organic compounds
2,6-Bis[2,4-bis(heptyloxy)phenyl]pyridine
aDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, England
*Correspondence e-mail: n.w.alcock@warwick.ac.uk
The title 2,6-disubstituted pyridine, C41H61NO4, with a crystallographic twofold axis, has an arrangement of molecules well organized to undergo multiple cyclometallation reactions.
Comment
2,6-Disubstituted pyridines are ideally set up to undergo multiple cyclometallations, reactions of considerable interest to us (Cave et al., 1999, 2000). In addition to their ability to undergo multiple cyclometallations, such compounds have also been shown to be activated by other reagents (Cave et al., 1998).
The title molecule, (I) (Fig. 1), has crystallographic twofold symmetry and the aliphatic chains are each in an extended form. Within the the molecules are aligned in an antiparallel fashion (Figs. 2 and 3).
Experimental
1-Chloro-2,4-bis(heptyloxy)benzene (15.0 g, 48.0 mmol) was added dropwise to a stirred solution of magnesium (1.22 g, 50.0 mmol) and methyl iodide (0.30 g, 2.11 mmol) in tetrahydrofuran (THF, 25 ml) under an inert atmosphere. The resulting Grignard reagent was transferred via a cannula to a stirred solution of 2,6-dichloropyridine (2.96 g, 20.0 mmol) and tetrakis(triphenylphosphine)palladium (0.45 g, 0.50 mmol) in THF (25 ml). The reaction mixture was then heated under reflux (24 h) under an inert atmosphere. Excess Grignard was destroyed with water (20 ml) and hydrochloric acid (5 ml, 2 M). The neutralized (aqueous NaOH) reaction mixture was extracted with diethyl ether (2 × 200 ml) and dried (saturated NaCl and magnesium sulfate). The solvent was removed under vacuum and the product crystallized out as white needle-like crystals (yield: 12.0 g, 19.0 mmol, 95%). 1H NMR (CDCl3, 250.13 MHz): δ 7.96 (2H, d, 3J = 8.5 Hz), 7.75 (2H, d, 3J = 7.3 Hz), 7.60 (1H, t, 3J = 7.3 Hz), 6.59 (2H, dd, 3J = 8.5, 4J = 2.1 Hz), 6.53 (2H, d, 4J = 2.1 Hz), 3.99 (8H, t, 3J = 6.7 Hz), 1.79 (8H, m), 1.48 (24H, m), 0.89 (12H, m). 13C NMR (CDCl3, 250.13 MHz): δ 160.5, 157.7, 154.7, 134.8, 132.1, 131.5, 121.9, 105.6, 100.0, 68.2, 31.4, 25.7, 22.5. Elemental analysis found (expected): C 77.8 (77.9), H 9.6 (9.7), N 2.4% (2.2%).
Crystal data
|
Refinement
|
H atoms were added at calculated positions (C—H = 0.95–0.99 Å) and refined using a riding model (including Uiso(H) = 1.2 (or 1.5 for methyl H atoms) times Ueq(C). The terminal section of one of the heptane chains was found to be disordered between two positions [relative occupancies 0.43 (1):0.57 (1)]. This disorder is believed to be responsible for various anomalies in the displacement parameters of the atoms in this region of the molecule.
about C—C bonds for methyl groups), withData collection: SMART (Siemens, 1994); cell SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536805001248/tk6205sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805001248/tk6205Isup2.hkl
Data collection: SMART (Siemens, 1994); cell
SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.C41H61NO4 | F(000) = 692 |
Mr = 631.91 | Dx = 1.117 Mg m−3 |
Monoclinic, P2/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yac | Cell parameters from 2201 reflections |
a = 11.2502 (10) Å | θ = 3–15° |
b = 6.9682 (6) Å | µ = 0.07 mm−1 |
c = 24.014 (2) Å | T = 180 K |
β = 93.963 (2)° | Block, colourless |
V = 1878.0 (3) Å3 | 0.45 × 0.25 × 0.2 mm |
Z = 2 |
Siemens SMART diffractometer | 3318 independent reflections |
Radiation source: fine-focus sealed tube | 1753 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 8.192 pixels mm-1 | θmax = 25.0°, θmin = 1.7° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −8→7 |
Tmin = 0.896, Tmax = 0.989 | l = −18→28 |
8996 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.168 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.078P)2] where P = (Fo2 + 2Fc2)/3 |
3318 reflections | (Δ/σ)max = 0.043 |
229 parameters | Δρmax = 0.21 e Å−3 |
2 restraints | Δρmin = −0.22 e Å−3 |
Experimental. The temperature of the crystal was controlled using the Oxford Cryosystem Cryostream Cooler (Cosier & Glazer, 1986). The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures with different φ angles for the crystal; each 10 s exposure covered 0.3° in ω. The crystal-to-detector distance was 5.0 cm. Coverage of the unique set is over 97% complete to at least 26° in θ. Crystal decay was found to be negligible by by repeating the initial frames at data collection and analyzing the duplicate reflections. Hydrogen atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms H-atoms were given isotropic displacement parameter equal to 1.2 (or 1.5 for methyl atoms) times the equivalent isotropic displacement parameter of the atom to which they are attached. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.27150 (17) | 0.9445 (3) | 0.49155 (7) | 0.0557 (6) | |
O2 | 0.12875 (16) | 0.3876 (2) | 0.39451 (7) | 0.0541 (6) | |
C01 | 0.2706 (2) | 0.8380 (4) | 0.44357 (10) | 0.0443 (7) | |
C02 | 0.2012 (2) | 0.6730 (4) | 0.44313 (10) | 0.0451 (7) | |
H02A | 0.1582 | 0.6425 | 0.4746 | 0.054* | |
C03 | 0.1942 (2) | 0.5526 (4) | 0.39711 (10) | 0.0422 (7) | |
C04 | 0.2560 (2) | 0.5969 (3) | 0.34979 (9) | 0.0366 (6) | |
C05 | 0.3235 (2) | 0.7629 (4) | 0.35173 (10) | 0.0413 (7) | |
H05A | 0.3653 | 0.7958 | 0.3200 | 0.050* | |
C06 | 0.3333 (2) | 0.8842 (4) | 0.39782 (10) | 0.0437 (7) | |
H06A | 0.3818 | 0.9958 | 0.3979 | 0.052* | |
C07 | 0.2497 (2) | 0.4772 (4) | 0.29833 (10) | 0.0372 (6) | |
N08 | 0.2500 | 0.5760 (4) | 0.2500 | 0.0376 (7) | |
C009 | 0.2482 (2) | 0.2775 (4) | 0.29932 (11) | 0.0435 (7) | |
H09A | 0.2460 | 0.2110 | 0.3338 | 0.052* | |
C010 | 0.2500 | 0.1771 (5) | 0.2500 | 0.0430 (9) | |
H01C | 0.2500 | 0.0408 | 0.2500 | 0.052* | |
C11 | 0.3361 (2) | 1.1221 (4) | 0.49299 (10) | 0.0492 (7) | |
H11A | 0.3040 | 1.2079 | 0.4627 | 0.059* | |
H11B | 0.4214 | 1.0980 | 0.4877 | 0.059* | |
C12 | 0.3225 (3) | 1.2141 (4) | 0.54911 (10) | 0.0535 (8) | |
H12A | 0.3514 | 1.1239 | 0.5789 | 0.064* | |
H12B | 0.2371 | 1.2390 | 0.5535 | 0.064* | |
C13 | 0.3912 (2) | 1.4015 (4) | 0.55598 (11) | 0.0490 (7) | |
H13A | 0.4766 | 1.3763 | 0.5515 | 0.059* | |
H13B | 0.3623 | 1.4913 | 0.5261 | 0.059* | |
C14 | 0.3784 (2) | 1.4954 (4) | 0.61216 (11) | 0.0540 (8) | |
H14A | 0.2927 | 1.5150 | 0.6172 | 0.065* | |
H14B | 0.4102 | 1.4071 | 0.6419 | 0.065* | |
C15 | 0.4417 (3) | 1.6856 (4) | 0.61915 (12) | 0.0585 (8) | |
H15A | 0.4093 | 1.7744 | 0.5897 | 0.070* | |
H15B | 0.5273 | 1.6663 | 0.6136 | 0.070* | |
C16 | 0.4301 (3) | 1.7785 (5) | 0.67574 (13) | 0.0759 (10) | |
H16A | 0.4709 | 1.9028 | 0.6769 | 0.114* | |
H16B | 0.4663 | 1.6951 | 0.7051 | 0.114* | |
H16C | 0.3456 | 1.7975 | 0.6817 | 0.114* | |
C21 | 0.0420 (3) | 0.3509 (4) | 0.43410 (13) | 0.0642 (9) | |
H21A | −0.0202 | 0.4517 | 0.4321 | 0.077* | |
H21B | 0.0800 | 0.3472 | 0.4725 | 0.077* | |
C22 | −0.0114 (4) | 0.1576 (5) | 0.41802 (17) | 0.0954 (14) | |
H22A | 0.0528 | 0.0602 | 0.4208 | 0.114* | |
H22B | −0.0697 | 0.1228 | 0.4454 | 0.114* | |
C23 | −0.0705 (4) | 0.1487 (7) | 0.3625 (2) | 0.145 (2) | |
H23A | −0.0256 | 0.2193 | 0.3350 | 0.174* | 0.554 (17) |
H23B | −0.1530 | 0.1988 | 0.3618 | 0.174* | 0.554 (17) |
H23C | −0.0142 | 0.2079 | 0.3376 | 0.174* | 0.446 (17) |
H23D | −0.1383 | 0.2389 | 0.3635 | 0.174* | 0.446 (17) |
C24A | −0.0681 (14) | −0.0784 (13) | 0.3520 (6) | 0.112 (6) | 0.554 (17) |
H24A | 0.0098 | −0.1248 | 0.3684 | 0.134* | 0.554 (17) |
H24B | −0.1295 | −0.1346 | 0.3747 | 0.134* | 0.554 (17) |
C25A | −0.083 (2) | −0.152 (2) | 0.3054 (8) | 0.181 (8) | 0.554 (17) |
H25A | −0.0297 | −0.0728 | 0.2833 | 0.218* | 0.554 (17) |
H25B | −0.1643 | −0.1095 | 0.2931 | 0.218* | 0.554 (17) |
C24B | −0.1284 (9) | −0.0165 (13) | 0.3271 (5) | 0.070 (4) | 0.446 (17) |
H24C | −0.1757 | 0.0331 | 0.2939 | 0.084* | 0.446 (17) |
H24D | −0.1801 | −0.0969 | 0.3494 | 0.084* | 0.446 (17) |
C25B | −0.0166 (9) | −0.130 (2) | 0.3104 (5) | 0.066 (4) | 0.446 (17) |
H25C | 0.0368 | −0.1626 | 0.3435 | 0.079* | 0.446 (17) |
H25D | 0.0287 | −0.0562 | 0.2837 | 0.079* | 0.446 (17) |
C26 | −0.0762 (4) | −0.3254 (7) | 0.28082 (17) | 0.1204 (16) | |
H26A | −0.1069 | −0.3160 | 0.2417 | 0.181* | 0.554 (17) |
H26B | −0.1240 | −0.4180 | 0.3003 | 0.181* | 0.554 (17) |
H26C | 0.0070 | −0.3682 | 0.2826 | 0.181* | 0.554 (17) |
H26D | −0.0117 | −0.4042 | 0.2676 | 0.181* | 0.446 (17) |
H26E | −0.1300 | −0.2868 | 0.2490 | 0.181* | 0.446 (17) |
H26F | −0.1206 | −0.3997 | 0.3071 | 0.181* | 0.446 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0802 (15) | 0.0520 (13) | 0.0360 (11) | −0.0067 (10) | 0.0114 (10) | −0.0088 (9) |
O2 | 0.0646 (13) | 0.0517 (12) | 0.0484 (12) | −0.0118 (10) | 0.0215 (9) | −0.0057 (10) |
C01 | 0.0566 (18) | 0.0463 (17) | 0.0298 (15) | 0.0079 (14) | 0.0023 (13) | −0.0010 (13) |
C02 | 0.0545 (18) | 0.0496 (18) | 0.0325 (16) | 0.0021 (14) | 0.0121 (12) | 0.0044 (13) |
C03 | 0.0490 (17) | 0.0400 (16) | 0.0381 (16) | 0.0025 (13) | 0.0069 (12) | 0.0017 (13) |
C04 | 0.0443 (15) | 0.0355 (15) | 0.0300 (14) | 0.0073 (12) | 0.0027 (11) | 0.0010 (12) |
C05 | 0.0516 (17) | 0.0407 (16) | 0.0320 (15) | 0.0033 (13) | 0.0068 (12) | 0.0039 (12) |
C06 | 0.0567 (18) | 0.0376 (15) | 0.0367 (16) | 0.0009 (13) | 0.0034 (13) | 0.0012 (13) |
C07 | 0.0373 (15) | 0.0392 (16) | 0.0355 (15) | 0.0032 (12) | 0.0062 (12) | 0.0023 (12) |
N08 | 0.0451 (18) | 0.0372 (18) | 0.0307 (17) | 0.000 | 0.0040 (13) | 0.000 |
C009 | 0.0495 (17) | 0.0416 (17) | 0.0400 (16) | 0.0034 (13) | 0.0071 (12) | 0.0048 (13) |
C010 | 0.051 (2) | 0.032 (2) | 0.046 (2) | 0.000 | 0.0066 (18) | 0.000 |
C11 | 0.0569 (18) | 0.0506 (18) | 0.0400 (16) | 0.0015 (14) | 0.0017 (13) | −0.0064 (14) |
C12 | 0.066 (2) | 0.0540 (19) | 0.0406 (17) | −0.0002 (15) | 0.0045 (14) | −0.0038 (14) |
C13 | 0.0570 (18) | 0.0502 (18) | 0.0398 (16) | 0.0056 (14) | 0.0023 (13) | −0.0041 (14) |
C14 | 0.0570 (19) | 0.0567 (19) | 0.0489 (18) | −0.0020 (15) | 0.0077 (14) | −0.0110 (15) |
C15 | 0.063 (2) | 0.0550 (19) | 0.057 (2) | 0.0009 (15) | −0.0013 (15) | −0.0082 (15) |
C16 | 0.072 (2) | 0.080 (2) | 0.076 (2) | −0.0088 (18) | 0.0062 (18) | −0.0286 (19) |
C21 | 0.067 (2) | 0.066 (2) | 0.063 (2) | −0.0104 (16) | 0.0337 (16) | −0.0064 (17) |
C22 | 0.095 (3) | 0.082 (3) | 0.118 (3) | −0.030 (2) | 0.063 (3) | −0.014 (3) |
C23 | 0.106 (4) | 0.144 (5) | 0.185 (6) | −0.057 (3) | 0.012 (4) | −0.065 (4) |
C24A | 0.114 (10) | 0.104 (9) | 0.121 (11) | −0.043 (7) | 0.042 (8) | −0.054 (7) |
C25A | 0.22 (2) | 0.102 (10) | 0.23 (2) | −0.045 (14) | 0.080 (17) | −0.060 (10) |
C24B | 0.044 (6) | 0.068 (6) | 0.094 (8) | 0.012 (4) | −0.018 (4) | 0.002 (5) |
C25B | 0.049 (6) | 0.086 (8) | 0.064 (6) | 0.004 (5) | 0.011 (4) | 0.003 (5) |
C26 | 0.141 (4) | 0.122 (4) | 0.099 (3) | 0.044 (3) | 0.018 (3) | −0.030 (3) |
O1—C01 | 1.370 (3) | C15—H15B | 0.9900 |
O1—C11 | 1.434 (3) | C16—H16A | 0.9800 |
O2—C03 | 1.364 (3) | C16—H16B | 0.9800 |
O2—C21 | 1.432 (3) | C16—H16C | 0.9800 |
C01—C06 | 1.384 (3) | C21—C22 | 1.514 (4) |
C01—C02 | 1.390 (3) | C21—H21A | 0.9900 |
C02—C03 | 1.385 (3) | C21—H21B | 0.9900 |
C02—H02A | 0.9500 | C22—C23 | 1.450 (6) |
C03—C04 | 1.407 (3) | C22—H22A | 0.9900 |
C04—C05 | 1.382 (3) | C22—H22B | 0.9900 |
C04—C07 | 1.489 (3) | C23—C24B | 1.547 (8) |
C05—C06 | 1.391 (3) | C23—C24A | 1.603 (8) |
C05—H05A | 0.9500 | C23—H23A | 0.9900 |
C06—H06A | 0.9500 | C23—H23B | 0.9900 |
C07—N08 | 1.350 (3) | C23—H23C | 0.9900 |
C07—C009 | 1.392 (3) | C23—H23D | 0.9899 |
N08—C07i | 1.350 (3) | C24A—C25A | 1.23 (2) |
C009—C010 | 1.377 (3) | C24A—H24A | 0.9900 |
C009—H09A | 0.9500 | C24A—H24B | 0.9900 |
C010—C009i | 1.377 (3) | C25A—C26 | 1.352 (16) |
C010—H01C | 0.9500 | C25A—H25A | 0.9900 |
C11—C12 | 1.509 (3) | C25A—H25B | 0.9900 |
C11—H11A | 0.9900 | C24B—C25B | 1.563 (18) |
C11—H11B | 0.9900 | C24B—H24C | 0.9900 |
C12—C13 | 1.520 (4) | C24B—H24D | 0.9900 |
C12—H12A | 0.9900 | C25B—C26 | 1.654 (16) |
C12—H12B | 0.9900 | C25B—H25C | 0.9900 |
C13—C14 | 1.515 (3) | C25B—H25D | 0.9900 |
C13—H13A | 0.9900 | C26—H26A | 0.9800 |
C13—H13B | 0.9900 | C26—H26B | 0.9800 |
C14—C15 | 1.508 (3) | C26—H26C | 0.9800 |
C14—H14A | 0.9900 | C26—H26D | 0.9800 |
C14—H14B | 0.9900 | C26—H26E | 0.9799 |
C15—C16 | 1.519 (4) | C26—H26F | 0.9800 |
C15—H15A | 0.9900 | ||
C01—O1—C11 | 117.5 (2) | H16B—C16—H16C | 109.5 |
C03—O2—C21 | 120.7 (2) | O2—C21—C22 | 105.5 (2) |
O1—C01—C06 | 124.5 (2) | O2—C21—H21A | 110.7 |
O1—C01—C02 | 115.2 (2) | C22—C21—H21A | 110.7 |
C06—C01—C02 | 120.2 (2) | O2—C21—H21B | 110.7 |
C03—C02—C01 | 120.5 (2) | C22—C21—H21B | 110.7 |
C03—C02—H02A | 119.7 | H21A—C21—H21B | 108.8 |
C01—C02—H02A | 119.7 | C23—C22—C21 | 114.9 (4) |
O2—C03—C02 | 123.2 (2) | C23—C22—H22A | 108.5 |
O2—C03—C04 | 116.3 (2) | C21—C22—H22A | 108.5 |
C02—C03—C04 | 120.5 (2) | C23—C22—H22B | 108.5 |
C05—C04—C03 | 117.2 (2) | C21—C22—H22B | 108.5 |
C05—C04—C07 | 119.4 (2) | H22A—C22—H22B | 107.5 |
C03—C04—C07 | 123.3 (2) | C22—C23—C24B | 133.3 (6) |
C04—C05—C06 | 123.3 (2) | C22—C23—C24A | 100.1 (7) |
C04—C05—H05A | 118.4 | C22—C23—H23A | 111.8 |
C06—C05—H05A | 118.4 | C24B—C23—H23A | 102.6 |
C01—C06—C05 | 118.3 (2) | C24A—C23—H23A | 111.8 |
C01—C06—H06A | 120.9 | C22—C23—H23B | 111.8 |
C05—C06—H06A | 120.9 | C24B—C23—H23B | 83.9 |
N08—C07—C009 | 121.7 (2) | C24A—C23—H23B | 111.7 |
N08—C07—C04 | 115.1 (2) | H23A—C23—H23B | 109.5 |
C009—C07—C04 | 123.1 (2) | C22—C23—H23C | 105.4 |
C07i—N08—C07 | 118.6 (3) | C24B—C23—H23C | 104.0 |
C010—C009—C07 | 119.5 (3) | C24A—C23—H23C | 107.3 |
C010—C009—H09A | 120.3 | H23B—C23—H23C | 118.7 |
C07—C009—H09A | 120.3 | C22—C23—H23D | 104.8 |
C009—C010—C009i | 119.0 (3) | C24B—C23—H23D | 100.9 |
C009—C010—H01C | 120.5 | C24A—C23—H23D | 130.7 |
C009i—C010—H01C | 120.5 | H23C—C23—H23D | 106.1 |
O1—C11—C12 | 107.8 (2) | C25A—C24A—C23 | 123.3 (15) |
O1—C11—H11A | 110.2 | C25A—C24A—H24A | 106.5 |
C12—C11—H11A | 110.2 | C23—C24A—H24A | 106.5 |
O1—C11—H11B | 110.2 | C25A—C24A—H24B | 106.5 |
C12—C11—H11B | 110.2 | C23—C24A—H24B | 106.5 |
H11A—C11—H11B | 108.5 | H24A—C24A—H24B | 106.5 |
C11—C12—C13 | 112.3 (2) | C24A—C25A—C26 | 139.6 (19) |
C11—C12—H12A | 109.1 | C24A—C25A—H25A | 102.2 |
C13—C12—H12A | 109.1 | C26—C25A—H25A | 102.2 |
C11—C12—H12B | 109.1 | C24A—C25A—H25B | 102.1 |
C13—C12—H12B | 109.1 | C26—C25A—H25B | 102.2 |
H12A—C12—H12B | 107.9 | H25A—C25A—H25B | 104.8 |
C14—C13—C12 | 112.9 (2) | C23—C24B—C25B | 101.7 (9) |
C14—C13—H13A | 109.0 | C23—C24B—H24C | 111.4 |
C12—C13—H13A | 109.0 | C25B—C24B—H24C | 111.4 |
C14—C13—H13B | 109.0 | C23—C24B—H24D | 111.4 |
C12—C13—H13B | 109.0 | C25B—C24B—H24D | 111.4 |
H13A—C13—H13B | 107.8 | C24B—C25B—C26 | 102.6 (7) |
C15—C14—C13 | 113.9 (2) | C24B—C25B—H25D | 111.3 |
C15—C14—H14A | 108.8 | C26—C25B—H25D | 111.3 |
C13—C14—H14A | 108.8 | C25A—C26—H26A | 109.5 |
C15—C14—H14B | 108.8 | C25B—C26—H26A | 117.5 |
C13—C14—H14B | 108.8 | C25A—C26—H26B | 109.5 |
H14A—C14—H14B | 107.7 | C25B—C26—H26B | 123.8 |
C14—C15—C16 | 113.9 (2) | H26A—C26—H26B | 109.5 |
C14—C15—H15A | 108.8 | C25A—C26—H26C | 109.4 |
C16—C15—H15A | 108.8 | C25B—C26—H26C | 82.7 |
C14—C15—H15B | 108.8 | H26A—C26—H26C | 109.5 |
C16—C15—H15B | 108.8 | H26B—C26—H26C | 109.5 |
H15A—C15—H15B | 107.7 | C25B—C26—H26D | 108.2 |
C15—C16—H16A | 109.5 | C25B—C26—H26E | 108.6 |
C15—C16—H16B | 109.5 | H26D—C26—H26E | 109.5 |
H16A—C16—H16B | 109.5 | C25B—C26—H26F | 111.6 |
C15—C16—H16C | 109.5 | H26D—C26—H26F | 109.5 |
H16A—C16—H16C | 109.5 | H26E—C26—H26F | 109.5 |
Symmetry code: (i) −x+1/2, y, −z+1/2. |
Acknowledgements
The EPSRC and Siemens generously supported the purchase of the SMART diffractometer.
References
Cave, G. W. V., Alcock, N. W. & Rourke, J. P. (1999). Organometallics, 18, 1801–1803. Web of Science CSD CrossRef CAS Google Scholar
Cave, G. W. V., Fanizzi, F. P., Deeth, R. J., Errington, W. & Rourke, J. P. (2000). Organometallics, 19, 1355–1364. Web of Science CSD CrossRef CAS Google Scholar
Cave, G. W. V., Hallett, A. J., Errington, W. & Rourke, J. P. (1998). Angew. Chem. Int. Ed. 37, 3270–3272. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1994). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1995). SAINT. Version 4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.