organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­nitro­benzoic acid–di­methyl sulfoxide (1/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bPfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: avt21@cam.ac.uk

(Received 1 February 2005; accepted 2 February 2005; online 12 February 2005)

The title complex, C7H4N2O6·C2H6OS, involves an inter­molecular hydrogen-bond motif between the carboxyl and the sulfoxide groups. This motif has precedence in the Cambridge Structural Database, and is shown here to be more favourable than a possible carboxyl­ic acid homodimer.

Comment

As part of ongoing research into the crystallization preferences of crystalline complexes, the growth of a previously reported three-component crystalline complex (Pedireddi et al., 1996[Pedireddi, V. R., Jones, W., Chorlton, A. P. & Docherty, R. (1996). Chem. Commun. p. 987.]) was attempted. The solvent di­methyl sulfoxide (DMSO) was used to aid dissolution of the components. In several instances, the crystallization unexpectedly resulted in single crystals of the title adduct, (I[link]). The asymmetric unit consists of one mol­ecule each of 3,5-di­nitro­benzoic acid (3,5-DNBA) and DMSO (Fig. 1[link]).[link]

[Scheme 1]

Previously reported crystallizations of 3,5-DNBA indicate a dimorphic nature for this substance. Two monoclinic polymorphs have been reported (Prince et al., 1991[Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895-898.]) and both exhibit the common carboxyl­ic acid dimer hydrogen-bond motif. The interaction between 3,5-DNBA and DMSO described here involves a hydrogen bond between the carboxyl moiety of the acid and the sulfoxide group of the solvent (Fig. 2[link]). It is interesting, therefore, that the title complex represents the disruption of the carboxyl­ic acid dimer by the introduction of the sulfoxide moiety upon complex­ation.

A search of the Cambridge Structural Database (CSD, Version 5.25, Update 3; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals precedence for this acid–DMSO interaction. Searching for structures which contain both a carboxyl moiety and a DMSO mol­ecule among all organic structures for which three-dimensional coordinates have been determined resulted in 37 hits. Of those, 29 complexes exhibit an O—H⋯O=S hydrogen bond which is shorter than the sum of the van der Waals radii of the two O atoms. The apparent substantial likelihood of the formation of this motif indicates a potential utility for crystal engineering experimental design.

Crystal packing results in what may be perceived as alternating sheets of 3,5-DNBA and DMSO stacking along [001] (Figs. 3[link] and 4[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I[link]), showing displacement ellipsoids at the 50% probability level (XP; Sheldrick, 1993[Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.]).
[Figure 2]
Figure 2
Crystal packing diagram, showing the intermolecular hydrogen-bonding interactions as dashed lines.
[Figure 3]
Figure 3
Crystal packing diagram, showing sheets stacking along [001], as viewed along [010]. Dashed lines indicate hydrogen bonds.
[Figure 4]
Figure 4
Crystal packing diagram showing sheets stacking along [001], as viewed along [100].

Experimental

All starting components were obtained from Sigma Aldrich Ltd. 3,5-Di­nitro­benzoic acid (357 mg) and 0.5 equivalents of anthracene (150 mg) were heated to reflux in benzene (ca 50 ml). To dissolve the solids fully, a small quantity of DMSO (ca 2 ml) was added to the slurry. The resulting solution was allowed to cool and evaporate slowly over a period of 24 h. Crystals were observed before all the solvent had evaporated; a single crystal was harvested from this saturated solution for X-ray diffraction analysis.

Crystal data
  • C7H4N2O6·C2H6OS

  • Mr = 290.25

  • Orthorhombic, Pbca

  • a = 10.0156 (2) Å

  • b = 12.0767 (2) Å

  • c = 20.6483 (5) Å

  • V = 2497.52 (9) Å3

  • Z = 8

  • Dx = 1.544 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 11 611 reflections

  • θ = 1.0–27.5°

  • μ = 0.29 mm−1

  • T = 260 (2) K

  • Plate, yellow

  • 0.23 × 0.23 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thin-slice ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.873, Tmax = 0.970

  • 16 897 measured reflections

  • 2856 independent reflections

  • 2114 reflections with I > 2σ(I)

  • Rint = 0.050

  • θmax = 27.5°

  • h = −12 → 13

  • k = −15 → 15

  • l = −26 → 26

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.134

  • S = 1.03

  • 2856 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0672P)2 + 1.1187P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.40 e Å−3

All H atoms bonded to C atoms were placed geometrically and refined using a riding model. The Uiso values for methyl H atoms were taken as 1.5Ueq of the carrier atom. For all other H atoms, Uiso(H) = 1.2Ueq(carrier atom). The C—H distances of the methyl groups were fixed at 0.96 Å; all other C—H distances were fixed at 0.93 Å. The O—H H atom was located from difference Fourier maps and fixed at an O—H bond distance of 1.00 Å.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: XP (Sheldrick, 1993[Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al. 1994); program(s) used to refine structure: SHELXL97 (Sheldrick 1997); software used to prepare material for publication: SHELXL97.

3,5-dinitrobenzoic acid–dimethyl sulfoxide (1/1) top
Crystal data top
C7H4N2O6·C2H6OSDx = 1.544 Mg m3
Mr = 290.25Melting point: not measured K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 10.0156 (2) ÅCell parameters from 11611 reflections
b = 12.0767 (2) Åθ = 1.0–27.5°
c = 20.6483 (5) ŵ = 0.29 mm1
V = 2497.52 (9) Å3T = 260 K
Z = 8Plate, yellow
F(000) = 12000.23 × 0.23 × 0.12 mm
Data collection top
Nonius–Kappa CCD
diffractometer
2114 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Thin–slice ω and φ scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
h = 1213
Tmin = 0.873, Tmax = 0.970k = 1515
16897 measured reflectionsl = 2626
2856 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0672P)2 + 1.1187P]
where P = (Fo2 + 2Fc2)/3
2856 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.60 e Å3
1 restraintΔρmin = 0.40 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41031 (17)0.05040 (14)0.15161 (8)0.0526 (4)
O20.28020 (17)0.15088 (14)0.08622 (9)0.0553 (5)
H2A0.284 (4)0.208 (3)0.1197 (15)0.117 (14)*
O30.5018 (2)0.37105 (15)0.02034 (10)0.0713 (6)
O40.5381 (2)0.31999 (16)0.07821 (10)0.0642 (5)
O50.27367 (19)0.12356 (17)0.16760 (8)0.0618 (5)
O60.2394 (2)0.04496 (16)0.13742 (9)0.0643 (5)
C10.35291 (19)0.02206 (16)0.04847 (10)0.0354 (4)
N10.49347 (19)0.30483 (16)0.02397 (11)0.0478 (5)
N20.27320 (18)0.05110 (18)0.12700 (9)0.0456 (5)
C20.41434 (19)0.12320 (18)0.06069 (10)0.0375 (5)
H20.44820.13910.10160.045*
C30.42432 (19)0.19929 (17)0.01149 (10)0.0375 (5)
C40.3761 (2)0.17989 (17)0.05049 (10)0.0385 (5)
H40.38280.23270.08310.046*
C50.31788 (19)0.07820 (17)0.06102 (10)0.0367 (5)
C60.30450 (19)0.00084 (18)0.01318 (10)0.0369 (5)
H60.26370.06840.02210.044*
C70.3500 (2)0.06314 (18)0.10160 (10)0.0398 (5)
S10.06085 (6)0.16639 (5)0.18509 (3)0.04586 (19)
O70.20480 (17)0.19557 (15)0.16814 (9)0.0581 (5)
C80.0644 (3)0.0223 (2)0.20131 (15)0.0641 (7)
H8A0.07200.01770.16130.096*
H8B0.01650.00110.22300.096*
H8C0.13950.00550.22840.096*
C90.0355 (3)0.2154 (3)0.26485 (14)0.0688 (8)
H9A0.04340.29460.26540.103*
H9B0.10140.18370.29310.103*
H9C0.05200.19440.27930.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0591 (10)0.0608 (10)0.0378 (9)0.0014 (8)0.0088 (7)0.0056 (8)
O20.0572 (10)0.0523 (10)0.0563 (10)0.0128 (8)0.0177 (8)0.0165 (8)
O30.0949 (15)0.0464 (10)0.0726 (13)0.0167 (10)0.0046 (11)0.0084 (9)
O40.0642 (11)0.0684 (12)0.0600 (12)0.0216 (9)0.0089 (9)0.0114 (9)
O50.0707 (12)0.0784 (12)0.0362 (9)0.0107 (10)0.0072 (8)0.0069 (9)
O60.0764 (13)0.0694 (12)0.0471 (10)0.0071 (10)0.0109 (9)0.0148 (9)
C10.0285 (9)0.0418 (11)0.0360 (11)0.0047 (8)0.0006 (8)0.0007 (8)
N10.0428 (10)0.0434 (10)0.0571 (12)0.0025 (8)0.0025 (9)0.0058 (9)
N20.0401 (10)0.0602 (12)0.0364 (10)0.0068 (9)0.0032 (8)0.0037 (9)
C20.0335 (10)0.0460 (11)0.0329 (10)0.0052 (9)0.0001 (8)0.0050 (9)
C30.0329 (10)0.0378 (10)0.0418 (11)0.0026 (8)0.0020 (8)0.0042 (9)
C40.0357 (10)0.0415 (11)0.0384 (11)0.0065 (9)0.0023 (8)0.0044 (9)
C50.0318 (9)0.0469 (11)0.0313 (10)0.0053 (9)0.0013 (8)0.0037 (9)
C60.0315 (9)0.0405 (10)0.0386 (11)0.0015 (8)0.0001 (8)0.0022 (9)
C70.0347 (10)0.0465 (12)0.0382 (11)0.0044 (9)0.0014 (9)0.0036 (9)
S10.0476 (3)0.0501 (3)0.0399 (3)0.0041 (2)0.0004 (2)0.0081 (2)
O70.0498 (10)0.0589 (10)0.0656 (11)0.0066 (8)0.0140 (8)0.0232 (9)
C80.0721 (18)0.0475 (14)0.0727 (18)0.0040 (13)0.0059 (14)0.0033 (13)
C90.0781 (19)0.0703 (18)0.0581 (17)0.0043 (15)0.0164 (14)0.0099 (14)
Geometric parameters (Å, º) top
O1—C71.206 (3)C3—C41.388 (3)
O2—C71.309 (3)C4—C51.377 (3)
O2—H2A0.974 (19)C4—H40.9300
O3—N11.218 (3)C5—C61.380 (3)
O4—N11.220 (3)C6—H60.9300
O5—N21.212 (3)S1—O71.5249 (18)
O6—N21.228 (3)S1—C91.768 (3)
C1—C61.390 (3)S1—C81.772 (3)
C1—C21.391 (3)C8—H8A0.9600
C1—C71.504 (3)C8—H8B0.9600
N1—C31.473 (3)C8—H8C0.9600
N2—C51.471 (3)C9—H9A0.9600
C2—C31.373 (3)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C7—O2—H2A112 (2)C5—C6—C1118.95 (19)
C6—C1—C2119.68 (19)C5—C6—H6120.5
C6—C1—C7121.67 (19)C1—C6—H6120.5
C2—C1—C7118.49 (18)O1—C7—O2125.4 (2)
O3—N1—O4124.5 (2)O1—C7—C1121.8 (2)
O3—N1—C3118.0 (2)O2—C7—C1112.78 (18)
O4—N1—C3117.6 (2)O7—S1—C9105.79 (13)
O5—N2—O6124.2 (2)O7—S1—C8104.57 (12)
O5—N2—C5118.6 (2)C9—S1—C898.93 (15)
O6—N2—C5117.17 (19)S1—C8—H8A109.5
C3—C2—C1119.06 (19)S1—C8—H8B109.5
C3—C2—H2120.5H8A—C8—H8B109.5
C1—C2—H2120.5S1—C8—H8C109.5
C2—C3—C4122.94 (19)H8A—C8—H8C109.5
C2—C3—N1118.92 (19)H8B—C8—H8C109.5
C4—C3—N1118.10 (19)S1—C9—H9A109.5
C5—C4—C3116.34 (19)S1—C9—H9B109.5
C5—C4—H4121.8H9A—C9—H9B109.5
C3—C4—H4121.8S1—C9—H9C109.5
C4—C5—C6123.02 (19)H9A—C9—H9C109.5
C4—C5—N2118.28 (19)H9B—C9—H9C109.5
C6—C5—N2118.65 (19)
C6—C1—C2—C30.9 (3)O5—N2—C5—C49.2 (3)
C7—C1—C2—C3176.37 (18)O6—N2—C5—C4169.85 (19)
C1—C2—C3—C40.2 (3)O5—N2—C5—C6173.41 (19)
C1—C2—C3—N1177.95 (17)O6—N2—C5—C67.6 (3)
O3—N1—C3—C2179.7 (2)C4—C5—C6—C10.7 (3)
O4—N1—C3—C20.5 (3)N2—C5—C6—C1176.65 (17)
O3—N1—C3—C41.9 (3)C2—C1—C6—C50.4 (3)
O4—N1—C3—C4178.4 (2)C7—C1—C6—C5175.80 (17)
C2—C3—C4—C50.8 (3)C6—C1—C7—O1168.0 (2)
N1—C3—C4—C5176.96 (17)C2—C1—C7—O17.5 (3)
C3—C4—C5—C61.2 (3)C6—C1—C7—O29.9 (3)
C3—C4—C5—N2176.09 (17)C2—C1—C7—O2174.69 (18)
 

Acknowledgements

We are grateful for funding from the Pfizer Institute for Pharmaceutical Materials Science (AVT and WJ). We thank Dr J. E. Davies for data collection and structure determin­ation.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPedireddi, V. R., Jones, W., Chorlton, A. P. & Docherty, R. (1996). Chem. Commun. p. 987.  CrossRef Google Scholar
First citationPrince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1993). XP. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds