inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A lanthanum(III) complex with a lacunary polyoxotungstate: Na2(NH4)7[La(W5O18)2]·16H2O

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt

(Received 12 January 2005; accepted 1 February 2005; online 12 February 2005)

The crystal structure of a lanthanum polyoxotungstate complex, viz. hepta­ammonium disodium decatungstolanthanate hexadecahydrate, Na2(NH4)7[La<(W5O18)2]·16H2O, has been determined by single-crystal X-ray diffraction at 100 (2) K in the space group C2/c. The [La(W5O18)2]9− polyoxoanion has the central La3+ cation located on a twofold rotation axis. The close packing of the polyoxoanion-supported lanthanum(III) complexes with Na+ and NH4+ cations leads to the formation of several intersecting undulating channels, where the water mol­ecules of crystallization are located and involved in strong hydrogen bonds.

Comment

Polyoxometalates (POMs) are a unique type of compound showing remarkable structural diversity and potentially interesting applications in catalysis, non-linear optical and magnetic materials, liquid crystals and biomedical materials (Pope & Müller, 1994[Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications. Dordrecht: Kluwer.], 2001[Pope, M. T. & Müller, A. (1994). Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity. Dordrecht: Kluwer.]; Müller et al., 1998[Müller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239-271.], and references therein; Pope, 1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.]). In the course of our research on the synthesis and structural characterization of novel functional materials containing POMs (Almeida Paz et al., 2004[Almeida Paz, F. A., Sousa, F. L., Soares-Santos, P. C. R., Cavaleiro, A. M. V., Nogueira, H. I. S., Klinowsi, J. & Trindade, T. (2004). Acta Cryst. E60, m1-m5.]; Sousa, Paz, Cavaleiro et al., 2004[Sousa, F. L., Paz, F. A. A., Cavaleiro, A. M. V., Klinowski, J. & Nogueira, H. I. S. (2004). Chem. Commun. pp. 2656-2657.]; Sousa, Paz, Soares-Santos et al., 2004[Sousa, F. L., Paz, F. A. A., Soares-Santos, P. C. R., Cavaleiro, A. M. V., Nogueira, H. I. S., Klinowski, J. & Trindade, T. (2004). J. Mol. Struct. pp. 61-67.]), we came across the title compound, (I[link]).[link]

[Scheme 1]

A search in the literature and in the Inorganic Crystal Structure Database (Belsky et al., 2002[Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364-369.]) shows that the [La(W5O18)2]9− polyoxoanion shares striking similarities with all complexes of the [Ln(W5O18)2]n type, where Ln = Ce4+ (Peacock & Weakley, 1971[Peacock, R. D. & Weakley, T. J. R. (1971). J. Chem. Soc. A, pp. 1836-1839.]; Iball et al., 1974[Iball, J., Low, J. N. & Weakley, T. J. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2021-2024.]), Ce3+ (Xue et al., 2002[Xue, G., Vaissermann, J. & Gouzerh, P. (2002). J. Cluster Sci. 13, 409-421.]), Pr3+, Nd3+ (Ozeki & Yamase, 1994a[Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128-134.]), Sm3+ (Ozeki & Yamase, 1993[Ozeki, T. & Yamase, T. (1993). Acta Cryst. C49, 1574-1577.], 1994a[Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128-134.],b[Ozeki, T. & Yamase, T. (1994b). Acta Cryst. C50, 327-330.]), Eu3+ (Sugeta & Yamase, 1993[Sugeta, M. & Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444-449.]; Yamase et al., 1993[Yamase, T., Ozeki, T. & Ueda, K. (1993). Acta Cryst. C49, 1572-1574.]), Gd3+ (Yamase & Ozeki, 1993[Yamase, T. & Ozeki, T. (1993). Acta Cryst. C49, 1577-1580.]; Ozeki & Yamase, 1994a[Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128-134.]; Yamase et al., 1994[Yamase, T., Ozeki, T. & Tosaka, M. (1994). Acta Cryst. C50, 1849-1852.]), Tb3+ (Ozeki & Yamase, 1994a[Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128-134.]; Ozeki et al., 1992[Ozeki, T., Takahashi, M. & Yamase, T. (1992). Acta Cryst. C48, 1370-1374.]), Dy3+ (Ozeki & Yamase, 1994a[Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128-134.]) and also with the actinide cation Th4+ (Griffith et al., 2000[Griffith, W. P., Morley-Smith, N., Nogueira, H. I. S., Shoair, A. G. F., Suriaatmaja, M., White, A. J. P. & Williams, D. J. (2000). J. Org. Chem. 607, 146-155.]). Surprisingly, the structure containing La3+ cations has not been reported to date. We describe here the synthesis and crystal structure of Na2(NH4)7[La(W5O18)2]·16H2O, determined in the space group C2/c at the low temperature of 100 (2) K; this is also the first report of a complex of the [Ln(W5O18)2]n type crystallizing with NH4+ cations.

The [La(W5O18)2]9− polyoxoanion has crystallographic C2 symmetry about an axis passing through the central La3+ cation and perpendicular to the vector containing the W1, La1 and W1i centres [Fig. 1[link]; symmetry code: (i) 2 − x, y, [3\over 2] − z]. The two [W5O18]6− anionic fragments are linked together via a central La3+ cation positioned in the lacuna of each anion (Fig. 1[link]). This centre exhibits typical square antiprismatic coordination geometry, with La—O distances in the range 2.497 (6)–2.562 (6) Å (Table 1[link] and Fig. 1[link]). The degree of staggering between the upper and lower square faces of the antiprism is only ca 0.6° from ideal.

For the [W5O18]6− moieties, the five crystallographically unique W centres exhibit distorted {WO6} octahedral environments, in which the central W atom is displaced in the direction of the axial oxo ligand (average distance of displace­ment = 0.402 Å): W—O distances and O—W—O angles are in the ranges 1.724 (6)–2.324 (6) Å and 74.5 (2)–179.0 (3)° [74.5 (2)–104.3 (3)° and 153.2 (2)–179.0 (3)° for cis and trans], respectively. The W—O distances can be divided into several groups according to the different types of O atoms (Table 3[link]): OI represent long bonds of the W—O1—W type (where O1 is the core O atom; see Fig. 1[link]) found in the range 2.304 (6)–2.324 (6) Å; OII represent those connected to the W centres which are involved in edge-sharing of adjacent octahedra [1.890 (6)–2.031 (6) Å]; OIII represent the lanthan­um-bound O atoms (O15, O16, O17 and O18), and OIV the terminal O atoms (O2, O8, O10, O12 and O14; see Fig. 1[link] and Table 3[link]). As found in related compounds, pairs of short and long W—OII bonds are observed (Table 3[link]). This results from small displacements of the W centres, and also from the structural evidence that W1 is the statistically farthest W centre from any other: the W⋯W distances for the W2⋯W3⋯W4⋯W5 central square of [W5O18]6− are in the range 3.264 (6)–3.291 (6) Å, while W1⋯W2—W5 distances are in the range 3.331 (6)–3.342 (6) Å. It is interesting to note that the O1 core atom lies only 0.099 (6) Å out of the plane of the equatorially bonded W2—W5 centres and in the direction of W1; the non-bonded La1⋯O1 distance is 3.271 (6) Å.

The anion charge is balanced by the presence of one Na+ and three and a half crystallographically unique NH4+ cations, Na2(NH4)7[La(W5O18)2]. Interestingly, the Na+ cations in the crystal structure form {Na2(H2O)10}2+ moieties, exhibiting a highly distorted octahedral coordination environment in which the average Na⋯Owater contact distance is 2.372 Å (Table 2[link] and Fig. 2[link]) and the Na1⋯Na1ii distance is 3.411 (7) Å [symmetry code: (ii) [{1 \over 2}] − x, [{1 \over 2}] − y, 1 − z].

The polyoxoanion-supported lanthanum(III) complex anions, [La(W5O18)2]9−, pack closely in the ab plane in a typical brick-wall-like fashion, leading to several types of intersecting channels which accommodate the cations (Na+ and NH4+) and the water mol­ecules of crystallization (Figs. 3[link] and 4[link]). These are, in turn, involved in an extensive hydrogen-bonded network composed of strong heteronuclear N+—H⋯O and homonuclear O—H⋯O interactions (not shown).

[Figure 1]
Figure 1
Mixed ellipsoid and polyhedral representation of the polyoxoanion-supported lanthanum(III) complex anion, [La(W5O18)2]9−, showing the labelling scheme for selected atoms and emphasizing the square antiprismatic coordination environment for the central La3+ cation. Atoms belonging to the asymmetric unit are represented with ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 2 − x, y, [3\over2] − z.]
[Figure 2]
Figure 2
Schematic representation of the cationic {Na2(H2O)10}2+ moieties. The Na1⋯Na1i distance is 3.411 (7) Å [symmetry code: (i) [{1 \over 2}] − x, [{1 \over 2}] − y, 1 − z].
[Figure 3]
Figure 3
Polyhedral representation of the crystal packing of Na2(NH4)7[La(W5O18)2]·16H2O, viewed along the a direction.
[Figure 4]
Figure 4
Polyhedral representation of the crystal packing of Na2(NH4)7[La(W5O18)2]·16H2O, viewed towards the ([\overline 8],11,1) plane.

Experimental

All chemicals were purchased from Aldrich and used without further purification. Na2WO4·2H2O (9.90 g, 30 mmol) and H3BO3 (0.15 g, 2.43 mmol) were dissolved in hot distilled water (ca 21 ml, 363–373 K), and the final pH was adjusted to 7.1 using a 6 M aqueous solution in HCl. After 10 min, a solution of La(NO3)3 (3.24 mmol) in 1 M CH3COOH (ca 5.4 ml) was added dropwise, and the resulting mixture was stirred thoroughly at 363 K for 30 min. The temperature was then slowly dropped to 343 K, after which an aqueous solution of NH4Cl (12 g, 224 mmol) was added dropwise. The resulting solution was allowed to stand at ambient temperature for 24 h and then filtered. The collected solid was recrystallized from warm distilled water, giving good quality white crystals suitable for X-ray diffraction. Selected FT–IR data (cm−1): ν(N+—H, from NH4+) = 1401 (s), νas(W—OIV, terminal W—O stretch) = 931 (s), νas(W—OII—W, edge-shared W—O—W stretching mode) = 840 (s) and 789 (s).

Crystal data
  • Na2(NH4)7[La(W5O18)2]·16H2O

  • Mr = 3013.94

  • Monoclinic, C2/c

  • a = 11.784 (2) Å

  • b = 14.838 (3) Å

  • c = 29.143 (6) Å

  • β = 93.26 (3)°

  • V = 5087.4 (18) Å3

  • Z = 4

  • Dx = 3.935 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1014 reflections

  • θ = 2.7–28.7°

  • μ = 23.47 mm−1

  • T = 100 (2) K

  • Plate, white

  • 0.35 × 0.21 × 0.06 mm

Data collection
  • Bruker SMART CCD1000 diffractometer

  • Thin-slice ω and φ scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.045, Tmax = 0.333

  • 21 307 measured reflections

  • 5183 independent reflections

  • 4577 reflections with I > 2σ(I)

  • Rint = 0.069

  • θmax = 26.4°

  • h = −14 → 14

  • k = −18 → 18

  • l = −36 → 36

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.08

  • 5183 reflections

  • 326 parameters

  • H-atom parameters not defined

  • w = 1/[σ2(Fo2) + (0.0169P)2 + 65.9468P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 1.66 e Å−3

  • Δρmin = −2.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

La1—O15 2.497 (6)
La1—O18 2.511 (6)
La1—O16 2.530 (6)
La1—O17 2.562 (6)
O15—La1—O15i 151.4 (3)
O15—La1—O18 72.7 (2)
O15—La1—O18i 133.7 (2)
O18—La1—O18i 74.3 (3)
O15—La1—O16i 84.66 (19)
O18—La1—O16i 151.71 (19)
O15—La1—O16 72.61 (19)
O15i—La1—O16 84.7 (2)
O18—La1—O16 112.58 (19)
O16i—La1—O16 75.0 (3)
O15—La1—O17 112.8 (2)
O15i—La1—O17 74.8 (2)
O18—La1—O17 70.99 (19)
O18i—La1—O17 85.41 (19)
O16i—La1—O17 135.25 (19)
O16—La1—O17 72.16 (19)
O15—La1—O17i 74.8 (2)
O17—La1—O17i 150.5 (3)
Symmetry code: (i) [2-x,y,{\script{3\over 2}}-z].

Table 2
Contact distances (Å)

Na1⋯O1W 2.346 (8)
Na1⋯O2W 2.402 (7)
Na1⋯O3W 2.321 (7)
Na1⋯O4W 2.328 (7)
Na1⋯O5W 2.379 (8)
Na1ii⋯O5W 2.456 (7)
Symmetry code: (ii) [{\script{1\over 2}}-x,{\script{1\over 2}}-y,1-z].

Table 3
W—O bond-distance categories (Å) for the [W5O18]6− anionic fragment present in (I)

Category Range Average Range
W—OI 2.304 (6)–2.324 (6) 2.314 0.020
W—OII (short) 1.890 (6)–1.963 (6) 1.927 0.073
W—OII (long) 2.022 (6)–2.031 (6) 2.027 0.009
W—OIII 1.776 (6)–1.790 (6) 1.783 0.014
W—OIV 1.726 (6)–1.734 (6) 1.730 0.008

The distinction between water mol­ecules and NH4+ cations proved to be very difficult. In order to balance the anion charge, three and a half NH4+ cations have been selected, taking into consideration FT–IR data and geometrical aspects, such as charge proximity and the number of neighbours with which hydrogen bonding might occur. Since the number of possible hydrogen bonds in which the water mol­ecules and NH4+ cations could be involved is quite large, no attempt was made either to find or to place geometrically the H atoms in these groups. The highest peak in the final difference Fourier map was located 1.25 Å from O4 and the deepest hole 0.94 Å from W1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve and refine structure: SHELXTL (Bruker, 2001[Bruker (2001). SAINT, SMART and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Version 2.1a. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker 2001); cell refinement: SMART; data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL.

Heptaammonium disodium decatungstolanthanate hexadecahydrate top
Crystal data top
Na2(NH4)7[La(W5O18)2].16H2OF(000) = 5376
Mr = 3013.94Dx = 3.935 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1014 reflections
a = 11.784 (2) Åθ = 2.7–28.7°
b = 14.838 (3) ŵ = 23.47 mm1
c = 29.143 (6) ÅT = 100 K
β = 93.26 (3)°Plate, white
V = 5087.4 (18) Å30.35 × 0.21 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD-1000
diffractometer
5183 independent reflections
Radiation source: fine-focus sealed tube4577 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Thin–slice ω and φ scansθmax = 26.4°, θmin = 3.6°
Absorption correction: numerical
(SADABS; Sheldrick, 1997)
h = 1414
Tmin = 0.045, Tmax = 0.333k = 1818
21307 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H-atom parameters not defined
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0169P)2 + 65.9468P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
5183 reflectionsΔρmax = 1.66 e Å3
326 parametersΔρmin = 2.16 e Å3
0 restraints
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La11.00000.09129 (4)0.75000.01326 (15)
W10.83850 (3)0.08924 (2)0.566443 (12)0.01359 (9)
W20.73229 (3)0.13421 (2)0.667717 (12)0.01323 (9)
W30.96366 (3)0.23890 (2)0.638543 (12)0.01351 (9)
W41.08600 (3)0.04483 (2)0.622843 (12)0.01412 (9)
W50.85720 (3)0.05948 (2)0.652336 (12)0.01338 (9)
O10.9070 (5)0.0899 (4)0.6421 (2)0.0151 (13)
O20.7856 (5)0.0904 (4)0.5097 (2)0.0203 (14)
O30.7072 (5)0.1246 (4)0.5987 (2)0.0140 (12)
O40.8925 (5)0.2099 (4)0.57513 (19)0.0147 (12)
O50.8069 (5)0.0304 (4)0.5862 (2)0.0179 (13)
O60.9913 (5)0.0531 (4)0.5620 (2)0.0166 (13)
O70.7168 (5)0.0047 (4)0.6651 (2)0.0154 (12)
O80.5963 (5)0.1687 (4)0.6779 (2)0.0178 (13)
O90.8039 (5)0.2481 (4)0.6531 (2)0.0169 (13)
O100.9999 (5)0.3494 (4)0.6269 (2)0.0211 (14)
O111.0941 (5)0.1747 (4)0.6174 (2)0.0180 (13)
O121.2100 (5)0.0079 (4)0.5996 (2)0.0251 (15)
O131.0057 (5)0.0692 (4)0.6278 (2)0.0127 (12)
O140.8107 (6)0.1701 (4)0.6510 (2)0.0207 (14)
O150.8013 (5)0.1329 (4)0.7240 (2)0.0161 (13)
O161.0112 (5)0.2266 (4)0.6976 (2)0.0155 (12)
O171.1215 (5)0.0473 (4)0.6834 (2)0.0159 (13)
O180.9127 (5)0.0436 (4)0.7097 (2)0.0155 (12)
Na10.1204 (3)0.2857 (2)0.47812 (12)0.0186 (7)
N10.00000.7900 (7)0.75000.032 (3)
N20.1042 (7)0.3948 (5)0.7263 (3)0.0261 (19)
N30.8511 (6)0.1850 (5)0.4290 (2)0.0167 (15)
N40.9494 (7)0.5085 (5)0.4338 (3)0.0235 (17)
O1W0.0583 (6)0.2921 (5)0.4003 (2)0.0260 (15)
O2W0.0695 (6)0.3137 (4)0.5005 (2)0.0222 (14)
O3W0.1434 (6)0.4411 (4)0.4788 (3)0.0309 (17)
O4W0.0678 (6)0.1349 (4)0.4829 (2)0.0255 (15)
O5W0.2105 (5)0.2822 (4)0.5533 (2)0.0220 (14)
O6W0.3948 (7)0.0042 (6)0.6641 (3)0.053 (2)
O7W0.7070 (7)0.3741 (6)0.7112 (3)0.047 (2)
O8W0.6629 (7)0.1685 (6)0.7958 (3)0.047 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0161 (3)0.0145 (3)0.0090 (3)0.0000.0008 (3)0.000
W10.01746 (18)0.01594 (17)0.00727 (18)0.00045 (13)0.00023 (14)0.00015 (12)
W20.01532 (17)0.01612 (18)0.00823 (18)0.00101 (13)0.00057 (13)0.00002 (12)
W30.01793 (18)0.01355 (17)0.00901 (18)0.00041 (13)0.00038 (14)0.00072 (12)
W40.01569 (18)0.01644 (18)0.01024 (19)0.00115 (13)0.00088 (14)0.00047 (12)
W50.01770 (18)0.01348 (17)0.00886 (18)0.00063 (12)0.00014 (14)0.00007 (12)
O10.021 (3)0.013 (3)0.011 (3)0.003 (2)0.004 (3)0.002 (2)
O20.026 (3)0.023 (3)0.012 (3)0.001 (3)0.001 (3)0.003 (2)
O30.012 (3)0.017 (3)0.012 (3)0.001 (2)0.002 (2)0.000 (2)
O40.022 (3)0.019 (3)0.003 (3)0.000 (2)0.001 (2)0.004 (2)
O50.022 (3)0.020 (3)0.012 (3)0.000 (3)0.000 (3)0.001 (2)
O60.020 (3)0.020 (3)0.009 (3)0.003 (2)0.001 (3)0.001 (2)
O70.019 (3)0.020 (3)0.007 (3)0.004 (2)0.000 (2)0.003 (2)
O80.018 (3)0.025 (3)0.010 (3)0.004 (3)0.005 (2)0.000 (2)
O90.017 (3)0.016 (3)0.018 (4)0.005 (2)0.003 (3)0.001 (2)
O100.022 (3)0.015 (3)0.026 (4)0.005 (3)0.000 (3)0.004 (3)
O110.016 (3)0.017 (3)0.022 (4)0.002 (2)0.003 (3)0.002 (2)
O120.022 (3)0.026 (3)0.027 (4)0.002 (3)0.006 (3)0.006 (3)
O130.016 (3)0.013 (3)0.010 (3)0.000 (2)0.001 (2)0.000 (2)
O140.028 (3)0.018 (3)0.015 (3)0.003 (3)0.000 (3)0.002 (2)
O150.015 (3)0.019 (3)0.014 (3)0.000 (2)0.001 (2)0.002 (2)
O160.021 (3)0.022 (3)0.003 (3)0.002 (2)0.001 (2)0.001 (2)
O170.018 (3)0.017 (3)0.014 (3)0.002 (2)0.003 (3)0.001 (2)
O180.022 (3)0.015 (3)0.009 (3)0.003 (2)0.001 (3)0.001 (2)
Na10.0227 (18)0.0187 (17)0.0145 (19)0.0011 (14)0.0011 (15)0.0017 (13)
N10.075 (10)0.004 (5)0.015 (6)0.0000.004 (6)0.000
N20.030 (4)0.022 (4)0.028 (5)0.011 (3)0.013 (4)0.004 (3)
N30.021 (4)0.022 (4)0.008 (4)0.002 (3)0.002 (3)0.001 (3)
N40.026 (4)0.024 (4)0.020 (5)0.003 (3)0.002 (3)0.008 (3)
O1W0.028 (4)0.033 (4)0.017 (4)0.004 (3)0.003 (3)0.003 (3)
O2W0.028 (3)0.027 (3)0.013 (3)0.007 (3)0.005 (3)0.006 (3)
O3W0.034 (4)0.020 (3)0.037 (5)0.003 (3)0.007 (3)0.004 (3)
O4W0.037 (4)0.020 (3)0.020 (4)0.007 (3)0.005 (3)0.001 (3)
O5W0.024 (3)0.030 (4)0.013 (3)0.003 (3)0.004 (3)0.003 (3)
O6W0.046 (5)0.059 (6)0.052 (6)0.017 (4)0.013 (4)0.022 (5)
O7W0.053 (5)0.046 (5)0.041 (6)0.004 (4)0.009 (4)0.007 (4)
O8W0.050 (5)0.042 (5)0.050 (6)0.005 (4)0.014 (4)0.009 (4)
Geometric parameters (Å, º) top
La1—O152.497 (6)W3—O101.732 (6)
La1—O15i2.497 (6)W3—O161.789 (6)
La1—O182.511 (6)W3—O111.939 (6)
La1—O18i2.511 (6)W3—O91.958 (6)
La1—O16i2.530 (6)W3—O42.031 (6)
La1—O162.530 (6)W3—O12.314 (5)
La1—O172.562 (6)W4—O121.734 (6)
La1—O17i2.562 (6)W4—O171.790 (6)
W1—O21.734 (7)W4—O111.936 (6)
W1—O61.890 (6)W4—O131.948 (6)
W1—O51.910 (6)W4—O62.043 (6)
W1—O41.913 (6)W4—O12.312 (6)
W1—O31.928 (6)W5—O141.731 (6)
W1—O12.304 (6)W5—O181.776 (6)
W2—O81.724 (6)W5—O131.933 (6)
W2—O151.789 (6)W5—O71.963 (6)
W2—O71.931 (6)W5—O52.031 (6)
W2—O91.947 (6)W5—O12.316 (5)
W2—O32.022 (6)Na1—Na1ii3.411 (7)
W2—O12.324 (6)
Na1···O1W2.346 (8)Na1···O4W2.328 (7)
Na1···O2W2.402 (7)Na1···O5W2.379 (8)
Na1···O3W2.321 (7)Na1ii···O5W2.456 (7)
O15—La1—O15i151.4 (3)O12—W4—O11103.6 (3)
O15—La1—O1872.7 (2)O17—W4—O1192.8 (3)
O15—La1—O18i133.7 (2)O12—W4—O13100.3 (3)
O15i—La1—O18i72.71 (19)O17—W4—O1391.9 (3)
O18—La1—O18i74.3 (3)O11—W4—O13153.8 (2)
O15—La1—O16i84.66 (19)O12—W4—O696.4 (3)
O15i—La1—O16i72.61 (19)O17—W4—O6159.9 (3)
O18—La1—O16i151.71 (19)O11—W4—O684.1 (3)
O18i—La1—O16i112.58 (19)O13—W4—O682.7 (2)
O15—La1—O1672.61 (19)O12—W4—O1170.7 (3)
O15i—La1—O1684.7 (2)O17—W4—O185.4 (2)
O18—La1—O16112.58 (19)O11—W4—O177.4 (2)
O18i—La1—O16151.71 (19)O13—W4—O177.2 (2)
O16i—La1—O1675.0 (3)O6—W4—O174.5 (2)
O15—La1—O17112.8 (2)O14—W5—O18104.3 (3)
O15i—La1—O1774.8 (2)O14—W5—O13102.3 (3)
O18—La1—O1770.99 (19)O18—W5—O1393.8 (3)
O18i—La1—O1785.41 (19)O14—W5—O7101.3 (3)
O16i—La1—O17135.25 (19)O18—W5—O791.5 (3)
O16—La1—O1772.16 (19)O13—W5—O7153.7 (2)
O15—La1—O17i74.8 (2)O14—W5—O596.0 (3)
O15i—La1—O17i112.8 (2)O18—W5—O5159.6 (3)
O18—La1—O17i85.41 (19)O13—W5—O583.5 (2)
O18i—La1—O17i70.99 (19)O7—W5—O582.7 (2)
O16i—La1—O17i72.16 (19)O14—W5—O1170.8 (3)
O16—La1—O17i135.25 (19)O18—W5—O184.9 (2)
O17—La1—O17i150.5 (3)O13—W5—O177.4 (2)
O2—W1—O6103.3 (3)O7—W5—O177.4 (2)
O2—W1—O5103.3 (3)O5—W5—O174.8 (2)
O6—W1—O587.7 (3)W1—O1—W492.4 (2)
O2—W1—O4102.5 (3)W1—O1—W392.7 (2)
O6—W1—O487.9 (3)W4—O1—W389.7 (2)
O5—W1—O4154.1 (3)W1—O1—W592.4 (2)
O2—W1—O3102.0 (3)W4—O1—W589.8 (2)
O6—W1—O3154.7 (3)W3—O1—W5174.9 (3)
O5—W1—O386.0 (3)W1—O1—W292.3 (2)
O4—W1—O387.2 (2)W4—O1—W2175.3 (3)
O2—W1—O1179.0 (3)W3—O1—W290.4 (2)
O6—W1—O177.5 (2)W5—O1—W289.66 (19)
O5—W1—O177.2 (2)W1—O3—W2115.3 (3)
O4—W1—O176.9 (2)W1—O4—W3115.8 (3)
O3—W1—O177.3 (2)W1—O5—W5115.6 (3)
O8—W2—O15102.9 (3)W1—O6—W4115.7 (3)
O8—W2—O7102.4 (3)W2—O7—W5114.3 (3)
O15—W2—O793.6 (3)W2—O9—W3114.9 (3)
O8—W2—O9101.5 (3)W4—O11—W3114.8 (3)
O15—W2—O991.7 (3)W5—O13—W4114.6 (3)
O7—W2—O9153.7 (2)W2—O15—La1130.6 (3)
O8—W2—O396.2 (3)W3—O16—La1129.6 (3)
O15—W2—O3160.9 (2)W4—O17—La1130.0 (3)
O7—W2—O383.3 (2)W5—O18—La1131.7 (3)
O9—W2—O383.3 (3)O3W—Na1—O4W170.1 (3)
O8—W2—O1171.2 (3)O3W—Na1—O1W89.9 (3)
O15—W2—O185.8 (2)O4W—Na1—O1W91.6 (3)
O7—W2—O177.8 (2)O3W—Na1—O5W88.2 (3)
O9—W2—O176.9 (2)O4W—Na1—O5W91.7 (3)
O3—W2—O175.1 (2)O1W—Na1—O5W171.7 (3)
O10—W3—O16102.5 (3)O3W—Na1—O2W86.3 (3)
O10—W3—O11101.2 (3)O4W—Na1—O2W83.9 (3)
O16—W3—O1192.5 (3)O1W—Na1—O2W90.6 (3)
O10—W3—O9103.1 (3)O5W—Na1—O2W97.3 (3)
O16—W3—O993.0 (3)O3W—Na1—O5Wii108.3 (3)
O11—W3—O9153.2 (2)O4W—Na1—O5Wii81.5 (3)
O10—W3—O496.7 (3)O1W—Na1—O5Wii82.6 (2)
O16—W3—O4160.8 (3)O5W—Na1—O5Wii90.3 (2)
O11—W3—O484.3 (3)O2W—Na1—O5Wii163.8 (3)
O9—W3—O481.9 (3)O3W—Na1—Na1ii101.7 (2)
O10—W3—O1171.2 (3)O4W—Na1—Na1ii85.1 (2)
O16—W3—O186.3 (2)O1W—Na1—Na1ii126.7 (2)
O11—W3—O177.3 (2)O5W—Na1—Na1ii46.06 (17)
O9—W3—O176.9 (2)O2W—Na1—Na1ii141.3 (2)
O4—W3—O174.5 (2)O5Wii—Na1—Na1ii44.23 (17)
O12—W4—O17103.6 (3)Na1—O5W—Na1ii89.7 (2)
O6—W1—O1—W40.1 (2)O4—W1—O6—W476.9 (3)
O5—W1—O1—W490.6 (2)O3—W1—O6—W41.9 (8)
O4—W1—O1—W490.6 (2)O1—W1—O6—W40.1 (3)
O3—W1—O1—W4179.3 (2)O12—W4—O6—W1178.5 (3)
O6—W1—O1—W390.0 (2)O17—W4—O6—W13.7 (9)
O5—W1—O1—W3179.6 (3)O11—W4—O6—W178.4 (3)
O4—W1—O1—W30.8 (2)O13—W4—O6—W178.9 (3)
O3—W1—O1—W390.8 (2)O1—W4—O6—W10.1 (3)
O6—W1—O1—W589.7 (2)O8—W2—O7—W5178.7 (3)
O5—W1—O1—W50.7 (2)O15—W2—O7—W577.2 (3)
O4—W1—O1—W5179.5 (3)O9—W2—O7—W524.0 (7)
O3—W1—O1—W589.5 (2)O3—W2—O7—W583.8 (3)
O6—W1—O1—W2179.5 (2)O1—W2—O7—W57.7 (3)
O5—W1—O1—W289.0 (2)O14—W5—O7—W2178.4 (3)
O4—W1—O1—W289.8 (2)O18—W5—O7—W276.7 (3)
O3—W1—O1—W20.3 (2)O13—W5—O7—W225.0 (7)
O17—W4—O1—W1178.9 (2)O5—W5—O7—W283.7 (3)
O11—W4—O1—W187.1 (2)O1—W5—O7—W27.8 (3)
O13—W4—O1—W185.9 (2)O8—W2—O9—W3179.7 (3)
O6—W4—O1—W10.1 (2)O15—W2—O9—W376.8 (4)
O17—W4—O1—W388.4 (2)O7—W2—O9—W324.9 (8)
O11—W4—O1—W35.6 (2)O3—W2—O9—W384.7 (3)
O13—W4—O1—W3178.7 (3)O1—W2—O9—W38.5 (3)
O6—W4—O1—W392.8 (2)O10—W3—O9—W2179.5 (3)
O17—W4—O1—W586.5 (2)O16—W3—O9—W276.9 (4)
O11—W4—O1—W5179.5 (3)O11—W3—O9—W224.6 (8)
O13—W4—O1—W56.5 (2)O4—W3—O9—W284.4 (3)
O6—W4—O1—W592.3 (2)O1—W3—O9—W28.6 (3)
O16—W3—O1—W1179.8 (2)O12—W4—O11—W3177.9 (3)
O11—W3—O1—W186.8 (2)O17—W4—O11—W377.3 (4)
O9—W3—O1—W185.9 (2)O13—W4—O11—W322.8 (8)
O4—W3—O1—W10.7 (2)O6—W4—O11—W382.7 (3)
O16—W3—O1—W487.9 (2)O1—W4—O11—W37.3 (3)
O11—W3—O1—W45.6 (2)O10—W3—O11—W4178.4 (3)
O9—W3—O1—W4178.2 (3)O16—W3—O11—W478.3 (4)
O4—W3—O1—W493.1 (2)O9—W3—O11—W423.4 (8)
O16—W3—O1—W287.4 (2)O4—W3—O11—W482.7 (3)
O11—W3—O1—W2179.1 (3)O1—W3—O11—W47.3 (3)
O9—W3—O1—W26.5 (2)O14—W5—O13—W4179.0 (3)
O4—W3—O1—W291.6 (2)O18—W5—O13—W475.5 (3)
O18—W5—O1—W1179.2 (3)O7—W5—O13—W425.7 (7)
O13—W5—O1—W185.9 (2)O5—W5—O13—W484.3 (3)
O7—W5—O1—W186.4 (2)O1—W5—O13—W48.5 (3)
O5—W5—O1—W10.7 (2)O12—W4—O13—W5179.4 (3)
O18—W5—O1—W488.5 (2)O17—W4—O13—W576.4 (3)
O13—W5—O1—W46.5 (2)O11—W4—O13—W523.9 (8)
O7—W5—O1—W4178.8 (3)O6—W4—O13—W584.2 (3)
O5—W5—O1—W493.0 (2)O1—W4—O13—W58.5 (3)
O18—W5—O1—W286.9 (2)O8—W2—O15—La1179.2 (4)
O13—W5—O1—W2178.2 (3)O7—W2—O15—La175.5 (4)
O7—W5—O1—W25.9 (2)O9—W2—O15—La178.7 (4)
O5—W5—O1—W291.6 (2)O3—W2—O15—La14.2 (10)
O15—W2—O1—W1179.0 (2)O1—W2—O15—La12.0 (3)
O7—W2—O1—W186.4 (2)O15i—La1—O15—W2101.7 (4)
O9—W2—O1—W186.2 (2)O18—La1—O15—W258.4 (4)
O3—W2—O1—W10.3 (2)O18i—La1—O15—W2104.9 (4)
O15—W2—O1—W386.2 (2)O16i—La1—O15—W2138.8 (4)
O7—W2—O1—W3179.2 (3)O16—La1—O15—W262.8 (4)
O9—W2—O1—W36.5 (2)O17—La1—O15—W21.5 (4)
O3—W2—O1—W393.0 (2)O17i—La1—O15—W2148.3 (4)
O15—W2—O1—W588.6 (2)O10—W3—O16—La1179.7 (4)
O7—W2—O1—W56.0 (2)O11—W3—O16—La178.3 (4)
O9—W2—O1—W5178.6 (3)O9—W3—O16—La175.5 (4)
O3—W2—O1—W592.1 (2)O4—W3—O16—La11.7 (10)
O2—W1—O3—W2179.0 (3)O1—W3—O16—La11.1 (4)
O6—W1—O3—W22.1 (7)O15i—La1—O16—W3137.3 (4)
O5—W1—O3—W278.2 (3)O15—La1—O16—W360.3 (4)
O4—W1—O3—W276.9 (3)O18—La1—O16—W31.8 (4)
O1—W1—O3—W20.4 (3)O18i—La1—O16—W3100.7 (5)
O8—W2—O3—W1178.6 (3)O16i—La1—O16—W3149.3 (5)
O15—W2—O3—W11.9 (9)O17—La1—O16—W361.5 (4)
O7—W2—O3—W179.5 (3)O17i—La1—O16—W3105.4 (4)
O9—W2—O3—W177.8 (3)O12—W4—O17—La1179.8 (4)
O1—W2—O3—W10.4 (3)O11—W4—O17—La175.5 (4)
O2—W1—O4—W3179.8 (3)O13—W4—O17—La178.7 (4)
O6—W1—O4—W376.7 (3)O6—W4—O17—La15.1 (10)
O5—W1—O4—W33.7 (8)O1—W4—O17—La11.7 (3)
O3—W1—O4—W378.6 (3)O15i—La1—O17—W4149.2 (4)
O1—W1—O4—W31.0 (3)O15—La1—O17—W41.6 (4)
O10—W3—O4—W1178.1 (3)O18—La1—O17—W462.5 (4)
O16—W3—O4—W13.9 (9)O18i—La1—O17—W4137.5 (4)
O11—W3—O4—W177.4 (3)O16i—La1—O17—W4104.7 (4)
O9—W3—O4—W179.5 (3)O16—La1—O17—W460.0 (4)
O1—W3—O4—W11.0 (3)O17i—La1—O17—W4101.2 (4)
O2—W1—O5—W5179.9 (3)O14—W5—O18—La1179.2 (4)
O6—W1—O5—W576.8 (3)O13—W5—O18—La177.1 (4)
O4—W1—O5—W53.6 (8)O7—W5—O18—La177.2 (4)
O3—W1—O5—W578.7 (3)O5—W5—O18—La14.2 (10)
O1—W1—O5—W50.9 (3)O1—W5—O18—La10.1 (4)
O14—W5—O5—W1179.5 (3)O15i—La1—O18—W5105.9 (4)
O18—W5—O5—W15.3 (9)O15—La1—O18—W561.1 (4)
O13—W5—O5—W177.8 (3)O18i—La1—O18—W5151.9 (5)
O7—W5—O5—W179.8 (3)O16i—La1—O18—W599.5 (5)
O1—W5—O5—W10.9 (3)O16—La1—O18—W51.0 (5)
O2—W1—O6—W4179.2 (3)O17—La1—O18—W561.4 (4)
O5—W1—O6—W477.6 (3)O17i—La1—O18—W5136.6 (4)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1/2, y+1/2, z+1.
W—O bond distance categories (Å) for the [W5O18]6- anionic fragment present in (I) {[···] average; (···) difference} top
Categoriesaveragedifference
W—OI2.304 (6)–2.324 (6)[2.314](0.020)
W—OII (short)1.890 (6)–1.963 (6)[1.927](0.073)
W—OII (long)2.022 (6)–2.031 (6)[2.027](0.009)
W—OIII1.776 (6)–1.790 (6)[1.783](0.014)
W—OIV1.726 (6)–1.734 (6)[1.730](0.008)
 

Acknowledgements

We are grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support under the POCTI programme (supported by FEDER).

References

First citationAlmeida Paz, F. A., Sousa, F. L., Soares-Santos, P. C. R., Cavaleiro, A. M. V., Nogueira, H. I. S., Klinowsi, J. & Trindade, T. (2004). Acta Cryst. E60, m1–m5.  CSD CrossRef IUCr Journals Google Scholar
First citationBelsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Version 2.1a. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT, SMART and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGriffith, W. P., Morley-Smith, N., Nogueira, H. I. S., Shoair, A. G. F., Suriaatmaja, M., White, A. J. P. & Williams, D. J. (2000). J. Org. Chem. 607, 146–155.  CrossRef CAS Google Scholar
First citationIball, J., Low, J. N. & Weakley, T. J. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2021–2024.  CrossRef Web of Science Google Scholar
First citationMüller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239–271.  Web of Science CrossRef PubMed Google Scholar
First citationOzeki, T., Takahashi, M. & Yamase, T. (1992). Acta Cryst. C48, 1370–1374.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOzeki, T. & Yamase, T. (1993). Acta Cryst. C49, 1574–1577.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOzeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128–134.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOzeki, T. & Yamase, T. (1994b). Acta Cryst. C50, 327–330.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeacock, R. D. & Weakley, T. J. R. (1971). J. Chem. Soc. A, pp. 1836–1839.  CrossRef Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.  Google Scholar
First citationPope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications. Dordrecht: Kluwer.  Google Scholar
First citationPope, M. T. & Müller, A. (1994). Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity. Dordrecht: Kluwer.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSousa, F. L., Paz, F. A. A., Cavaleiro, A. M. V., Klinowski, J. & Nogueira, H. I. S. (2004). Chem. Commun. pp. 2656–2657.  Web of Science CrossRef Google Scholar
First citationSousa, F. L., Paz, F. A. A., Soares-Santos, P. C. R., Cavaleiro, A. M. V., Nogueira, H. I. S., Klinowski, J. & Trindade, T. (2004). J. Mol. Struct. pp. 61–67.  Web of Science CSD CrossRef Google Scholar
First citationSugeta, M. & Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444–449.  CrossRef CAS Web of Science Google Scholar
First citationXue, G., Vaissermann, J. & Gouzerh, P. (2002). J. Cluster Sci. 13, 409–421.  Web of Science CrossRef CAS Google Scholar
First citationYamase, T. & Ozeki, T. (1993). Acta Cryst. C49, 1577–1580.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYamase, T., Ozeki, T. & Tosaka, M. (1994). Acta Cryst. C50, 1849–1852.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYamase, T., Ozeki, T. & Ueda, K. (1993). Acta Cryst. C49, 1572–1574.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds