organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

n-Butyl acetate

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography Laboratory, Chemistry Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: howard.shallard-brown@lmh.ox.ac.uk

(Received 16 December 2004; accepted 5 January 2005; online 5 February 2005)

The title compound, C6H12O2, was prepared by a modified zone-refinement method at 150 K and consists of discrete molecules in van der Waals contact.

Comment

Many of the esters and ketones used in the flavours and fragrances industry are liquid at room temperature; thus, in the past, crystalline derivatives have had to be prepared for X-ray analysis. As part of a programme to systematize in situ crystal growth from liquids, we have examined a range of commercially available chemicals. Low-molecular-weight organic esters are liquid at room temperature. To date, only the crystal structure of methyl acetate has been determined (Barrow et al., 1981[Barrow, M. J., Cradock, S., Ebsworth, E. A. V. & Rankin, D. W. H. (1981). J. Chem. Soc. Dalton Trans. 16, 1988-1993.]). It was shown that the molecules of methyl acetate exist as discrete entities, without any strong intermolecular contacts. n-Butyl acetate, (I)[link], was examined because it has a melting point suitable for our trials. The crystal structure is similar to that of methyl acetate, consisting of discrete molecules in van der Waals contact. The most evident feature is the pairwise parallel butyl residues related by a crystallographic centre of symmetry. The open packing of the structure is reflected in its low density of 1.09 Mg m−3.

[Scheme 1]
[Figure 1]
Figure 1
The title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are of arbitrary radii.
[Figure 2]
Figure 2
A packing diagram, viewed along the a axis, showing the parallel pairing of the butyl groups.

Experimental

A 3 mm column of the title material, which is a liquid at room temperature, was sealed in a 0.2 mm Lindemann tube, which was not accurately parallel to the φ axis. A single crystal of the compound was grown by keeping the compound under a cold nitro­gen gas stream at 150 K (a little below its melting point), and slowly moving a small liquid zone, created by a micro-heating coil, up and down the sample. Once a suitable approximately single-crystal specimen had been obtained, the main data collection was carried out at this temperature. Because not all the data were collected with the Lindemann tube perpendicular to the X-ray beam, the multi-scan corrections applied by DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) also contain contributions due to changes in illuminated volume of the cylindrical sample; this is reflected in the ratio Tmin/Tmax.

Crystal data
  • C6H12O2

  • Mr = 116.16

  • Triclinic, P[\bar{1}]

  • a = 4.7272 (1) Å

  • b = 7.6955 (3) Å

  • c = 10.1387 (4) Å

  • α = 100.7426 (13)°

  • β = 96.0038 (15)°

  • γ = 99.3371 (18)°

  • V = 354.09 (2) Å3

  • Z = 2

  • Dx = 1.089 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1476 reflections

  • θ = 5–27°

  • μ = 0.08 mm−1

  • T = 150 K

  • Cylinder, colourless

  • 0.80 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.33, Tmax = 0.98

  • 5958 measured reflections

  • 1585 independent reflections

  • 1194 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 27.4°

  • h = −6 → 5

  • k = −9 → 9

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 0.97

  • 1585 reflections

  • 73 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F) + 0.045 + 0.061P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.0001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—O2 1.3411 (14)
C1—O7 1.2037 (14)
C1—C8 1.4981 (17)
O2—C3 1.4571 (14)
C3—C4 1.5096 (16)
C4—C5 1.5192 (17)
C5—C6 1.5189 (18)
O2—C1—O7 123.27 (11)
O2—C1—C8 111.16 (10)
O7—C1—C8 125.57 (11)
C1—O2—C3 115.87 (9)
O2—C3—C4 107.14 (9)
C3—C4—C5 113.98 (10)
C4—C5—C6 112.59 (11)

All H atoms were located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.97–1.01 Å), after which they were refined with riding constraints and with Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

n-Butyl acetate top
Crystal data top
C6H12O2Z = 2
Mr = 116.16F(000) = 128
Triclinic, P1Dx = 1.089 Mg m3
a = 4.7272 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6955 (3) ÅCell parameters from 1476 reflections
c = 10.1387 (4) Åθ = 5–27°
α = 100.7426 (13)°µ = 0.08 mm1
β = 96.0038 (15)°T = 150 K
γ = 99.3371 (18)°Cylinder, colourless
V = 354.09 (2) Å30.80 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.4°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 65
Tmin = 0.33, Tmax = 0.98k = 99
5958 measured reflectionsl = 1313
1585 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(F) + 0.045 + 0.061P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.97(Δ/σ)max = 0.0002
1585 reflectionsΔρmax = 0.19 e Å3
73 parametersΔρmin = 0.31 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4329 (2)0.19532 (15)0.61673 (12)0.0319
O20.65680 (17)0.30569 (11)0.69916 (8)0.0339
C30.8300 (3)0.43555 (16)0.63810 (12)0.0346
C41.0599 (3)0.54983 (16)0.74868 (12)0.0343
C50.9433 (3)0.67482 (17)0.85537 (13)0.0391
C61.1774 (3)0.77932 (18)0.96950 (14)0.0473
O70.37156 (19)0.20225 (12)0.49981 (9)0.0425
C80.2750 (3)0.06562 (18)0.68942 (14)0.0422
H310.70540.51280.60390.0396*
H320.91910.36910.56350.0386*
H411.16210.47120.79510.0409*
H421.20560.62410.70480.0407*
H510.79230.60200.89230.0463*
H520.85460.76190.81350.0456*
H611.09580.86591.03800.0562*
H621.27250.69781.01290.0569*
H631.32830.84690.93170.0556*
H810.09810.00750.62990.0492*
H820.24140.12860.77790.0492*
H830.39850.01780.69980.0499*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (6)0.0278 (6)0.0334 (7)0.0043 (5)0.0010 (5)0.0040 (5)
O20.0365 (5)0.0326 (5)0.0297 (5)0.0025 (4)0.0006 (3)0.0092 (4)
C30.0359 (6)0.0347 (6)0.0330 (6)0.0005 (5)0.0047 (5)0.0123 (5)
C40.0310 (6)0.0349 (7)0.0361 (7)0.0018 (5)0.0024 (5)0.0096 (5)
C50.0390 (7)0.0339 (7)0.0432 (7)0.0028 (5)0.0060 (6)0.0078 (6)
C60.0593 (9)0.0387 (8)0.0385 (7)0.0000 (6)0.0018 (6)0.0051 (6)
O70.0461 (5)0.0411 (5)0.0350 (5)0.0011 (4)0.0061 (4)0.0092 (4)
C80.0460 (7)0.0353 (7)0.0410 (7)0.0034 (6)0.0044 (6)0.0072 (6)
Geometric parameters (Å, º) top
C1—O21.3411 (14)C5—C61.5189 (18)
C1—O71.2037 (14)C5—H510.983
C1—C81.4981 (17)C5—H520.983
O2—C31.4571 (14)C6—H611.021
C3—C41.5096 (16)C6—H620.971
C3—H310.984C6—H630.968
C3—H321.002C8—H810.967
C4—C51.5192 (17)C8—H820.978
C4—H410.988C8—H830.948
C4—H421.015
O2—C1—O7123.27 (11)C4—C5—H51108.3
O2—C1—C8111.16 (10)C6—C5—H51109.8
O7—C1—C8125.57 (11)C4—C5—H52109.8
C1—O2—C3115.87 (9)C6—C5—H52108.1
O2—C3—C4107.14 (9)H51—C5—H52108.2
O2—C3—H31109.0C5—C6—H61111.2
C4—C3—H31109.1C5—C6—H62110.7
O2—C3—H32109.0H61—C6—H62111.4
C4—C3—H32111.0C5—C6—H63109.1
H31—C3—H32111.3H61—C6—H63109.3
C3—C4—C5113.98 (10)H62—C6—H63104.9
C3—C4—H41109.5C1—C8—H81106.2
C5—C4—H41107.8C1—C8—H82110.4
C3—C4—H42108.1H81—C8—H82113.2
C5—C4—H42109.2C1—C8—H83105.1
H41—C4—H42108.1H81—C8—H83110.9
C4—C5—C6112.59 (11)H82—C8—H83110.7
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarrow, M. J., Cradock, S., Ebsworth, E. A. V. & Rankin, D. W. H. (1981). J. Chem. Soc. Dalton Trans. 16, 1988–1993.  CSD CrossRef Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds