organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-tert-But­oxy-1-phenyl-1-(2,2,6,6-tetra­methyl­piperidin-1-yl­­oxy)­ethane

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 21 January 2005; accepted 14 February 2005; online 19 February 2005)

The title compound, C21H35NO2, contains a piperidine ring in a chair conformation, with a pyramidal N atom and a single (exocyclic) N—O bond in an equatorial orientation.

Comment

Nitro­xide-mediated polymerization (NMP) has emerged in recent years as a successful controlled or `living' radical polymerization technique which can be used to prepare polymers of target molecular weight, narrow polydispersity and complex architecture (block and graft copolymers, star polymers, etc.) (Matyjaszewski, 2003[Matyjaszewski, K. (2003). Am. Chem. Soc. Symp. Ser. 854, 2-9.]). Successful NMP requires the use of a monomolecular initiator, identified as an alkoxy­amine, which is derived from a nitro­xide. This alkoxy­amine should be prepared separately and then added in a known concentration to the monomer to be polymerized. Synthetic routes to alkoxy­amines include the trapping of alkyl radicals by free nitro­xides at moderate temperatures (Braslau et al., 1997[Braslau, R., Burrill, L. C., Siano, M., Naik, N., Howden, R. K. & Mahal, L. K. (1997). Macromol­ecules, 30, 6445-6450.]; Miura et al., 1998[Miura, Y., Hirota, K., Moto, H. & Yamada, B. (1998). Macromol­ecules, 31, 4659-4661.]) and a catalytic route involving Mn–salen complexes [H2salen is bis­(salicyl­idene)­ethyl­enedi­amine; Dao et al., 1998[Dao, J., Benoit, D. & Hawker, C. J. (1998). J. Polym. Sci. A, 36, 2161-2167.]]. The title compound, (I), has been synthesized in the course of these studies (Cameron et al., 2000[Cameron, N. R., Reid, A. J., Span, P., Bon, S. A. F., van Es, J. J. G. S. & German, A. L. (2000). Macromol. Chem. Phys. 201, 2510-2518.]).[link]

[Scheme 1]

The molecular structure of (I[link]) (Fig. 1[link]) is similar in its main features to the other N-oxy-2,2,6,6-tetra­methyl­piperidinyl derivatives reported by Ermert & Vasella (1993[Ermert, P. & Vasella, A. (1993). Helv. Chim. Acta, 76, 2687-2699.]), Jahn et al. (2001[Jahn, U., Hartmann, P., Dix, I. & Jones, P. G. (2001). Eur. J. Org. Chem. pp. 3333-3355.], 2002[Jahn, U., Hartmann, P., Dix, I. & Jones, P. G. (2002). Eur. J. Org. Chem. pp. 718-735.]) and Leitich et al. (2002[Leitich, J., Heize, I., Angermund, K. & Rust, J. (2002). Eur. J. Org. Chem. pp. 1803-1825.]). The piperidine ring adopts a chair conformation with the N—O1 bond in an equatorial orientation. The N—O1 distance is typical for a single bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), while the N atom has pyramidal geometry, corresponding to sp3 hybridization.

[Figure 1]
Figure 1
The molecular structure of (I[link]), showing atomic displacement ellipsoids at the 50% probability level.

Experimental

A solution of 2,2,6,6-tetra­methyl­piperidinyl­oxy (TEMPO; 0.187 g, 1.20 mmol) and di-tert-butyl­peroxalate (0.148 g, 0.63 mmol) in styrene (5 ml) was prepared. The mixture was degassed by three freeze/pump/thaw cycles and backflushed with argon after the final cycle. The resulting solution was sealed, then heated overnight at 313 K. After cooling, the solution was dried in vacuo to constant mass. The crude solid product obtained was then purified by flash chromatography on silica gel, eluting with a mixture of 40–60 petroleum ether/ethyl acetate (90:10 v/v). After removal of the solvent, a white crystalline solid was obtained in 79% yield. The characterization data of the isolated product were in agreement with those given in the literature (Bon et al., 1999[Bon, S. A. F., Chambard, G. & German, A. L. (1999). Macromol­ecules, 32, 8269-8276.]). 1H NMR (300 MHz): δ 1.04 (s, 9H, CH3 × 3), 0.58, 1.02, 1.19, 1.37 (br s, 3H, CH3), 0.9–1.7 (br m, 6H, CH2 × 3), 3.41 (m, 1H, H1), 3.89 (m, 1H, H171), 4.74 (m, 1H, H172), 7.18–7.35 (m, 5H, Ph) p.p.m. (for the H-atom numbering, see Fig. 1[link]).

Crystal data
  • C21H35NO2

  • Mr = 333.50

  • Orthorhombic, Pbca

  • a = 15.532 (4) Å

  • b = 11.119 (3) Å

  • c = 23.247 (5) Å

  • V = 4014.8 (17) Å3

  • Z = 8

  • Dx = 1.104 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 902 reflections

  • θ = 12.1–24.3°

  • μ = 0.07 mm−1

  • T = 100 (2) K

  • Block, colourless

  • 1.00 × 0.66 × 0.14 mm

Data collection
  • Bruker SMART 6000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A), SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.579, Tmax = 1.000

  • 60196 measured reflections

  • 7229 independent reflections

  • 6298 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 32.5°

  • h = −23 → 23

  • k = −16 → 16

  • l = −34 → 35

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.114

  • S = 1.06

  • 7229 reflections

  • 251 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0633P)2 + 0.7171P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Selected geometric parameters (Å, °)

O1—C1 1.4422 (8)
O1—N 1.4595 (7)
O2—C17 1.4158 (8)
O2—C18 1.4446 (8)
N—C6 1.4987 (9)
N—C2 1.5033 (9)
C1—C11 1.5168 (9)
C1—C17 1.5228 (9)
C2—C8 1.5354 (11)
C2—C7 1.5377 (12)
C2—C3 1.5399 (11)
C3—C4 1.5198 (14)
C4—C5 1.5153 (13)
C5—C6 1.5312 (10)
C6—C10 1.5280 (10)
C6—C9 1.5353 (11)
C18—C20 1.5187 (10)
C18—C21 1.5200 (11)
C18—C19 1.5238 (11)
C1—O1—N 112.33 (5)
C17—O2—C18 116.92 (5)
O1—N—C6 106.17 (5)
O1—N—C2 107.19 (5)
C6—N—C2 117.35 (5)
O1—C1—C11 114.45 (5)
O1—C1—C17 105.37 (5)
C11—C1—C17 110.04 (5)
N—C2—C3 107.44 (6)
C4—C3—C2 114.33 (7)
C5—C4—C3 108.36 (7)
C4—C5—C6 112.78 (6)
C10—C6—C5 107.62 (6)
O2—C17—C1 108.48 (5)
O2—C18—C20 103.38 (6)
O2—C18—C21 111.07 (6)
C20—C18—C21 110.35 (6)
O2—C18—C19 111.02 (6)
C20—C18—C19 110.12 (7)
C21—C18—C19 110.68 (7)

Methyl groups were treated as threefold symmetrical bodies rotating around C—C bonds, with a refined common Uiso for the three H atoms. Other H atoms were treated as riding on the corres­ponding C atoms, with refined Uiso values. C—H distances are 0.95–1.00 Å.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A), SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A), SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Bruker, 2001[Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A), SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

2-tert-Butoxy-1-phenyl-1-(2,2,6,6-tetramethylpiperidin-1-yloxy)ethane top
Crystal data top
C21H35NO2F(000) = 1472
Mr = 333.50Dx = 1.104 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 902 reflections
a = 15.532 (4) Åθ = 12.1–24.3°
b = 11.119 (3) ŵ = 0.07 mm1
c = 23.247 (5) ÅT = 100 K
V = 4014.8 (17) Å3Block, colourless
Z = 81.00 × 0.66 × 0.14 mm
Data collection top
Bruker SMART 6000 CCD area-detector
diffractometer
7229 independent reflections
Radiation source: fine-focus sealed tube6298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 5.6 pixels mm-1θmax = 32.5°, θmin = 1.8°
ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1616
Tmin = 0.579, Tmax = 1.000l = 3435
60196 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.7171P]
where P = (Fo2 + 2Fc2)/3
7229 reflections(Δ/σ)max = 0.001
251 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.17 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different φ and/or 2θ angles and each scan (20 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.85 cm.

Crystals are shattering when cut, therefore a crystal larger than the beam diameter was used and the intensities were corrected by SADABS program (actual absorption is negligible).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50726 (3)0.34047 (4)0.41290 (2)0.01533 (9)
O20.33509 (3)0.38797 (5)0.37666 (2)0.01928 (10)
N0.56521 (4)0.25032 (5)0.38875 (2)0.01604 (10)
C10.43261 (4)0.28730 (6)0.43963 (3)0.01552 (11)
H10.41520.21450.41720.016 (2)*
C20.55469 (5)0.25419 (7)0.32449 (3)0.02115 (13)
C30.62458 (6)0.17267 (8)0.29828 (4)0.03198 (17)
H310.61090.08800.30780.040 (3)*
H320.62280.18080.25590.044 (3)*
C40.71538 (6)0.20006 (9)0.31880 (4)0.03276 (18)
H410.75640.14150.30210.044 (3)*
H420.73260.28180.30640.038 (3)*
C50.71683 (5)0.19182 (7)0.38386 (4)0.02631 (15)
H510.77550.21060.39770.032 (3)*
H520.70320.10830.39550.035 (3)*
C60.65274 (4)0.27758 (6)0.41254 (3)0.01839 (12)
C70.55652 (6)0.38093 (8)0.29805 (3)0.02855 (16)
H710.5145 (5)0.4323 (4)0.3179 (3)0.0386 (13)*
H720.5418 (5)0.37606 (12)0.2570 (3)0.0386 (13)*
H730.6144 (4)0.4154 (4)0.3024 (3)0.0386 (13)*
C80.46745 (5)0.19737 (8)0.30943 (3)0.02742 (15)
H810.4625 (2)0.1184 (7)0.3284 (3)0.0375 (18)*
H820.4632 (2)0.1870 (6)0.2674 (3)0.0375 (18)*
H830.4207 (3)0.2502 (5)0.3228 (3)0.0375 (18)*
C90.68364 (5)0.40811 (7)0.40643 (4)0.02434 (14)
H910.7018 (5)0.4226 (2)0.3668 (3)0.0405 (19)*
H920.7321 (5)0.4220 (2)0.4324 (3)0.0405 (19)*
H930.6367 (4)0.4628 (4)0.4162 (3)0.0405 (19)*
C100.65061 (5)0.24755 (8)0.47666 (3)0.02721 (15)
H1010.6137 (5)0.3078 (6)0.49731 (15)0.0381 (18)*
H1020.7106 (4)0.2503 (7)0.49259 (14)0.0381 (18)*
H1030.6261 (5)0.1649 (6)0.48219 (6)0.0381 (18)*
C110.44530 (4)0.25205 (6)0.50208 (3)0.01565 (11)
C120.43806 (4)0.13184 (6)0.51850 (3)0.01924 (12)
H120.42700.07230.49010.025 (3)*
C130.44677 (5)0.09773 (7)0.57597 (3)0.02422 (14)
H130.44230.01540.58650.033 (3)*
C140.46198 (5)0.18453 (8)0.61768 (3)0.02565 (15)
H140.46740.16180.65690.038 (3)*
C150.46920 (5)0.30477 (7)0.60196 (3)0.02317 (14)
H150.47960.36420.63050.036 (3)*
C160.46121 (4)0.33830 (6)0.54450 (3)0.01906 (12)
H160.46660.42050.53400.025 (3)*
C170.36194 (4)0.38169 (6)0.43478 (3)0.01849 (12)
H1710.31270.35950.45960.024 (2)*
H1720.38400.46090.44750.024 (2)*
C180.26850 (4)0.47410 (6)0.36304 (3)0.01854 (12)
C190.18898 (5)0.45399 (8)0.40020 (4)0.02978 (17)
H1910.1726 (3)0.3670 (7)0.3991 (3)0.0434 (19)*
H1920.1403 (4)0.5037 (6)0.3852 (2)0.0434 (19)*
H1930.20186 (18)0.4780 (7)0.4408 (3)0.0434 (19)*
C200.24793 (6)0.44747 (8)0.30046 (3)0.02784 (15)
H2010.3015 (4)0.4557 (6)0.27679 (17)0.0386 (13)*
H2020.2035 (4)0.5057 (6)0.28632 (14)0.0386 (13)*
H2030.2252 (5)0.3634 (6)0.29697 (6)0.0386 (13)*
C210.30130 (6)0.60218 (7)0.36949 (4)0.03203 (18)
H2110.3145 (5)0.6183 (3)0.4105 (3)0.045 (2)*
H2120.2565 (4)0.6593 (4)0.3560 (3)0.045 (2)*
H2130.3542 (5)0.6126 (2)0.3461 (3)0.045 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.01407 (19)0.01375 (19)0.0182 (2)0.00091 (15)0.00335 (15)0.00001 (15)
O20.0180 (2)0.0243 (2)0.0155 (2)0.00446 (17)0.00207 (16)0.00068 (17)
N0.0160 (2)0.0153 (2)0.0169 (2)0.00227 (17)0.00319 (17)0.00101 (17)
C10.0140 (2)0.0174 (3)0.0151 (2)0.00090 (19)0.00074 (18)0.0011 (2)
C20.0229 (3)0.0245 (3)0.0160 (3)0.0010 (2)0.0043 (2)0.0023 (2)
C30.0312 (4)0.0365 (4)0.0283 (4)0.0017 (3)0.0104 (3)0.0114 (3)
C40.0266 (4)0.0364 (4)0.0352 (4)0.0043 (3)0.0136 (3)0.0058 (3)
C50.0201 (3)0.0224 (3)0.0365 (4)0.0065 (2)0.0073 (3)0.0021 (3)
C60.0149 (2)0.0178 (3)0.0225 (3)0.0018 (2)0.0017 (2)0.0026 (2)
C70.0322 (4)0.0336 (4)0.0199 (3)0.0027 (3)0.0016 (3)0.0078 (3)
C80.0280 (3)0.0342 (4)0.0200 (3)0.0048 (3)0.0009 (3)0.0077 (3)
C90.0187 (3)0.0198 (3)0.0345 (4)0.0017 (2)0.0003 (3)0.0003 (3)
C100.0185 (3)0.0396 (4)0.0235 (3)0.0032 (3)0.0020 (2)0.0076 (3)
C110.0140 (2)0.0175 (3)0.0155 (2)0.0000 (2)0.00058 (19)0.00121 (19)
C120.0195 (3)0.0183 (3)0.0199 (3)0.0009 (2)0.0012 (2)0.0025 (2)
C130.0243 (3)0.0248 (3)0.0235 (3)0.0001 (3)0.0014 (2)0.0078 (2)
C140.0249 (3)0.0343 (4)0.0177 (3)0.0030 (3)0.0017 (2)0.0053 (3)
C150.0228 (3)0.0299 (3)0.0169 (3)0.0027 (3)0.0019 (2)0.0024 (2)
C160.0191 (3)0.0200 (3)0.0181 (3)0.0001 (2)0.0001 (2)0.0011 (2)
C170.0157 (3)0.0247 (3)0.0151 (3)0.0034 (2)0.0002 (2)0.0011 (2)
C180.0189 (3)0.0184 (3)0.0184 (3)0.0004 (2)0.0027 (2)0.0026 (2)
C190.0210 (3)0.0351 (4)0.0333 (4)0.0090 (3)0.0043 (3)0.0111 (3)
C200.0322 (4)0.0299 (4)0.0214 (3)0.0024 (3)0.0091 (3)0.0007 (3)
C210.0422 (5)0.0208 (3)0.0332 (4)0.0059 (3)0.0137 (3)0.0053 (3)
Geometric parameters (Å, º) top
O1—C11.4422 (8)C9—H920.980
O1—N1.4595 (7)C9—H930.980
O2—C171.4158 (8)C10—H1011.000
O2—C181.4446 (8)C10—H1021.000
N—C61.4987 (9)C10—H1031.000
N—C21.5033 (9)C11—C121.3945 (10)
C1—C111.5168 (9)C11—C161.3975 (9)
C1—C171.5228 (9)C12—C131.3955 (10)
C1—H11.000C12—H120.950
C2—C81.5354 (11)C13—C141.3883 (12)
C2—C71.5377 (12)C13—H130.950
C2—C31.5399 (11)C14—C151.3906 (12)
C3—C41.5198 (14)C14—H140.950
C3—H310.990C15—C161.3924 (10)
C3—H320.990C15—H150.950
C4—C51.5153 (13)C16—H160.950
C4—H410.990C17—H1710.990
C4—H420.990C17—H1720.990
C5—C61.5312 (10)C18—C201.5187 (10)
C5—H510.990C18—C211.5200 (11)
C5—H520.990C18—C191.5238 (11)
C6—C101.5280 (10)C19—H1911.000
C6—C91.5353 (11)C19—H1921.000
C7—H710.980C19—H1931.000
C7—H720.980C20—H2011.000
C7—H730.980C20—H2021.000
C8—H810.990C20—H2031.000
C8—H820.990C21—H2110.990
C8—H830.990C21—H2120.990
C9—H910.980C21—H2130.990
C1—O1—N112.33 (5)H91—C9—H93109.5
C17—O2—C18116.92 (5)H92—C9—H93109.5
O1—N—C6106.17 (5)C6—C10—H101109.5
O1—N—C2107.19 (5)C6—C10—H102109.5
C6—N—C2117.35 (5)H101—C10—H102109.5
O1—C1—C11114.45 (5)C6—C10—H103109.5
O1—C1—C17105.37 (5)H101—C10—H103109.5
C11—C1—C17110.04 (5)H102—C10—H103109.5
O1—C1—H1108.9C12—C11—C16118.62 (6)
C11—C1—H1108.9C12—C11—C1119.94 (6)
C17—C1—H1108.9C16—C11—C1121.40 (6)
N—C2—C8108.10 (5)C11—C12—C13120.97 (7)
N—C2—C7114.93 (6)C11—C12—H12119.5
C8—C2—C7107.59 (7)C13—C12—H12119.5
N—C2—C3107.44 (6)C14—C13—C12119.75 (7)
C8—C2—C3106.83 (6)C14—C13—H13120.1
C7—C2—C3111.61 (6)C12—C13—H13120.1
C4—C3—C2114.33 (7)C13—C14—C15119.90 (7)
C4—C3—H31108.7C13—C14—H14120.0
C2—C3—H31108.7C15—C14—H14120.1
C4—C3—H32108.7C14—C15—C16120.16 (7)
C2—C3—H32108.7C14—C15—H15119.9
H31—C3—H32107.6C16—C15—H15119.9
C5—C4—C3108.36 (7)C15—C16—C11120.59 (7)
C5—C4—H41110.0C15—C16—H16119.7
C3—C4—H41110.0C11—C16—H16119.7
C5—C4—H42110.0O2—C17—C1108.48 (5)
C3—C4—H42110.0O2—C17—H171110.0
H41—C4—H42108.4C1—C17—H171110.0
C4—C5—C6112.78 (6)O2—C17—H172110.0
C4—C5—H51109.0C1—C17—H172110.0
C6—C5—H51109.0H171—C17—H172108.4
C4—C5—H52109.1O2—C18—C20103.38 (6)
C6—C5—H52109.0O2—C18—C21111.07 (6)
H51—C5—H52107.8C20—C18—C21110.35 (6)
N—C6—C10107.23 (5)O2—C18—C19111.02 (6)
N—C6—C5107.65 (6)C20—C18—C19110.12 (7)
C10—C6—C5107.62 (6)C21—C18—C19110.68 (7)
N—C6—C9116.15 (5)C18—C19—H191109.5
C10—C6—C9107.67 (6)C18—C19—H192109.5
C5—C6—C9110.19 (6)H191—C19—H192109.5
C2—C7—H71109.5C18—C19—H193109.5
C2—C7—H72109.5H191—C19—H193109.5
H71—C7—H72109.5H192—C19—H193109.5
C2—C7—H73109.5C18—C20—H201109.5
H71—C7—H73109.5C18—C20—H202109.5
H72—C7—H73109.5H201—C20—H202109.5
C2—C8—H81109.5C18—C20—H203109.5
C2—C8—H82109.5H201—C20—H203109.5
H81—C8—H82109.5H202—C20—H203109.5
C2—C8—H83109.5C18—C21—H211109.5
H81—C8—H83109.5C18—C21—H212109.5
H82—C8—H83109.5H211—C21—H212109.5
C6—C9—H91109.5C18—C21—H213109.5
C6—C9—H92109.5H211—C21—H213109.5
H91—C9—H92109.5H212—C21—H213109.5
C6—C9—H93109.5
C1—O1—N—C6128.03 (5)O1—N—C6—C5174.94 (5)
C1—O1—N—C2105.78 (6)C2—N—C6—C555.17 (7)
N—O1—C1—C1186.82 (6)O1—N—C6—C950.91 (7)
N—O1—C1—C17152.16 (5)C2—N—C6—C968.86 (8)
O1—N—C2—C872.99 (7)C4—C5—C6—N56.34 (8)
C6—N—C2—C8167.78 (6)C4—C5—C6—C10171.63 (7)
O1—N—C2—C747.18 (7)C4—C5—C6—C971.23 (8)
C6—N—C2—C772.05 (8)O1—C1—C11—C12117.89 (6)
O1—N—C2—C3172.05 (5)C17—C1—C11—C12123.70 (7)
C6—N—C2—C352.82 (8)O1—C1—C11—C1664.45 (8)
N—C2—C3—C452.39 (9)C17—C1—C11—C1653.96 (8)
C8—C2—C3—C4168.19 (7)C18—O2—C17—C1179.32 (5)
C7—C2—C3—C474.46 (9)O1—C1—C17—O272.26 (6)
C2—C3—C4—C556.39 (10)C11—C1—C17—O2163.88 (5)
C3—C4—C5—C657.99 (9)C17—O2—C18—C20173.50 (6)
O1—N—C6—C1069.52 (6)C17—O2—C18—C2168.17 (8)
C2—N—C6—C10170.72 (6)C17—O2—C18—C1955.45 (8)
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBon, S. A. F., Chambard, G. & German, A. L. (1999). Macromol­ecules, 32, 8269–8276.  Web of Science CrossRef CAS Google Scholar
First citationBraslau, R., Burrill, L. C., Siano, M., Naik, N., Howden, R. K. & Mahal, L. K. (1997). Macromol­ecules, 30, 6445–6450.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART (Version 5.625), SAINT (Version 6.02A), SADABS (Version 2.03) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCameron, N. R., Reid, A. J., Span, P., Bon, S. A. F., van Es, J. J. G. S. & German, A. L. (2000). Macromol. Chem. Phys. 201, 2510–2518.  Web of Science CrossRef CAS Google Scholar
First citationDao, J., Benoit, D. & Hawker, C. J. (1998). J. Polym. Sci. A, 36, 2161–2167.  Web of Science CrossRef CAS Google Scholar
First citationErmert, P. & Vasella, A. (1993). Helv. Chim. Acta, 76, 2687–2699.  CSD CrossRef CAS Web of Science Google Scholar
First citationJahn, U., Hartmann, P., Dix, I. & Jones, P. G. (2001). Eur. J. Org. Chem. pp. 3333–3355.  CrossRef Google Scholar
First citationJahn, U., Hartmann, P., Dix, I. & Jones, P. G. (2002). Eur. J. Org. Chem. pp. 718–735.  CSD CrossRef Google Scholar
First citationLeitich, J., Heize, I., Angermund, K. & Rust, J. (2002). Eur. J. Org. Chem. pp. 1803–1825.  CrossRef Google Scholar
First citationMatyjaszewski, K. (2003). Am. Chem. Soc. Symp. Ser. 854, 2–9.  CAS Google Scholar
First citationMiura, Y., Hirota, K., Moto, H. & Yamada, B. (1998). Macromol­ecules, 31, 4659–4661.  Web of Science CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds