (yield: 12.0 g, 19.0 mmol, 95%). 1H NMR (CDCl3, 250.13 MHz): δ 7.96 (2H, d, 3J = 8.5 Hz), 7.75 (2H, d, 3J = 7.3 Hz), 7.60 (1H, t, 3J = 7.3 Hz), 6.59 (2H, dd, 3J = 8.5, 4J = 2.1 Hz), 6.53 (2H, d, 4J = 2.1 Hz), 3.99 (8H, t, 3J = 6.7 Hz), 1.79 (8H, m), 1.48 (24H, m), 0.89 (12H, m). 13C NMR (CDCl3, 250.13 MHz): δ 160.5, 157.7, 154.7, 134.8, 132.1, 131.5, 121.9, 105.6, 100.0, 68.2, 31.4, 25.7, 22.5. Elemental analysis found (expected): C 77.8 (77.9), H 9.6 (9.7), N 2.4% (2.2%).

Crystal data
  • C41H61NO4

  • Mr = 631.91

  • Monoclinic, P2/n

  • a = 11.2502 (10) Å

  • b = 6.9682 (6) Å

  • c = 24.014 (2) Å

  • β = 93.963 (2)°

  • V = 1878.0 (3) Å3

  • Z = 2

  • Dx = 1.117 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2201 reflections

  • θ = 3–15°

  • μ = 0.07 mm−1

  • T = 180 (2) K

  • Block, colourless

  • 0.45 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.896, Tmax = 0.989

  • 8996 measured reflections

  • 3318 independent reflections

  • 1753 reflections with I > 2σ(I)

  • Rint = 0.045

  • θmax = 25.0°

  • h = −13 → 13

  • k = −8 → 7

  • l = −18 → 28

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.168

  • S = 1.04

  • 3318 reflections

  • 229 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.078P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.043

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

H atoms were added at calculated positions (C—H = 0.95–0.99 Å) and refined using a riding model (including free rotation about C—C bonds for methyl groups), with Uiso(H) = 1.2 (or 1.5 for methyl H atoms) times Ueq(C). The terminal section of one of the heptane chains was found to be disordered between two positions [relative occupancies 0.43 (1):0.57 (1)]. This disorder is believed to be responsible for various anomalies in the displacement parameters of the atoms in this region of the mol­ecule.

Data collection: SMART (Siemens, 1994[Siemens (1994). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SAINT. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

2,6-Bis[2,4-bis(heptyloxy)phenyl]pyridine top
Crystal data top
C41H61NO4F(000) = 692
Mr = 631.91Dx = 1.117 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 2201 reflections
a = 11.2502 (10) Åθ = 3–15°
b = 6.9682 (6) ŵ = 0.07 mm1
c = 24.014 (2) ÅT = 180 K
β = 93.963 (2)°Block, colourless
V = 1878.0 (3) Å30.45 × 0.25 × 0.2 mm
Z = 2
Data collection top
Siemens SMART
diffractometer
3318 independent reflections
Radiation source: fine-focus sealed tube1753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.7°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 87
Tmin = 0.896, Tmax = 0.989l = 1828
8996 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
3318 reflections(Δ/σ)max = 0.043
229 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.22 e Å3
Special details top

Experimental. The temperature of the crystal was controlled using the Oxford Cryosystem Cryostream Cooler (Cosier & Glazer, 1986). The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures with different φ angles for the crystal; each 10 s exposure covered 0.3° in ω. The crystal-to-detector distance was 5.0 cm. Coverage of the unique set is over 97% complete to at least 26° in θ. Crystal decay was found to be negligible by by repeating the initial frames at data collection and analyzing the duplicate reflections.

Hydrogen atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms H-atoms were given isotropic displacement parameter equal to 1.2 (or 1.5 for methyl atoms) times the equivalent isotropic displacement parameter of the atom to which they are attached.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.27150 (17)0.9445 (3)0.49155 (7)0.0557 (6)
O20.12875 (16)0.3876 (2)0.39451 (7)0.0541 (6)
C010.2706 (2)0.8380 (4)0.44357 (10)0.0443 (7)
C020.2012 (2)0.6730 (4)0.44313 (10)0.0451 (7)
H02A0.15820.64250.47460.054*
C030.1942 (2)0.5526 (4)0.39711 (10)0.0422 (7)
C040.2560 (2)0.5969 (3)0.34979 (9)0.0366 (6)
C050.3235 (2)0.7629 (4)0.35173 (10)0.0413 (7)
H05A0.36530.79580.32000.050*
C060.3333 (2)0.8842 (4)0.39782 (10)0.0437 (7)
H06A0.38180.99580.39790.052*
C070.2497 (2)0.4772 (4)0.29833 (10)0.0372 (6)
N080.25000.5760 (4)0.25000.0376 (7)
C0090.2482 (2)0.2775 (4)0.29932 (11)0.0435 (7)
H09A0.24600.21100.33380.052*
C0100.25000.1771 (5)0.25000.0430 (9)
H01C0.25000.04080.25000.052*
C110.3361 (2)1.1221 (4)0.49299 (10)0.0492 (7)
H11A0.30401.20790.46270.059*
H11B0.42141.09800.48770.059*
C120.3225 (3)1.2141 (4)0.54911 (10)0.0535 (8)
H12A0.35141.12390.57890.064*
H12B0.23711.23900.55350.064*
C130.3912 (2)1.4015 (4)0.55598 (11)0.0490 (7)
H13A0.47661.37630.55150.059*
H13B0.36231.49130.52610.059*
C140.3784 (2)1.4954 (4)0.61216 (11)0.0540 (8)
H14A0.29271.51500.61720.065*
H14B0.41021.40710.64190.065*
C150.4417 (3)1.6856 (4)0.61915 (12)0.0585 (8)
H15A0.40931.77440.58970.070*
H15B0.52731.66630.61360.070*
C160.4301 (3)1.7785 (5)0.67574 (13)0.0759 (10)
H16A0.47091.90280.67690.114*
H16B0.46631.69510.70510.114*
H16C0.34561.79750.68170.114*
C210.0420 (3)0.3509 (4)0.43410 (13)0.0642 (9)
H21A0.02020.45170.43210.077*
H21B0.08000.34720.47250.077*
C220.0114 (4)0.1576 (5)0.41802 (17)0.0954 (14)
H22A0.05280.06020.42080.114*
H22B0.06970.12280.44540.114*
C230.0705 (4)0.1487 (7)0.3625 (2)0.145 (2)
H23A0.02560.21930.33500.174*0.554 (17)
H23B0.15300.19880.36180.174*0.554 (17)
H23C0.01420.20790.33760.174*0.446 (17)
H23D0.13830.23890.36350.174*0.446 (17)
C24A0.0681 (14)0.0784 (13)0.3520 (6)0.112 (6)0.554 (17)
H24A0.00980.12480.36840.134*0.554 (17)
H24B0.12950.13460.37470.134*0.554 (17)
C25A0.083 (2)0.152 (2)0.3054 (8)0.181 (8)0.554 (17)
H25A0.02970.07280.28330.218*0.554 (17)
H25B0.16430.10950.29310.218*0.554 (17)
C24B0.1284 (9)0.0165 (13)0.3271 (5)0.070 (4)0.446 (17)
H24C0.17570.03310.29390.084*0.446 (17)
H24D0.18010.09690.34940.084*0.446 (17)
C25B0.0166 (9)0.130 (2)0.3104 (5)0.066 (4)0.446 (17)
H25C0.03680.16260.34350.079*0.446 (17)
H25D0.02870.05620.28370.079*0.446 (17)
C260.0762 (4)0.3254 (7)0.28082 (17)0.1204 (16)
H26A0.10690.31600.24170.181*0.554 (17)
H26B0.12400.41800.30030.181*0.554 (17)
H26C0.00700.36820.28260.181*0.554 (17)
H26D0.01170.40420.26760.181*0.446 (17)
H26E0.13000.28680.24900.181*0.446 (17)
H26F0.12060.39970.30710.181*0.446 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0802 (15)0.0520 (13)0.0360 (11)0.0067 (10)0.0114 (10)0.0088 (9)
O20.0646 (13)0.0517 (12)0.0484 (12)0.0118 (10)0.0215 (9)0.0057 (10)
C010.0566 (18)0.0463 (17)0.0298 (15)0.0079 (14)0.0023 (13)0.0010 (13)
C020.0545 (18)0.0496 (18)0.0325 (16)0.0021 (14)0.0121 (12)0.0044 (13)
C030.0490 (17)0.0400 (16)0.0381 (16)0.0025 (13)0.0069 (12)0.0017 (13)
C040.0443 (15)0.0355 (15)0.0300 (14)0.0073 (12)0.0027 (11)0.0010 (12)
C050.0516 (17)0.0407 (16)0.0320 (15)0.0033 (13)0.0068 (12)0.0039 (12)
C060.0567 (18)0.0376 (15)0.0367 (16)0.0009 (13)0.0034 (13)0.0012 (13)
C070.0373 (15)0.0392 (16)0.0355 (15)0.0032 (12)0.0062 (12)0.0023 (12)
N080.0451 (18)0.0372 (18)0.0307 (17)0.0000.0040 (13)0.000
C0090.0495 (17)0.0416 (17)0.0400 (16)0.0034 (13)0.0071 (12)0.0048 (13)
C0100.051 (2)0.032 (2)0.046 (2)0.0000.0066 (18)0.000
C110.0569 (18)0.0506 (18)0.0400 (16)0.0015 (14)0.0017 (13)0.0064 (14)
C120.066 (2)0.0540 (19)0.0406 (17)0.0002 (15)0.0045 (14)0.0038 (14)
C130.0570 (18)0.0502 (18)0.0398 (16)0.0056 (14)0.0023 (13)0.0041 (14)
C140.0570 (19)0.0567 (19)0.0489 (18)0.0020 (15)0.0077 (14)0.0110 (15)
C150.063 (2)0.0550 (19)0.057 (2)0.0009 (15)0.0013 (15)0.0082 (15)
C160.072 (2)0.080 (2)0.076 (2)0.0088 (18)0.0062 (18)0.0286 (19)
C210.067 (2)0.066 (2)0.063 (2)0.0104 (16)0.0337 (16)0.0064 (17)
C220.095 (3)0.082 (3)0.118 (3)0.030 (2)0.063 (3)0.014 (3)
C230.106 (4)0.144 (5)0.185 (6)0.057 (3)0.012 (4)0.065 (4)
C24A0.114 (10)0.104 (9)0.121 (11)0.043 (7)0.042 (8)0.054 (7)
C25A0.22 (2)0.102 (10)0.23 (2)0.045 (14)0.080 (17)0.060 (10)
C24B0.044 (6)0.068 (6)0.094 (8)0.012 (4)0.018 (4)0.002 (5)
C25B0.049 (6)0.086 (8)0.064 (6)0.004 (5)0.011 (4)0.003 (5)
C260.141 (4)0.122 (4)0.099 (3)0.044 (3)0.018 (3)0.030 (3)
Geometric parameters (Å, º) top
O1—C011.370 (3)C15—H15B0.9900
O1—C111.434 (3)C16—H16A0.9800
O2—C031.364 (3)C16—H16B0.9800
O2—C211.432 (3)C16—H16C0.9800
C01—C061.384 (3)C21—C221.514 (4)
C01—C021.390 (3)C21—H21A0.9900
C02—C031.385 (3)C21—H21B0.9900
C02—H02A0.9500C22—C231.450 (6)
C03—C041.407 (3)C22—H22A0.9900
C04—C051.382 (3)C22—H22B0.9900
C04—C071.489 (3)C23—C24B1.547 (8)
C05—C061.391 (3)C23—C24A1.603 (8)
C05—H05A0.9500C23—H23A0.9900
C06—H06A0.9500C23—H23B0.9900
C07—N081.350 (3)C23—H23C0.9900
C07—C0091.392 (3)C23—H23D0.9899
N08—C07i1.350 (3)C24A—C25A1.23 (2)
C009—C0101.377 (3)C24A—H24A0.9900
C009—H09A0.9500C24A—H24B0.9900
C010—C009i1.377 (3)C25A—C261.352 (16)
C010—H01C0.9500C25A—H25A0.9900
C11—C121.509 (3)C25A—H25B0.9900
C11—H11A0.9900C24B—C25B1.563 (18)
C11—H11B0.9900C24B—H24C0.9900
C12—C131.520 (4)C24B—H24D0.9900
C12—H12A0.9900C25B—C261.654 (16)
C12—H12B0.9900C25B—H25C0.9900
C13—C141.515 (3)C25B—H25D0.9900
C13—H13A0.9900C26—H26A0.9800
C13—H13B0.9900C26—H26B0.9800
C14—C151.508 (3)C26—H26C0.9800
C14—H14A0.9900C26—H26D0.9800
C14—H14B0.9900C26—H26E0.9799
C15—C161.519 (4)C26—H26F0.9800
C15—H15A0.9900
C01—O1—C11117.5 (2)H16B—C16—H16C109.5
C03—O2—C21120.7 (2)O2—C21—C22105.5 (2)
O1—C01—C06124.5 (2)O2—C21—H21A110.7
O1—C01—C02115.2 (2)C22—C21—H21A110.7
C06—C01—C02120.2 (2)O2—C21—H21B110.7
C03—C02—C01120.5 (2)C22—C21—H21B110.7
C03—C02—H02A119.7H21A—C21—H21B108.8
C01—C02—H02A119.7C23—C22—C21114.9 (4)
O2—C03—C02123.2 (2)C23—C22—H22A108.5
O2—C03—C04116.3 (2)C21—C22—H22A108.5
C02—C03—C04120.5 (2)C23—C22—H22B108.5
C05—C04—C03117.2 (2)C21—C22—H22B108.5
C05—C04—C07119.4 (2)H22A—C22—H22B107.5
C03—C04—C07123.3 (2)C22—C23—C24B133.3 (6)
C04—C05—C06123.3 (2)C22—C23—C24A100.1 (7)
C04—C05—H05A118.4C22—C23—H23A111.8
C06—C05—H05A118.4C24B—C23—H23A102.6
C01—C06—C05118.3 (2)C24A—C23—H23A111.8
C01—C06—H06A120.9C22—C23—H23B111.8
C05—C06—H06A120.9C24B—C23—H23B83.9
N08—C07—C009121.7 (2)C24A—C23—H23B111.7
N08—C07—C04115.1 (2)H23A—C23—H23B109.5
C009—C07—C04123.1 (2)C22—C23—H23C105.4
C07i—N08—C07118.6 (3)C24B—C23—H23C104.0
C010—C009—C07119.5 (3)C24A—C23—H23C107.3
C010—C009—H09A120.3H23B—C23—H23C118.7
C07—C009—H09A120.3C22—C23—H23D104.8
C009—C010—C009i119.0 (3)C24B—C23—H23D100.9
C009—C010—H01C120.5C24A—C23—H23D130.7
C009i—C010—H01C120.5H23C—C23—H23D106.1
O1—C11—C12107.8 (2)C25A—C24A—C23123.3 (15)
O1—C11—H11A110.2C25A—C24A—H24A106.5
C12—C11—H11A110.2C23—C24A—H24A106.5
O1—C11—H11B110.2C25A—C24A—H24B106.5
C12—C11—H11B110.2C23—C24A—H24B106.5
H11A—C11—H11B108.5H24A—C24A—H24B106.5
C11—C12—C13112.3 (2)C24A—C25A—C26139.6 (19)
C11—C12—H12A109.1C24A—C25A—H25A102.2
C13—C12—H12A109.1C26—C25A—H25A102.2
C11—C12—H12B109.1C24A—C25A—H25B102.1
C13—C12—H12B109.1C26—C25A—H25B102.2
H12A—C12—H12B107.9H25A—C25A—H25B104.8
C14—C13—C12112.9 (2)C23—C24B—C25B101.7 (9)
C14—C13—H13A109.0C23—C24B—H24C111.4
C12—C13—H13A109.0C25B—C24B—H24C111.4
C14—C13—H13B109.0C23—C24B—H24D111.4
C12—C13—H13B109.0C25B—C24B—H24D111.4
H13A—C13—H13B107.8C24B—C25B—C26102.6 (7)
C15—C14—C13113.9 (2)C24B—C25B—H25D111.3
C15—C14—H14A108.8C26—C25B—H25D111.3
C13—C14—H14A108.8C25A—C26—H26A109.5
C15—C14—H14B108.8C25B—C26—H26A117.5
C13—C14—H14B108.8C25A—C26—H26B109.5
H14A—C14—H14B107.7C25B—C26—H26B123.8
C14—C15—C16113.9 (2)H26A—C26—H26B109.5
C14—C15—H15A108.8C25A—C26—H26C109.4
C16—C15—H15A108.8C25B—C26—H26C82.7
C14—C15—H15B108.8H26A—C26—H26C109.5
C16—C15—H15B108.8H26B—C26—H26C109.5
H15A—C15—H15B107.7C25B—C26—H26D108.2
C15—C16—H16A109.5C25B—C26—H26E108.6
C15—C16—H16B109.5H26D—C26—H26E109.5
H16A—C16—H16B109.5C25B—C26—H26F111.6
C15—C16—H16C109.5H26D—C26—H26F109.5
H16A—C16—H16C109.5H26E—C26—H26F109.5
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The EPSRC and Siemens generously supported the purchase of the SMART diffractometer.

References

First citationCave, G. W. V., Alcock, N. W. & Rourke, J. P. (1999). Organometallics, 18, 1801–1803.  Web of Science CSD CrossRef CAS Google Scholar
First citationCave, G. W. V., Fanizzi, F. P., Deeth, R. J., Errington, W. & Rourke, J. P. (2000). Organometallics, 19, 1355–1364.  Web of Science CSD CrossRef CAS Google Scholar
First citationCave, G. W. V., Hallett, A. J., Errington, W. & Rourke, J. P. (1998). Angew. Chem. Int. Ed. 37, 3270–3272.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1994). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1995). SAINT. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds