organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 2-amino-6-chloro-9H-purine-9-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aChemistry, William Perkin Building, School of Engineering & Physical Sciences, Heriot–Watt University, Riccarton, Edinburgh EH14 4AS, Scotland
*Correspondence e-mail: g.m.rosair@hw.ac.uk

(Received 8 December 2004; accepted 19 January 2005; online 29 January 2005)

The title compound, C13H10ClN5O2, crystallizes with two molecules in the asymmetric unit. These are connected by five hydrogen bonds, viz. three N—H⋯N interactions, two longer C=O⋯·H—N interactions, bifurcated at the O atom, and a C—H⋯N contact.

Comment

The chemistry of purines has been largely driven in recent years by the desire to synthesize oligonucleotides and their analogues as well as novel purine-containing nucleosides for a wide range of medicinal applications (Vyle & Howarth, 2001[Vyle, J. S. & Howarth, N. M. (2001). Specialist Periodical Reports, Organophosphorous Chemistry, Vol. 31, edited by D. W. Allen & J. C. Tebby, pp. 135-218. London: Royal Society of Chemistry.]). We have previously reported the synthesis and polymerization of lipophilic polyamide nucleic acids (PNA) as potential colorimetric diagnostics (Howarth, Lindsell et al., 2003[Howarth, N. M., Lindsell, W. E., Murray, E. & Preston, P. N. (2003). Tetrahedron Lett. 44, 8089-8092.]), and the design and synthesis of true peptide mimics of DNA for possible use as antigene agents (Howarth & Wakelin, 1997[Howarth, N. M. & Wakelin, L. P. G. (1997). J. Org. Chem. 62, 5441-5450.]; Howarth, Wakelin & Walker, 2003[Howarth, N. M., Wakelin, L. P. G. & Walker, D. M. (2003). Tetrahedron Lett. 44, 695-698.]). During these studies, we have encountered numerous difficulties in preparing the required N-2-benzyl­oxycarbonyl-protected guanine monomers from 2-amino-6-chloro­purine (Howarth & Wakelin, 1997[Howarth, N. M. & Wakelin, L. P. G. (1997). J. Org. Chem. 62, 5441-5450.]). Inspired by the work reported by Dey & Garner (2000[Dey, S. & Garner, P. (2000). J. Org. Chem. 65, 7697-7699.]) on the synthesis of tris-tert-butoxy­carbonyl 2-amino-6-chloro­purine, we decided to employ a similar strategy for preparing these monomers. As had been found by Dey & Garner (2000[Dey, S. & Garner, P. (2000). J. Org. Chem. 65, 7697-7699.]), this reaction afforded a single product. However, analysis of the product by 1H NMR spectroscopy showed the presence of only one benzyl­oxycarbonyl group rather than three, which had been the case when 2-amino-6-chloro­purine was treated with di-tert-butyl dicarbonate under analogous conditions (Dey & Garner, 2000[Dey, S. & Garner, P. (2000). J. Org. Chem. 65, 7697-7699.]). The exact identity of the monobenzyl­oxycarbonyl-protected product was revealed to be that of the title compound, (I)[link], by a single-crystal X-ray study.

[Scheme 1]

Compound (I)[link] crystallizes as two crystallographically independent mol­ecules (A and B) (Fig. 1[link]). These differ in the relative ring orientations about the C10—N9 bonds [C4A—N9A—C10A—O10A = −5.0 (2)° and C4B—N9B—C10B—O10B = −173.60 (13)°]. The independent mol­ecules A and B have different hydrogen-bonding arrangements. There is extensive hydrogen bonding between the two crystallographically independent mol­ecules. They are connected by five intermolecular hydrogen bonds [N2A—H2B⋯N1B, N2B—H2D⋯N3A, N2B—H2C⋯O10A, N2B—H2D⋯O10A and N2A—H2B⋯N7Bi [symmetry code: (i) 2 − x, y[{1\over 2}], [{1\over 2}]z; Table 1[link]], where the N—H⋯N contacts are the shortest. The first four hydrogen bonds are shown in Fig. 1[link]. The hydrogen-bonding links between mol­ecules A and B result in the formation of two eight-membered rings. The N—H⋯N contacts have a symmetrical carboxylic acid dimer motif, R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The geometry of the N—H⋯O contact is very different, the angles at H2C and H2D being 101.6 (13) and 101.1 (13)°, respectively. The fifth intermolecular contact is another N—H⋯N contact, N2A—H2B⋯N7Bi, which is almost parallel to the c axis and gives rise to an infinite chain that runs parallel to the b axis, shown in Fig. 2[link]. However, N7A does not take part in such a close intermolecular contact. The closest contact for N7A is C8B—H8B⋯N7Aii [symmetry code (ii) 1 + x, 1 + y, z].

[Figure 1]
Figure 1
Perspective view of the asymmetric unit in (I)[link], with hydrogen bonds shown as dashed lines. Displacement ellipsoids are shown at the 50% probability level and H atoms have arbitrary radii of 0.1 Å for clarity.
[Figure 2]
Figure 2
View of the packing arrangement for (I)[link]. Dashed lines indicate hydrogen bonds.

Experimental

Dibenzyl dicarbonate (2.40 ml, 9.42 mmol, 4 equivalents) was added to a stirred solution of 2-amino-6-chloro­purine (0.40 g, 2.36 mmol, 1 equivalent) and DMAP (dimethyl­amino­pyridine, 0.03 g, 0.1 equivalent) in anhydrous dimethyl­formamide (50 ml) at room temperature under argon, and the resulting mixture was left to stir for 18 h. Subsequently, the solvent was removed in vacuo and the residue was purified by column chromatography using ethyl acetate/petroleum ether (2:1) as the eluting solvent. The product-containing fractions were combined to afford a brown oily solid, which was further purified by trituration with diethyl ether to give (I)[link] as a colourless solid (yield 0.80 g, 26%). Compound (I)[link] was crystallized from deuterochloro­form. M.p. 417–418 K; Rf 0.35 (ethyl acetate/petroleum ether, 2:1). Analysis found: C 51.18, H 3.32, N 22.95%; C13H10O2N5Cl requires: C 51.41, H 3.32, N 23.06%. ν max (KBr, cm−1): 3497, 3313, 3198, 1775, 1742, 1626, 1561, 1512, 1485, 1395, 1368, 1301, 1192, 1175 and 1107; 1H NMR (200 MHz, CDCl3): δ 5.49 (s, 2H), 5.64 (br s, 2H), 7.34–7.53 (m, 5H), 8.23 (s, 1H); 13C NMR (50 MHz, CDCl3): δ 70.2, 128.8, 129.2, 133.5, 139.6, 147.2, 152.4, 153.0, 160.4. NMR spectra were recorded on Bruker DPX400 and AC200 spectrometers, from CDCl3 solutions at 293 K.

Crystal data
  • C13H10ClN5O2

  • Mr = 303.71

  • Monoclinic, P 21 /c

  • a = 9.2724 (5) Å

  • b = 11.7943 (6) Å

  • c = 24.4404 (11) Å

  • β = 99.180 (2)°

  • V = 2638.6 (2) Å3

  • Z = 8

  • Dx = 1.529 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7840 reflections

  • θ = 2.2–27.4°

  • μ = 0.30 mm−1

  • T = 100 (2) K

  • Block, colourless

  • 0.20 × 0.16 × 0.14 mm

Data collection
  • Bruker–Nonius APEX2 CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])Tmin = 0.942, Tmax = 0.959

  • 90 190 measured reflections

  • 6497 independent reflections

  • 5110 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 28.2°

  • h = −12 → 12

  • k = −15 → 15

  • l = −32 → 32

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.08

  • 6497 reflections

  • 440 parameters

  • Only H-atom coordinates refined

  • w = 1/[σ2(Fo2) + (0.0493P)2 + 0.5642P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A⋯N7Bi 0.890 (17) 2.197 (17) 3.0771 (17) 169.9 (14)
N2A—H2B⋯N1B 0.861 (17) 2.212 (18) 3.0634 (16) 169.9 (15)
N2B—H2D⋯N3A 0.836 (18) 2.302 (19) 3.1378 (17) 177.8 (17)
N2B—H2D⋯O10A 0.836 (18) 2.464 (17) 2.7501 (15) 101.1 (13)
N2B—H2C⋯O10A 0.886 (18) 2.432 (17) 2.7501 (15) 101.6 (13)
C8B—H8B⋯N7Aii 0.915 (17) 2.375 (17) 3.2779 (18) 169.1 (14)
Symmetry codes: (i) [2-x, y-{\script{1\over 2}}, {\script{1\over 2}}-z]; (ii) 1+x, 1+y, z.

The coordinates of all H atoms were refined freely, whilst the isotropic displacement parameters were treated as riding on the bound atom such that Uiso(H) = 1.2Ueq(C,N).

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Version 1.0-8. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SHELXTL (Version 5.1) and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL (Version 5.1) and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Benzyl 2-amino-6-chloro-9H-purine-9-carboxylate top
Crystal data top
C13H10ClN5O2F(000) = 1248
Mr = 303.71Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2724 (5) ÅCell parameters from 7840 reflections
b = 11.7943 (6) Åθ = 2.2–27.4°
c = 24.4404 (11) ŵ = 0.30 mm1
β = 99.180 (2)°T = 100 K
V = 2638.6 (2) Å3Block, colourless
Z = 80.20 × 0.16 × 0.14 mm
Data collection top
Bruker–Nonius Apex2 CCD area-detector
diffractometer
6497 independent reflections
Radiation source: fine-focus sealed tube5110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.942, Tmax = 0.959k = 1515
90190 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095Only H-atom coordinates refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.5642P]
where P = (Fo2 + 2Fc2)/3
6497 reflections(Δ/σ)max = 0.001
440 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N1A0.61778 (12)0.60392 (9)0.27356 (5)0.0221 (2)
C2A0.68744 (14)0.68392 (11)0.30916 (5)0.0198 (3)
N2A0.79239 (13)0.74276 (10)0.29036 (5)0.0216 (2)
H2A0.8060 (17)0.7303 (13)0.2556 (7)0.026*
H2B0.8279 (17)0.8019 (15)0.3083 (7)0.026*
N3A0.66031 (12)0.70736 (9)0.36113 (5)0.0200 (2)
C4A0.55724 (14)0.64099 (11)0.37592 (5)0.0205 (3)
C5A0.47945 (14)0.55588 (11)0.34388 (6)0.0220 (3)
C6A0.51639 (15)0.54252 (11)0.29143 (6)0.0235 (3)
Cl6A0.42563 (4)0.44372 (3)0.246400 (16)0.03247 (10)
N7A0.38063 (13)0.50166 (10)0.37267 (5)0.0257 (3)
C8A0.39612 (15)0.55187 (12)0.42032 (6)0.0251 (3)
H8A0.3424 (18)0.5360 (14)0.4494 (7)0.030*
N9A0.50257 (12)0.63862 (10)0.42625 (5)0.0226 (2)
C10A0.53597 (15)0.71210 (12)0.47149 (6)0.0232 (3)
O10A0.62625 (11)0.78565 (9)0.47466 (4)0.0296 (2)
O11A0.45297 (10)0.68712 (8)0.50966 (4)0.0253 (2)
C12A0.46867 (17)0.76553 (13)0.55606 (6)0.0279 (3)
H12A0.5735 (19)0.7687 (14)0.5731 (7)0.033*
H12B0.4332 (18)0.8442 (15)0.5419 (7)0.033*
C13A0.37689 (15)0.72644 (12)0.59783 (6)0.0238 (3)
C14A0.39219 (17)0.78581 (14)0.64765 (6)0.0298 (3)
H14A0.4569 (19)0.8464 (15)0.6517 (7)0.036*
C15A0.31117 (18)0.75506 (14)0.68822 (7)0.0342 (4)
H15A0.3227 (19)0.7941 (16)0.7231 (8)0.041*
C16A0.21629 (17)0.66388 (14)0.68009 (6)0.0313 (3)
H16A0.1622 (19)0.6419 (14)0.7096 (7)0.038*
C17A0.20041 (16)0.60416 (13)0.63074 (6)0.0278 (3)
H17A0.1355 (19)0.5397 (15)0.6259 (7)0.033*
C18A0.28058 (15)0.63531 (12)0.58904 (6)0.0247 (3)
H18A0.2728 (17)0.5952 (14)0.5553 (7)0.030*
N1B0.89220 (12)0.97073 (9)0.34342 (4)0.0214 (2)
C2B0.87924 (15)0.99619 (11)0.39669 (5)0.0214 (3)
N2B0.79408 (15)0.92729 (11)0.42127 (5)0.0281 (3)
H2C0.7907 (19)0.9371 (14)0.4570 (8)0.034*
H2D0.7575 (19)0.8698 (16)0.4045 (7)0.034*
N3B0.94051 (12)1.08495 (9)0.42677 (5)0.0218 (2)
C4B1.01863 (14)1.15002 (11)0.39844 (5)0.0199 (3)
C5B1.04168 (14)1.13338 (11)0.34371 (5)0.0208 (3)
C6B0.97127 (15)1.03962 (11)0.31767 (5)0.0207 (3)
Cl6B0.97980 (4)1.01065 (3)0.248990 (14)0.02927 (10)
N7B1.12714 (13)1.21991 (10)0.32651 (5)0.0235 (2)
C8B1.15482 (15)1.28696 (12)0.36905 (6)0.0231 (3)
H8B1.2067 (17)1.3530 (14)0.3698 (6)0.028*
N9B1.09377 (12)1.25019 (9)0.41508 (5)0.0212 (2)
C10B1.09411 (14)1.31502 (11)0.46355 (5)0.0213 (3)
O10B1.15479 (11)1.40544 (8)0.47069 (4)0.0289 (2)
O11B1.01832 (10)1.26210 (8)0.49711 (4)0.0226 (2)
C12B1.00086 (16)1.31964 (13)0.54817 (6)0.0251 (3)
H12C1.0960 (18)1.3284 (14)0.5704 (7)0.030*
H12D0.9605 (17)1.3948 (15)0.5387 (6)0.028 (4)*
C13B0.89917 (15)1.24971 (12)0.57672 (6)0.0245 (3)
C14B0.87699 (18)1.28219 (14)0.62963 (6)0.0322 (3)
H14B0.9291 (19)1.3492 (16)0.6463 (7)0.039*
C15B0.7849 (2)1.22082 (16)0.65775 (7)0.0394 (4)
H15B0.773 (2)1.2449 (16)0.6929 (8)0.047*
C16B0.71261 (19)1.12573 (17)0.63370 (7)0.0411 (4)
H16B0.651 (2)1.0837 (17)0.6524 (8)0.049*
C17B0.73360 (18)1.09264 (15)0.58100 (7)0.0354 (4)
H17B0.682 (2)1.0251 (16)0.5640 (8)0.043*
C18B0.82698 (16)1.15414 (13)0.55256 (6)0.0278 (3)
H18B0.8412 (18)1.1321 (14)0.5157 (7)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0207 (6)0.0198 (5)0.0251 (6)0.0002 (4)0.0013 (4)0.0006 (4)
C2A0.0191 (6)0.0184 (6)0.0215 (6)0.0023 (5)0.0023 (5)0.0011 (5)
N2A0.0245 (6)0.0206 (6)0.0208 (6)0.0034 (5)0.0067 (5)0.0023 (5)
N3A0.0195 (5)0.0194 (5)0.0213 (5)0.0020 (4)0.0037 (4)0.0012 (4)
C4A0.0192 (6)0.0194 (6)0.0229 (6)0.0008 (5)0.0037 (5)0.0027 (5)
C5A0.0177 (6)0.0190 (6)0.0293 (7)0.0014 (5)0.0037 (5)0.0017 (5)
C6A0.0203 (7)0.0196 (6)0.0289 (7)0.0006 (5)0.0010 (5)0.0017 (5)
Cl6A0.03002 (19)0.02945 (19)0.0366 (2)0.00807 (15)0.00110 (15)0.00987 (15)
N7A0.0202 (6)0.0228 (6)0.0347 (7)0.0033 (5)0.0065 (5)0.0016 (5)
C8A0.0212 (7)0.0208 (7)0.0340 (8)0.0038 (5)0.0069 (6)0.0033 (6)
N9A0.0210 (6)0.0230 (6)0.0244 (6)0.0050 (5)0.0059 (4)0.0016 (4)
C10A0.0198 (7)0.0272 (7)0.0232 (7)0.0014 (5)0.0049 (5)0.0049 (5)
O10A0.0298 (5)0.0343 (6)0.0256 (5)0.0129 (5)0.0074 (4)0.0011 (4)
O11A0.0252 (5)0.0288 (5)0.0233 (5)0.0062 (4)0.0080 (4)0.0009 (4)
C12A0.0286 (8)0.0328 (8)0.0230 (7)0.0079 (6)0.0058 (6)0.0008 (6)
C13A0.0204 (7)0.0273 (7)0.0240 (7)0.0005 (5)0.0042 (5)0.0045 (5)
C14A0.0289 (8)0.0333 (8)0.0276 (7)0.0075 (6)0.0057 (6)0.0002 (6)
C15A0.0362 (9)0.0422 (9)0.0259 (8)0.0039 (7)0.0108 (7)0.0025 (7)
C16A0.0288 (8)0.0370 (8)0.0302 (8)0.0001 (6)0.0115 (6)0.0060 (6)
C17A0.0221 (7)0.0278 (7)0.0345 (8)0.0009 (6)0.0077 (6)0.0053 (6)
C18A0.0210 (7)0.0273 (7)0.0260 (7)0.0011 (5)0.0045 (5)0.0026 (6)
N1B0.0248 (6)0.0194 (5)0.0206 (5)0.0009 (4)0.0055 (4)0.0006 (4)
C2B0.0244 (7)0.0184 (6)0.0222 (6)0.0012 (5)0.0055 (5)0.0006 (5)
N2B0.0392 (7)0.0243 (6)0.0232 (6)0.0124 (5)0.0124 (5)0.0036 (5)
N3B0.0264 (6)0.0185 (5)0.0216 (5)0.0040 (4)0.0069 (5)0.0004 (4)
C4B0.0205 (6)0.0179 (6)0.0213 (6)0.0009 (5)0.0035 (5)0.0001 (5)
C5B0.0226 (7)0.0190 (6)0.0219 (6)0.0001 (5)0.0068 (5)0.0026 (5)
C6B0.0237 (7)0.0197 (6)0.0194 (6)0.0011 (5)0.0057 (5)0.0001 (5)
Cl6B0.0416 (2)0.02730 (18)0.02115 (16)0.00514 (15)0.01167 (14)0.00339 (13)
N7B0.0244 (6)0.0220 (6)0.0253 (6)0.0037 (5)0.0075 (5)0.0017 (5)
C8B0.0234 (7)0.0212 (7)0.0258 (7)0.0036 (5)0.0074 (5)0.0029 (5)
N9B0.0232 (6)0.0192 (5)0.0218 (6)0.0044 (4)0.0055 (5)0.0003 (4)
C10B0.0195 (6)0.0206 (6)0.0232 (6)0.0007 (5)0.0021 (5)0.0013 (5)
O10B0.0322 (6)0.0224 (5)0.0330 (6)0.0078 (4)0.0077 (4)0.0042 (4)
O11B0.0265 (5)0.0227 (5)0.0192 (5)0.0049 (4)0.0053 (4)0.0028 (4)
C12B0.0278 (7)0.0258 (7)0.0212 (7)0.0000 (6)0.0027 (6)0.0065 (5)
C13B0.0230 (7)0.0285 (7)0.0214 (7)0.0069 (6)0.0018 (5)0.0012 (5)
C14B0.0357 (9)0.0368 (9)0.0238 (7)0.0123 (7)0.0034 (6)0.0014 (6)
C15B0.0439 (10)0.0508 (10)0.0262 (8)0.0200 (8)0.0140 (7)0.0065 (7)
C16B0.0370 (9)0.0504 (11)0.0405 (9)0.0116 (8)0.0201 (7)0.0167 (8)
C17B0.0304 (8)0.0390 (9)0.0389 (9)0.0006 (7)0.0116 (7)0.0066 (7)
C18B0.0256 (7)0.0324 (8)0.0262 (7)0.0007 (6)0.0062 (6)0.0007 (6)
Geometric parameters (Å, º) top
N1A—C6A1.3153 (18)N1B—C6B1.3195 (17)
N1A—C2A1.3730 (17)N1B—C2B1.3600 (17)
C2A—N2A1.3350 (17)C2B—N2B1.3403 (17)
C2A—N3A1.3620 (17)C2B—N3B1.3513 (17)
N2A—H2A0.890 (17)N2B—H2C0.886 (18)
N2A—H2B0.861 (17)N2B—H2D0.836 (18)
N3A—C4A1.3292 (17)N3B—C4B1.3240 (17)
C4A—C5A1.4003 (18)C4B—N9B1.3986 (17)
C4A—N9A1.4036 (17)C4B—C5B1.4017 (18)
C5A—C6A1.388 (2)C5B—C6B1.3863 (19)
C5A—N7A1.3962 (17)C5B—N7B1.3973 (17)
C6A—Cl6A1.7267 (14)C6B—Cl6B1.7271 (13)
N7A—C8A1.2940 (19)N7B—C8B1.2988 (18)
C8A—N9A1.4130 (17)C8B—N9B1.4062 (17)
C8A—H8A0.950 (17)C8B—H8B0.915 (17)
N9A—C10A1.4000 (18)N9B—C10B1.4095 (17)
C10A—O10A1.1994 (17)C10B—O10B1.2054 (16)
C10A—O11A1.3336 (16)C10B—O11B1.3192 (16)
O11A—C12A1.4525 (18)O11B—C12B1.4523 (16)
C12A—C13A1.502 (2)C12B—C13B1.505 (2)
C12A—H12A0.995 (18)C12B—H12C0.965 (17)
C12A—H12B1.026 (18)C12B—H12D0.975 (17)
C13A—C18A1.392 (2)C13B—C18B1.393 (2)
C13A—C14A1.392 (2)C13B—C14B1.395 (2)
C14A—C15A1.384 (2)C14B—C15B1.383 (2)
C14A—H14A0.928 (18)C14B—H14B0.980 (18)
C15A—C16A1.384 (2)C15B—C16B1.388 (3)
C15A—H15A0.959 (19)C15B—H15B0.93 (2)
C16A—C17A1.384 (2)C16B—C17B1.389 (2)
C16A—H16A0.976 (18)C16B—H16B0.93 (2)
C17A—C18A1.403 (2)C17B—C18B1.397 (2)
C17A—H17A0.965 (18)C17B—H17B0.984 (19)
C18A—H18A0.943 (17)C18B—H18B0.968 (17)
C6A—N1A—C2A117.19 (12)C6B—N1B—C2B117.47 (11)
N2A—C2A—N3A117.95 (12)N2B—C2B—N3B116.90 (12)
N2A—C2A—N1A115.74 (12)N2B—C2B—N1B116.33 (12)
N3A—C2A—N1A126.31 (12)N3B—C2B—N1B126.75 (12)
C2A—N2A—H2A117.7 (10)C2B—N2B—H2C118.6 (11)
C2A—N2A—H2B119.1 (11)C2B—N2B—H2D119.6 (12)
H2A—N2A—H2B121.2 (15)H2C—N2B—H2D120.9 (16)
C4A—N3A—C2A112.45 (11)C4B—N3B—C2B112.46 (11)
N3A—C4A—C5A126.78 (12)N3B—C4B—N9B128.77 (12)
N3A—C4A—N9A128.75 (12)N3B—C4B—C5B126.68 (12)
C5A—C4A—N9A104.47 (11)N9B—C4B—C5B104.54 (11)
C6A—C5A—N7A133.79 (13)C6B—C5B—N7B133.84 (12)
C6A—C5A—C4A114.64 (12)C6B—C5B—C4B114.68 (11)
N7A—C5A—C4A111.57 (12)N7B—C5B—C4B111.41 (11)
N1A—C6A—C5A122.61 (12)N1B—C6B—C5B121.94 (12)
N1A—C6A—Cl6A117.48 (11)N1B—C6B—Cl6B117.18 (10)
C5A—C6A—Cl6A119.90 (11)C5B—C6B—Cl6B120.85 (10)
C8A—N7A—C5A104.86 (12)C8B—N7B—C5B104.66 (11)
N7A—C8A—N9A113.52 (12)N7B—C8B—N9B113.53 (12)
N7A—C8A—H8A126.0 (10)N7B—C8B—H8B124.8 (10)
N9A—C8A—H8A120.5 (10)N9B—C8B—H8B121.6 (10)
C10A—N9A—C4A127.92 (11)C4B—N9B—C8B105.87 (11)
C10A—N9A—C8A126.30 (11)C4B—N9B—C10B129.56 (11)
C4A—N9A—C8A105.58 (11)C8B—N9B—C10B123.90 (11)
O10A—C10A—O11A126.10 (13)O10B—C10B—O11B127.68 (13)
O10A—C10A—N9A124.26 (12)O10B—C10B—N9B122.69 (12)
O11A—C10A—N9A109.64 (11)O11B—C10B—N9B109.62 (11)
C10A—O11A—C12A114.11 (11)C10B—O11B—C12B117.18 (11)
O11A—C12A—C13A109.77 (12)O11B—C12B—C13B107.83 (11)
O11A—C12A—H12A108.6 (10)O11B—C12B—H12C108.5 (10)
C13A—C12A—H12A110.5 (10)C13B—C12B—H12C112.4 (10)
O11A—C12A—H12B109.0 (9)O11B—C12B—H12D108.2 (9)
C13A—C12A—H12B108.8 (9)C13B—C12B—H12D111.3 (10)
H12A—C12A—H12B110.2 (13)H12C—C12B—H12D108.6 (14)
C18A—C13A—C14A119.79 (13)C18B—C13B—C14B118.88 (14)
C18A—C13A—C12A123.44 (13)C18B—C13B—C12B122.76 (13)
C14A—C13A—C12A116.77 (13)C14B—C13B—C12B118.36 (13)
C15A—C14A—C13A120.23 (15)C15B—C14B—C13B120.72 (16)
C15A—C14A—H14A122.7 (11)C15B—C14B—H14B121.2 (10)
C13A—C14A—H14A117.0 (11)C13B—C14B—H14B118.0 (11)
C16A—C15A—C14A120.40 (15)C14B—C15B—C16B120.47 (15)
C16A—C15A—H15A118.6 (11)C14B—C15B—H15B118.1 (13)
C14A—C15A—H15A120.9 (11)C16B—C15B—H15B121.4 (12)
C15A—C16A—C17A119.83 (14)C15B—C16B—C17B119.34 (16)
C15A—C16A—H16A119.3 (10)C15B—C16B—H16B121.1 (12)
C17A—C16A—H16A120.8 (10)C17B—C16B—H16B119.6 (12)
C16A—C17A—C18A120.31 (14)C16B—C17B—C18B120.34 (17)
C16A—C17A—H17A119.0 (10)C16B—C17B—H17B119.3 (11)
C18A—C17A—H17A120.6 (10)C18B—C17B—H17B120.4 (11)
C13A—C18A—C17A119.42 (14)C13B—C18B—C17B120.23 (14)
C13A—C18A—H18A118.7 (10)C13B—C18B—H18B119.0 (10)
C17A—C18A—H18A121.8 (10)C17B—C18B—H18B120.8 (10)
C6A—N1A—C2A—N2A178.30 (12)C6B—N1B—C2B—N2B177.65 (12)
C6A—N1A—C2A—N3A1.07 (19)C6B—N1B—C2B—N3B0.7 (2)
N2A—C2A—N3A—C4A177.89 (12)N2B—C2B—N3B—C4B177.94 (13)
N1A—C2A—N3A—C4A1.47 (18)N1B—C2B—N3B—C4B0.4 (2)
C2A—N3A—C4A—C5A0.68 (19)C2B—N3B—C4B—N9B177.97 (13)
C2A—N3A—C4A—N9A178.64 (12)C2B—N3B—C4B—C5B0.8 (2)
N3A—C4A—C5A—C6A0.4 (2)N3B—C4B—C5B—C6B1.4 (2)
N9A—C4A—C5A—C6A179.85 (11)N9B—C4B—C5B—C6B177.62 (11)
N3A—C4A—C5A—N7A179.15 (12)N3B—C4B—C5B—N7B178.68 (13)
N9A—C4A—C5A—N7A0.31 (15)N9B—C4B—C5B—N7B0.33 (15)
C2A—N1A—C6A—C5A0.22 (19)C2B—N1B—C6B—C5B1.3 (2)
C2A—N1A—C6A—Cl6A178.70 (9)C2B—N1B—C6B—Cl6B176.89 (10)
N7A—C5A—C6A—N1A178.53 (14)N7B—C5B—C6B—N1B178.12 (14)
C4A—C5A—C6A—N1A0.87 (19)C4B—C5B—C6B—N1B1.61 (19)
N7A—C5A—C6A—Cl6A2.6 (2)N7B—C5B—C6B—Cl6B0.0 (2)
C4A—C5A—C6A—Cl6A178.02 (10)C4B—C5B—C6B—Cl6B176.55 (10)
C6A—C5A—N7A—C8A179.87 (15)C6B—C5B—N7B—C8B176.41 (15)
C4A—C5A—N7A—C8A0.45 (15)C4B—C5B—N7B—C8B0.18 (15)
C5A—N7A—C8A—N9A0.41 (16)C5B—N7B—C8B—N9B0.65 (16)
N3A—C4A—N9A—C10A5.5 (2)N3B—C4B—N9B—C8B178.30 (14)
C5A—C4A—N9A—C10A175.06 (13)C5B—C4B—N9B—C8B0.67 (14)
N3A—C4A—N9A—C8A179.39 (13)N3B—C4B—N9B—C10B7.6 (2)
C5A—C4A—N9A—C8A0.06 (14)C5B—C4B—N9B—C10B171.37 (13)
N7A—C8A—N9A—C10A175.45 (13)N7B—C8B—N9B—C4B0.87 (16)
N7A—C8A—N9A—C4A0.23 (16)N7B—C8B—N9B—C10B172.23 (12)
C4A—N9A—C10A—O10A5.0 (2)C4B—N9B—C10B—O10B173.60 (13)
C8A—N9A—C10A—O10A179.14 (14)C8B—N9B—C10B—O10B4.4 (2)
C4A—N9A—C10A—O11A175.20 (12)C4B—N9B—C10B—O11B5.50 (19)
C8A—N9A—C10A—O11A1.04 (19)C8B—N9B—C10B—O11B174.71 (12)
O10A—C10A—O11A—C12A5.9 (2)O10B—C10B—O11B—C12B2.0 (2)
N9A—C10A—O11A—C12A174.26 (11)N9B—C10B—O11B—C12B177.00 (11)
C10A—O11A—C12A—C13A177.07 (12)C10B—O11B—C12B—C13B174.38 (11)
O11A—C12A—C13A—C18A6.4 (2)O11B—C12B—C13B—C18B6.13 (18)
O11A—C12A—C13A—C14A173.23 (12)O11B—C12B—C13B—C14B173.70 (12)
C18A—C13A—C14A—C15A0.5 (2)C18B—C13B—C14B—C15B0.0 (2)
C12A—C13A—C14A—C15A179.89 (14)C12B—C13B—C14B—C15B179.89 (14)
C13A—C14A—C15A—C16A1.2 (2)C13B—C14B—C15B—C16B0.1 (2)
C14A—C15A—C16A—C17A1.1 (2)C14B—C15B—C16B—C17B0.0 (2)
C15A—C16A—C17A—C18A0.3 (2)C15B—C16B—C17B—C18B0.3 (2)
C14A—C13A—C18A—C17A0.3 (2)C14B—C13B—C18B—C17B0.3 (2)
C12A—C13A—C18A—C17A179.33 (14)C12B—C13B—C18B—C17B179.87 (14)
C16A—C17A—C18A—C13A0.4 (2)C16B—C17B—C18B—C13B0.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A···N7Bi0.890 (17)2.197 (17)3.0771 (17)169.9 (14)
N2A—H2B···N1B0.861 (17)2.212 (18)3.0634 (16)169.9 (15)
N2B—H2D···N3A0.836 (18)2.302 (19)3.1378 (17)177.8 (17)
N2B—H2D···O10A0.836 (18)2.464 (17)2.7501 (15)101.1 (13)
N2B—H2C···O10A0.886 (18)2.432 (17)2.7501 (15)101.6 (13)
C8B—H8B···N7Aii0.915 (17)2.375 (17)3.2779 (18)169.1 (14)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

The authors thank Christina Graham for micro-analysis and the European Commission Framework 6 programme (project ref. LSHB-CT-2003-503480) for funding.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SHELXTL (Version 5.1) and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Version 1.0-8. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, S. & Garner, P. (2000). J. Org. Chem. 65, 7697–7699.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHowarth, N. M., Lindsell, W. E., Murray, E. & Preston, P. N. (2003). Tetrahedron Lett. 44, 8089–8092.  Web of Science CrossRef CAS Google Scholar
First citationHowarth, N. M. & Wakelin, L. P. G. (1997). J. Org. Chem. 62, 5441–5450.  CrossRef CAS Web of Science Google Scholar
First citationHowarth, N. M., Wakelin, L. P. G. & Walker, D. M. (2003). Tetrahedron Lett. 44, 695–698.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationVyle, J. S. & Howarth, N. M. (2001). Specialist Periodical Reports, Organophosphorous Chemistry, Vol. 31, edited by D. W. Allen & J. C. Tebby, pp. 135–218. London: Royal Society of Chemistry.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds