organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1-Piperidinyl)-1,3-benzo­thia­zole

CROSSMARK_Color_square_no_text.svg

aDepartment of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland, and bDepartment of Pharmaceutical Sciences, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow G4 0NR, Scotland
*Correspondence e-mail: a.r.kennedy@strath.ac.uk

(Received 13 January 2005; accepted 28 January 2005; online 5 February 2005)

An unusual de-alkyl­ation reaction between 2-chloro­benzo­thia­zole and N-ethyl­piperidine gave 2-(1-piperidinyl)-1,3-benzo­thia­zole, C12H14N2S, as pale-yellow orthorhombic crystals. Discrete mol­ecules consist of a planar benzo­thia­zole fragment with a piperidine ring in a chair conformation.

Comment

Research into minor groove binding drugs, such as distamycin, suggests that substitution of the head group with a heterocyclic moiety could enhance the selectivity of the binding to a specific strand of DNA. Benzo­thia­zole and benzoxazole were ex­amined as substitutes for the formyl group of distamycin; however, unexpected products were obtained from the reaction of 2-chloro­benzoxazole and 2-chloro­benzo­thia­zole with the tail group of distamycin analogues. The products were proved to result from a de-alkyl­ation of the di­methyl­amino tail group of the DNA binding compounds, prompting investigation of the reaction of other tertiary amines in combination with 2-chloro­benzo­thia­zole or 2-chloro­benzoxazole (Khalaf et al., 2000[Khalaf, A. I., Alvarez, R. G., Suckling, C. J. & Waigh, R. D. (2000). Tetrahedron, 56, 8567-8571.]). Use of N-ethyl­piperidine gave the title compound, (I[link]), as a crystalline product.[link]

[Scheme 1]

The crystal structure of (I[link]) consists of discrete mol­ecules with no significant intermolecular interactions. The piperidine ring adopts a chair conformation whilst the other C, N and S atoms are coplanar [maximum deviation from the least-squares plane is 0.029 (2) Å for C1]. The bonding about N2 is distorted towards pyrimidal, with the N atom lying 0.219 (2) Å above the plane defined by its three bonded C atoms. Examination of the bond lengths and angles confirms the double-bond character between N1 and C7 [1.304 (3) Å] and shows the relative conjugation effects this bond has with N1—C2 and N2—C7 [1.395 (3) and 1.358 (3) Å, respectively]. The bonding about S1 is slightly asymmetrical [S1—C1 and S1—C7 distances of 1.739 (2) and 1.771 (2) Å, respectively], but all geometric parameters are within the expected ranges and are consistent with those found for other amine derivatives of benzo­thia­zole (Fehlmann, 1970[Fehlmann, M. (1970). Acta Cryst. B26, 1736-1741.]; Chen et al., 2003[Chen, Z.-F., Tang, Y.-Z., Shi, S.-M., Wang, X.-W., Liang, H. & Yu, K.-B. (2003). Acta Cryst. E59, o1461-o1463.]).

[Figure 1]
Figure 1
Fi. 1. The molecular structure of (I[link]), shown with 50% probability displacement ellipsoids.

Experimental

2-Chloro­benzo­thia­zole (0.504 g, 2.971 mmol) and N-ethyl­piperidine (1.01 g, 8.91 mmol) were heated at 403 K for 5 d. Excess reagent was removed under reduced pressure and the crude product was applied to a chromatography column. Ethyl acetate/n-hexane (1:10) was used to elute the product, which was obtained as a pale-yellow crystalline solid (0.266 g, 41% yield); m.p. 363–364 K [literature m.p. 366–368 K (Nagarajan et al., 1971[Nagarajan, K., Kulkarni, C. L. & Shah, R. K. (1971). Indian J. Chem. 9, 748-754.])]. RF = 0.33; 1H NMR (CDCl3): δ 1.68 (6H, br, s; 3 × CH2), 3.56 (4H, br, s, CH2NCH2), 7.03–7.07 (1H, dt, J = 1.1 and 7.8 Hz, ArH), 7.26–7.31 (1H, dt, J = 1.1 and 7.8 Hz, ArH), 7.55–7.759 (2H, m, ArH). 13C NMR (CDCl3): δ 24.67, 25.71 (2 × C), 50.02 (2 × C), 119.21, 120.97, 121.44, 126.26, 131.12, 153.42, 169.25. IR (KBr): 2945, 2924, 2846, 1593, 1561, 1535, 1444, 1261, 762, 732 cm−1.

Crystal data
  • C12H14N2S

  • Mr = 218.31

  • Orthorhombic, Pna21

  • a = 15.3509 (6) Å

  • b = 11.6315 (4) Å

  • c = 5.9802 (2) Å

  • V = 1067.79 (7) Å3

  • Z = 4

  • Dx = 1.358 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1447 reflections

  • θ = 1.0–27.5°

  • μ = 0.27 mm−1

  • T = 123 (2) K

  • Cut needle, colourless

  • 0.50 × 0.20 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 11 594 measured reflections

  • 1341 independent reflections

  • 1208 reflections with I > 2σ(I)

  • Rint = 0.039

  • θmax = 27.5°

  • h = −19 → 19

  • k = −14 → 15

  • l = −7 → 7

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.065

  • S = 1.07

  • 1341 reflections

  • 136 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0312P)2 + 0.2439P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.739 (2)
S1—C7 1.771 (2)
N1—C7 1.304 (3)
N1—C2 1.395 (3)
N2—C7 1.358 (3)
N2—C12 1.466 (3)
N2—C8 1.471 (3)
C1—S1—C7 88.60 (10)
C7—N1—C2 110.18 (18)
C6—C1—S1 128.72 (18)
C2—C1—S1 109.62 (15)
C3—C2—N1 125.1 (2)
N1—C2—C1 115.55 (19)
N1—C7—N2 124.30 (19)
N1—C7—S1 116.05 (15)
N2—C7—S1 119.62 (16)

H atoms were included in the riding-model approximation, with C—H distances of 0.99 and 0.95 Å for CH2 and CH groups, respectively, and with Uiso(H) = 1.2Ueq(C). Initial refinement gave an intermediate Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter with a large uncertainty. Thus, in the final model, Friedel pairs were merged and no Flack parameter was refined.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

2-(1-Piperidinyl)-1,3-benzothiazole top
Crystal data top
C12H14N2SDx = 1.358 Mg m3
Mr = 218.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1447 reflections
a = 15.3509 (6) Åθ = 1.0–27.5°
b = 11.6315 (4) ŵ = 0.27 mm1
c = 5.9802 (2) ÅT = 123 K
V = 1067.79 (7) Å3Cut needle, colourless
Z = 40.50 × 0.20 × 0.08 mm
F(000) = 464
Data collection top
Nonius KappaCCD
diffractometer
1208 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
φ and ω scansh = 1919
11594 measured reflectionsk = 1415
1341 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.2439P]
where P = (Fo2 + 2Fc2)/3
1341 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.39332 (3)0.01583 (4)0.40617 (11)0.01893 (14)
N10.36236 (11)0.11262 (14)0.0187 (3)0.0175 (4)
N20.47092 (11)0.20489 (14)0.2309 (3)0.0164 (4)
C10.31266 (14)0.04382 (17)0.2381 (4)0.0187 (5)
C20.30605 (13)0.01905 (17)0.0379 (4)0.0169 (4)
C30.24705 (13)0.01615 (17)0.1252 (4)0.0210 (5)
H30.24060.02640.25970.025*
C40.19756 (13)0.11476 (17)0.0881 (5)0.0247 (5)
H40.15860.14070.20080.030*
C50.20427 (15)0.17589 (18)0.1112 (4)0.0248 (5)
H50.16910.24210.13370.030*
C60.26155 (14)0.14147 (18)0.2774 (4)0.0217 (5)
H60.26600.18290.41380.026*
C70.41108 (13)0.12077 (16)0.1966 (4)0.0160 (4)
C80.49943 (14)0.27153 (18)0.0350 (4)0.0197 (5)
H8A0.44980.28170.06880.024*
H8B0.54570.22870.04490.024*
C90.53401 (15)0.38887 (17)0.1046 (4)0.0205 (5)
H9A0.55890.42810.02760.025*
H9B0.48520.43630.16120.025*
C100.60356 (14)0.37909 (19)0.2851 (4)0.0234 (5)
H10A0.65530.33910.22430.028*
H10B0.62160.45680.33410.028*
C110.56756 (14)0.31233 (18)0.4830 (4)0.0212 (5)
H11A0.51880.35570.55070.025*
H11B0.61360.30340.59760.025*
C120.53554 (13)0.19401 (14)0.4101 (4)0.0190 (4)
H12A0.58540.14760.35680.023*
H12B0.50920.15380.53940.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0234 (3)0.0157 (2)0.0176 (2)0.00208 (19)0.0005 (3)0.0037 (3)
N10.0180 (8)0.0155 (8)0.0189 (9)0.0001 (7)0.0009 (8)0.0004 (8)
N20.0195 (9)0.0149 (8)0.0147 (9)0.0022 (7)0.0014 (8)0.0031 (7)
C10.0172 (10)0.0185 (10)0.0203 (11)0.0020 (8)0.0018 (9)0.0023 (9)
C20.0161 (10)0.0166 (9)0.0182 (11)0.0022 (8)0.0019 (9)0.0018 (9)
C30.0177 (10)0.0238 (10)0.0214 (13)0.0030 (8)0.0008 (10)0.0036 (10)
C40.0177 (10)0.0254 (10)0.0311 (12)0.0013 (8)0.0012 (13)0.0076 (15)
C50.0201 (12)0.0188 (10)0.0355 (14)0.0034 (9)0.0057 (11)0.0045 (10)
C60.0227 (11)0.0173 (10)0.0253 (13)0.0013 (9)0.0059 (10)0.0015 (9)
C70.0209 (10)0.0118 (9)0.0153 (10)0.0028 (8)0.0027 (9)0.0001 (9)
C80.0241 (11)0.0173 (10)0.0178 (11)0.0012 (9)0.0020 (10)0.0042 (9)
C90.0255 (12)0.0172 (10)0.0186 (11)0.0031 (9)0.0014 (9)0.0021 (10)
C100.0237 (12)0.0208 (11)0.0256 (13)0.0075 (9)0.0004 (10)0.0006 (10)
C110.0230 (12)0.0214 (11)0.0192 (11)0.0038 (9)0.0024 (10)0.0005 (9)
C120.0221 (10)0.0169 (9)0.0179 (10)0.0004 (7)0.0036 (11)0.0018 (12)
Geometric parameters (Å, º) top
S1—C11.739 (2)C6—H60.9500
S1—C71.771 (2)C8—C91.523 (3)
N1—C71.304 (3)C8—H8A0.9900
N1—C21.395 (3)C8—H8B0.9900
N2—C71.358 (3)C9—C101.522 (3)
N2—C121.466 (3)C9—H9A0.9900
N2—C81.471 (3)C9—H9B0.9900
C1—C61.400 (3)C10—C111.519 (3)
C1—C21.406 (3)C10—H10A0.9900
C2—C31.393 (3)C10—H10B0.9900
C3—C41.394 (3)C11—C121.525 (3)
C3—H30.9500C11—H11A0.9900
C4—C51.392 (4)C11—H11B0.9900
C4—H40.9500C12—H12A0.9900
C5—C61.386 (3)C12—H12B0.9900
C5—H50.9500
C1—S1—C788.60 (10)C9—C8—H8A109.4
C7—N1—C2110.18 (18)N2—C8—H8B109.4
C7—N2—C12120.40 (17)C9—C8—H8B109.4
C7—N2—C8117.44 (18)H8A—C8—H8B108.0
C12—N2—C8115.24 (16)C10—C9—C8111.80 (18)
C6—C1—C2121.6 (2)C10—C9—H9A109.3
C6—C1—S1128.72 (18)C8—C9—H9A109.3
C2—C1—S1109.62 (15)C10—C9—H9B109.3
C3—C2—N1125.1 (2)C8—C9—H9B109.3
C3—C2—C1119.35 (19)H9A—C9—H9B107.9
N1—C2—C1115.55 (19)C11—C10—C9109.59 (17)
C2—C3—C4119.0 (2)C11—C10—H10A109.8
C2—C3—H3120.5C9—C10—H10A109.8
C4—C3—H3120.5C11—C10—H10B109.8
C5—C4—C3121.1 (2)C9—C10—H10B109.8
C5—C4—H4119.5H10A—C10—H10B108.2
C3—C4—H4119.5C10—C11—C12110.86 (19)
C6—C5—C4120.9 (2)C10—C11—H11A109.5
C6—C5—H5119.5C12—C11—H11A109.5
C4—C5—H5119.5C10—C11—H11B109.5
C5—C6—C1118.0 (2)C12—C11—H11B109.5
C5—C6—H6121.0H11A—C11—H11B108.1
C1—C6—H6121.0N2—C12—C11110.43 (16)
N1—C7—N2124.30 (19)N2—C12—H12A109.6
N1—C7—S1116.05 (15)C11—C12—H12A109.6
N2—C7—S1119.62 (16)N2—C12—H12B109.6
N2—C8—C9110.99 (18)C11—C12—H12B109.6
N2—C8—H8A109.4H12A—C12—H12B108.1
C7—S1—C1—C6178.0 (2)C2—N1—C7—S10.2 (2)
C7—S1—C1—C20.49 (15)C12—N2—C7—N1166.66 (19)
C7—N1—C2—C3178.02 (19)C8—N2—C7—N117.2 (3)
C7—N1—C2—C10.6 (2)C12—N2—C7—S115.4 (3)
C6—C1—C2—C30.3 (3)C8—N2—C7—S1164.88 (14)
S1—C1—C2—C3177.97 (16)C1—S1—C7—N10.19 (17)
C6—C1—C2—N1178.43 (19)C1—S1—C7—N2177.93 (17)
S1—C1—C2—N10.7 (2)C7—N2—C8—C9156.20 (18)
N1—C2—C3—C4176.92 (19)C12—N2—C8—C952.7 (2)
C1—C2—C3—C41.6 (3)N2—C8—C9—C1052.5 (2)
C2—C3—C4—C52.1 (3)C8—C9—C10—C1155.4 (2)
C3—C4—C5—C61.1 (3)C9—C10—C11—C1256.9 (2)
C4—C5—C6—C10.3 (3)C7—N2—C12—C11155.42 (19)
C2—C1—C6—C50.7 (3)C8—N2—C12—C1154.5 (2)
S1—C1—C6—C5176.51 (17)C10—C11—C12—N255.8 (2)
C2—N1—C7—N2178.20 (19)
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationChen, Z.-F., Tang, Y.-Z., Shi, S.-M., Wang, X.-W., Liang, H. & Yu, K.-B. (2003). Acta Cryst. E59, o1461–o1463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFehlmann, M. (1970). Acta Cryst. B26, 1736–1741.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKhalaf, A. I., Alvarez, R. G., Suckling, C. J. & Waigh, R. D. (2000). Tetrahedron, 56, 8567–8571.  Web of Science CrossRef CAS Google Scholar
First citationNagarajan, K., Kulkarni, C. L. & Shah, R. K. (1971). Indian J. Chem. 9, 748–754.  CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds