organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Imidazole–boron trichloride adduct

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Bristol, Bristol BS8 1TS, England
*Correspondence e-mail: jon.charmant@bris.ac.uk

(Received 18 January 2005; accepted 24 January 2005; online 5 February 2005)

The crystal structure of the title compound [alternatively called tri­chloro(1H-imidazole-κN3)­boron], C3H4N2–BCl3 or C3H4BCl3N2, consists of a weakly hydrogen-bonded network of BCl3–imidazole adducts. The network formed may be viewed as a cross-linked hydrogen-bonded ribbon polymer.

Comment

The title compound, (I[link]), was obtained as a colourless powder during an attempt to synthesize a product of formula B2S3 from the reaction of BCl3 with (Me3Si)2S (containing trace amounts of imidazole as a stabiliser). Recrystallization yielded crystals suitable for a diffraction study. The molecular structure of (I[link]) is shown in Fig. 1[link], and selected bond lengths and angles are presented in Table 1[link].[link]

[Scheme 1]

A variety of nitro­gen adducts of BCl3 have previously been characterized crystallographically. These include amine (Minkwitz, Nass & Preest, 1987[Minkwitz, R., Nass, R. & Preest, H. (1987). Z. Anorg. Allg. Chem. 546, 99-106.]; Minkwitz, Nass, Rieland & Preest, 1987[Minkwitz, R., Nass, R., Rieland, M. & Preest, H. (1987). Z. Anorg. Allg. Chem. 550, 133-139.]; Avent et al., 1995[Avent, A. G., Hitchcock, P. B., Lappert, M. F., Liu, D., Mignoni, G., Richard, C. & Roche, E. (1995). Chem. Commun. pp. 855-856.], Hess, 1969[Hess, H. (1969). Acta Cryst. B25, 2338-2341.]; Anton et al., 1984[Anton, K., Noth, H. & Pommering, H. (1984). Chem. Ber. 117, 2479-2494.]; Abram et al., 1997[Abram, V., Lang, E. S., Abram, S., Wegmann, J., Dilworth, J. R., Kirmse, R. & Woollins, J. D. (1997). J. Chem. Soc. Dalton Trans. pp. 623-630.]; Voigt et al., 2000[Voigt, F., Jacob, K., Seidel, N., Fischer, A., Pietzsch, C. & Zanello, P. (2000). J. Prakt. Chem. 342, 666-674.]), pyridine (Töpel et al., 1981[Töpel, K. H., Hansen, K. & Tromel, M. (1981). Acta Cryst. B37, 969-971.]) and aceto­nitrile (Swanson et al., 1969[Swanson, R., Shriver, D. F. & Ibers, J. A. (1969). Inorg. Chem. 8, 2182-2189.]) adducts. The B—N bond length in (I[link]) is shorter than any previously reported, with the exception of adducts with rhenium nitride complexes (Dantona et al., 1984[Dantona, R., Schreda, E. & Stralite, J. (1984). Z. Naturforsch. Teil B, 39, 733-735.]; Abram et al., 1997[Abram, V., Lang, E. S., Abram, S., Wegmann, J., Dilworth, J. R., Kirmse, R. & Woollins, J. D. (1997). J. Chem. Soc. Dalton Trans. pp. 623-630.]; Ritter & Abram, 1996[Ritter, S. & Abram, U. (1996). Z. Anorg. Allg. Chem. 622, 965-973.]).

The crystal structure of (I[link]) may be viewed as a cross-linked hydrogen-bonded ribbon polymer (see Fig. 2[link]). The N2—H2A donor of the imidazole makes a weak hydrogen bond with atom Cl1 in a neighbouring mol­ecule. This interaction is supplemented by a weak interaction between C2—H2 and Cl3 of the same mol­ecule. Although such an interaction might seem dubious, it is possible that C2 and N2 are disordered with respect to each other, leading to a disordered hydrogen bond between Cl1 or Cl3 and the two chemically feasible NH positions on the imidazole. Attempts to model this disorder were unsuccessful. A slightly stronger interaction between the N2—H2A donor and Cl2 of another neighbouring mol­ecule cross-links the ribbons to give the overall structure.

[Figure 1]
Figure 1
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal structure of the title compound, viewed as a series of cross-linked hydrogen-bonded ribbon polymers. [Symmetry codes: (i) x, y − 1, z; (ii) 1 + x, y − 1, z.]

Experimental

BCl3 (1.0 M solution in heptane, 0.2 ml, 0.2 mmol) was added to a solution of (Me3Si)2S (0.57 ml, 0.3 mmol) in hexane (10 ml), resulting in the immediate formation of a colourless precipitate. The solution was stirred for 24 h, whereupon the solvent was removed by syringe and the resultant colourless solid was washed with hexane (3 × 10 ml) and dried. The solid was then redissolved in CH2Cl2 (10 ml), placed in a fresh Schlenk tube, layered with hexane (7 ml) and refrigerated at 243 K overnight, resulting in the formation of large colourless crystals (yield: 0.0056 g, 6%). NMR (CDCl3): 11B δ 3.1. Analysis calculated for C3H4BCl3N2: C 19.45, H 2.20, N 15.10%; found: C 19.60, H 1.65, N 14.85%.

Crystal data
  • C3H4BCl3N2

  • Mr = 185.24

  • Triclinic, [P\overline 1]

  • a = 6.0390 (12) Å

  • b = 7.2210 (14) Å

  • c = 8.5610 (17) Å

  • α = 84.48 (3)°

  • β = 81.33 (3)°

  • γ = 71.08 (3)°

  • V = 348.67 (14) Å3

  • Z = 2

  • Dx = 1.764 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1476 reflections

  • θ = 3.0–27.4°

  • μ = 1.21 mm−1

  • T = 173 (2) K

  • Plate, colourless

  • 0.15 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.853, Tmax = 0.940

  • 4070 measured reflections

  • 1597 independent reflections

  • 1444 reflections with I > 2σ(I)

  • Rint = 0.023

  • θmax = 27.5°

  • h = −7 → 7

  • k = −9 → 9

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.06

  • 1597 reflections

  • 82 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.037P)2 + 0.0819P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—N2 1.327 (3)
C1—N1 1.332 (2)
C2—C3 1.346 (3)
C2—N2 1.378 (3)
C3—N1 1.389 (2)
B1—N1 1.543 (3)
B1—Cl1 1.847 (2)
B1—Cl3 1.848 (2)
B1—Cl2 1.865 (2)
N2—C1—N1 108.82 (18)
C3—C2—N2 106.08 (17)
C2—C3—N1 108.22 (17)
N1—B1—Cl1 108.73 (13)
N1—B1—Cl3 109.43 (13)
Cl1—B1—Cl3 110.88 (11)
N1—B1—Cl2 109.32 (14)
Cl1—B1—Cl2 109.35 (11)
Cl3—B1—Cl2 109.11 (11)
C1—N1—C3 107.41 (16)
C1—N1—B1 126.94 (16)
C3—N1—B1 125.62 (16)
C1—N2—C2 109.46 (16)

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl2i 0.88 2.57 3.3696 (19) 152
N2—H2A⋯Cl1ii 0.88 2.86 3.429 (2) 124
C2—H2⋯Cl3ii 0.95 2.87 3.815 (2) 171
Symmetry codes: (i) x,y-1,z; (ii) 1+x,y-1,z.

H atoms were constrained to ideal geometries (C—H = 0.95 Å) and refined with displacement parameters equal to 1.2 times Ueq of their parent atom.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SHELXTL (Bruker, 2002[Bruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT and SHELXTL (Bruker, 2002); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

(I) top
Crystal data top
C3H4BCl3N2Z = 2
Mr = 185.24F(000) = 184
Triclinic, P1Dx = 1.764 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0390 (12) ÅCell parameters from 1476 reflections
b = 7.2210 (14) Åθ = 3.0–27.4°
c = 8.5610 (17) ŵ = 1.21 mm1
α = 84.48 (3)°T = 173 K
β = 81.33 (3)°Plate, colourless
γ = 71.08 (3)°0.15 × 0.15 × 0.05 mm
V = 348.67 (14) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1597 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.366 pixels mm-1θmax = 27.5°, θmin = 2.4°
frames, each covering 0.3° in ω scansh = 77
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.853, Tmax = 0.940l = 1111
4070 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.037P)2 + 0.0819P]
where P = (Fo2 + 2Fc2)/3
1597 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6954 (4)0.2644 (3)0.2045 (2)0.0152 (4)
H10.56500.27340.15120.018*
C21.0222 (4)0.1432 (3)0.3170 (2)0.0162 (4)
H21.15850.05290.35540.019*
C30.9453 (3)0.3391 (3)0.3283 (2)0.0142 (4)
H31.01890.41290.37650.017*
B10.5971 (4)0.6339 (3)0.2389 (3)0.0125 (4)
Cl10.29565 (8)0.65479 (7)0.20312 (6)0.01703 (13)
Cl20.74130 (8)0.74987 (6)0.06673 (5)0.01543 (13)
Cl30.59006 (8)0.75682 (6)0.42002 (5)0.01600 (13)
N10.7401 (3)0.4147 (2)0.25726 (18)0.0123 (3)
N20.8631 (3)0.1002 (2)0.23866 (19)0.0167 (4)
H2A0.87130.01800.21490.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0168 (10)0.0137 (9)0.0155 (10)0.0052 (8)0.0020 (8)0.0020 (7)
C20.0149 (10)0.0153 (9)0.0174 (10)0.0036 (8)0.0036 (8)0.0018 (7)
C30.0124 (9)0.0151 (9)0.0150 (9)0.0039 (7)0.0036 (7)0.0006 (7)
B10.0111 (10)0.0138 (10)0.0137 (10)0.0050 (8)0.0024 (8)0.0013 (8)
Cl10.0119 (2)0.0155 (2)0.0243 (3)0.00375 (17)0.00505 (18)0.00161 (18)
Cl20.0175 (3)0.0151 (2)0.0151 (2)0.00724 (18)0.00290 (18)0.00153 (17)
Cl30.0188 (3)0.0140 (2)0.0154 (2)0.00417 (18)0.00315 (18)0.00375 (17)
N10.0129 (8)0.0125 (7)0.0118 (8)0.0042 (6)0.0023 (6)0.0003 (6)
N20.0203 (9)0.0106 (8)0.0194 (9)0.0050 (6)0.0022 (7)0.0024 (6)
Geometric parameters (Å, º) top
C1—N21.327 (3)C3—H30.9500
C1—N11.332 (2)B1—N11.543 (3)
C1—H10.9500B1—Cl11.847 (2)
C2—C31.346 (3)B1—Cl31.848 (2)
C2—N21.378 (3)B1—Cl21.865 (2)
C2—H20.9500N2—H2A0.8800
C3—N11.389 (2)
N2—C1—N1108.82 (18)Cl1—B1—Cl3110.88 (11)
N2—C1—H1125.6N1—B1—Cl2109.32 (14)
N1—C1—H1125.6Cl1—B1—Cl2109.35 (11)
C3—C2—N2106.08 (17)Cl3—B1—Cl2109.11 (11)
C3—C2—H2127.0C1—N1—C3107.41 (16)
N2—C2—H2127.0C1—N1—B1126.94 (16)
C2—C3—N1108.22 (17)C3—N1—B1125.62 (16)
C2—C3—H3125.9C1—N2—C2109.46 (16)
N1—C3—H3125.9C1—N2—H2A125.3
N1—B1—Cl1108.73 (13)C2—N2—H2A125.3
N1—B1—Cl3109.43 (13)
N2—C2—C3—N10.1 (2)Cl2—B1—N1—C197.5 (2)
N2—C1—N1—C30.3 (2)Cl1—B1—N1—C3160.49 (15)
N2—C1—N1—B1177.77 (17)Cl3—B1—N1—C339.2 (2)
C2—C3—N1—C10.1 (2)Cl2—B1—N1—C380.2 (2)
C2—C3—N1—B1177.98 (17)N1—C1—N2—C20.4 (2)
Cl1—B1—N1—C121.8 (2)C3—C2—N2—C10.3 (2)
Cl3—B1—N1—C1143.04 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2i0.882.573.3696 (19)152
N2—H2A···Cl1ii0.882.863.429 (2)124
C2—H2···Cl3ii0.952.873.815 (2)171
Symmetry codes: (i) x, y1, z; (ii) x+1, y1, z.
 

Acknowledgements

We thank the EPSRC for financial support.

References

First citationAbram, V., Lang, E. S., Abram, S., Wegmann, J., Dilworth, J. R., Kirmse, R. & Woollins, J. D. (1997). J. Chem. Soc. Dalton Trans. pp. 623–630.  CSD CrossRef Web of Science Google Scholar
First citationAnton, K., Noth, H. & Pommering, H. (1984). Chem. Ber. 117, 2479–2494.  CrossRef CAS Web of Science Google Scholar
First citationAvent, A. G., Hitchcock, P. B., Lappert, M. F., Liu, D., Mignoni, G., Richard, C. & Roche, E. (1995). Chem. Commun. pp. 855–856.  CrossRef Google Scholar
First citationBruker (2002). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDantona, R., Schreda, E. & Stralite, J. (1984). Z. Naturforsch. Teil B, 39, 733–735.  Google Scholar
First citationHess, H. (1969). Acta Cryst. B25, 2338–2341.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMinkwitz, R., Nass, R. & Preest, H. (1987). Z. Anorg. Allg. Chem. 546, 99–106.  CSD CrossRef CAS Web of Science Google Scholar
First citationMinkwitz, R., Nass, R., Rieland, M. & Preest, H. (1987). Z. Anorg. Allg. Chem. 550, 133–139.  CSD CrossRef CAS Web of Science Google Scholar
First citationRitter, S. & Abram, U. (1996). Z. Anorg. Allg. Chem. 622, 965–973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSwanson, R., Shriver, D. F. & Ibers, J. A. (1969). Inorg. Chem. 8, 2182–2189.  CSD CrossRef CAS Web of Science Google Scholar
First citationTöpel, K. H., Hansen, K. & Tromel, M. (1981). Acta Cryst. B37, 969–971.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationVoigt, F., Jacob, K., Seidel, N., Fischer, A., Pietzsch, C. & Zanello, P. (2000). J. Prakt. Chem. 342, 666–674.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds