inorganic compounds
A lanthanum(III) complex with a lacunary polyoxotungstate: Na2(NH4)7[La(W5O18)2]·16H2O
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt
The viz. heptaammonium disodium decatungstolanthanate hexadecahydrate, Na2(NH4)7[La<(W5O18)2]·16H2O, has been determined by single-crystal X-ray diffraction at 100 (2) K in the C2/c. The [La(W5O18)2]9− polyoxoanion has the central La3+ cation located on a twofold rotation axis. The close packing of the polyoxoanion-supported lanthanum(III) complexes with Na+ and NH4+ cations leads to the formation of several intersecting undulating channels, where the water molecules of crystallization are located and involved in strong hydrogen bonds.
of a lanthanum polyoxotungstate complex,Comment
Polyoxometalates (POMs) are a unique type of compound showing remarkable structural diversity and potentially interesting applications in catalysis, non-linear optical and magnetic materials, liquid crystals and biomedical materials (Pope & Müller, 1994, 2001; Müller et al., 1998, and references therein; Pope, 1983). In the course of our research on the synthesis and structural characterization of novel functional materials containing POMs (Almeida Paz et al., 2004; Sousa, Paz, Cavaleiro et al., 2004; Sousa, Paz, Soares-Santos et al., 2004), we came across the title compound, (I).
A search in the literature and in the Inorganic et al., 2002) shows that the [La(W5O18)2]9− polyoxoanion shares striking similarities with all complexes of the [Ln(W5O18)2]n− type, where Ln = Ce4+ (Peacock & Weakley, 1971; Iball et al., 1974), Ce3+ (Xue et al., 2002), Pr3+, Nd3+ (Ozeki & Yamase, 1994a), Sm3+ (Ozeki & Yamase, 1993, 1994a,b), Eu3+ (Sugeta & Yamase, 1993; Yamase et al., 1993), Gd3+ (Yamase & Ozeki, 1993; Ozeki & Yamase, 1994a; Yamase et al., 1994), Tb3+ (Ozeki & Yamase, 1994a; Ozeki et al., 1992), Dy3+ (Ozeki & Yamase, 1994a) and also with the actinide cation Th4+ (Griffith et al., 2000). Surprisingly, the structure containing La3+ cations has not been reported to date. We describe here the synthesis and of Na2(NH4)7[La(W5O18)2]·16H2O, determined in the C2/c at the low temperature of 100 (2) K; this is also the first report of a complex of the [Ln(W5O18)2]n− type crystallizing with NH4+ cations.
Database (BelskyThe [La(W5O18)2]9− polyoxoanion has crystallographic C2 symmetry about an axis passing through the central La3+ cation and perpendicular to the vector containing the W1, La1 and W1i centres [Fig. 1; symmetry code: (i) 2 − x, y, − z]. The two [W5O18]6− anionic fragments are linked together via a central La3+ cation positioned in the lacuna of each anion (Fig. 1). This centre exhibits typical square antiprismatic coordination geometry, with La—O distances in the range 2.497 (6)–2.562 (6) Å (Table 1 and Fig. 1). The degree of staggering between the upper and lower square faces of the antiprism is only ca 0.6° from ideal.
For the [W5O18]6− moieties, the five crystallographically unique W centres exhibit distorted {WO6} octahedral environments, in which the central W atom is displaced in the direction of the axial oxo ligand (average distance of displacement = 0.402 Å): W—O distances and O—W—O angles are in the ranges 1.724 (6)–2.324 (6) Å and 74.5 (2)–179.0 (3)° [74.5 (2)–104.3 (3)° and 153.2 (2)–179.0 (3)° for cis and trans], respectively. The W—O distances can be divided into several groups according to the different types of O atoms (Table 3): OI represent long bonds of the W—O1—W type (where O1 is the core O atom; see Fig. 1) found in the range 2.304 (6)–2.324 (6) Å; OII represent those connected to the W centres which are involved in edge-sharing of adjacent octahedra [1.890 (6)–2.031 (6) Å]; OIII represent the lanthanum-bound O atoms (O15, O16, O17 and O18), and OIV the terminal O atoms (O2, O8, O10, O12 and O14; see Fig. 1 and Table 3). As found in related compounds, pairs of short and long W—OII bonds are observed (Table 3). This results from small displacements of the W centres, and also from the structural evidence that W1 is the statistically farthest W centre from any other: the W⋯W distances for the W2⋯W3⋯W4⋯W5 central square of [W5O18]6− are in the range 3.264 (6)–3.291 (6) Å, while W1⋯W2—W5 distances are in the range 3.331 (6)–3.342 (6) Å. It is interesting to note that the O1 lies only 0.099 (6) Å out of the plane of the equatorially bonded W2—W5 centres and in the direction of W1; the non-bonded La1⋯O1 distance is 3.271 (6) Å.
The anion charge is balanced by the presence of one Na+ and three and a half crystallographically unique NH4+ cations, Na2(NH4)7[La(W5O18)2]. Interestingly, the Na+ cations in the form {Na2(H2O)10}2+ moieties, exhibiting a highly distorted octahedral coordination environment in which the average Na⋯Owater contact distance is 2.372 Å (Table 2 and Fig. 2) and the Na1⋯Na1ii distance is 3.411 (7) Å [symmetry code: (ii) − x, − y, 1 − z].
The polyoxoanion-supported lanthanum(III) complex anions, [La(W5O18)2]9−, pack closely in the ab plane in a typical brick-wall-like fashion, leading to several types of intersecting channels which accommodate the cations (Na+ and NH4+) and the water molecules of crystallization (Figs. 3 and 4). These are, in turn, involved in an extensive hydrogen-bonded network composed of strong heteronuclear N+—H⋯O and homonuclear O—H⋯O interactions (not shown).
Experimental
All chemicals were purchased from Aldrich and used without further purification. Na2WO4·2H2O (9.90 g, 30 mmol) and H3BO3 (0.15 g, 2.43 mmol) were dissolved in hot distilled water (ca 21 ml, 363–373 K), and the final pH was adjusted to 7.1 using a 6 M aqueous solution in HCl. After 10 min, a solution of La(NO3)3 (3.24 mmol) in 1 M CH3COOH (ca 5.4 ml) was added dropwise, and the resulting mixture was stirred thoroughly at 363 K for 30 min. The temperature was then slowly dropped to 343 K, after which an aqueous solution of NH4Cl (12 g, 224 mmol) was added dropwise. The resulting solution was allowed to stand at ambient temperature for 24 h and then filtered. The collected solid was recrystallized from warm distilled water, giving good quality white crystals suitable for X-ray diffraction. Selected FT–IR data (cm−1): ν(N+—H, from NH4+) = 1401 (s), νas(W—OIV, terminal W—O stretch) = 931 (s), νas(W—OII—W, edge-shared W—O—W stretching mode) = 840 (s) and 789 (s).
Crystal data
|
Data collection
Refinement
|
|
|
The distinction between water molecules and NH4+ cations proved to be very difficult. In order to balance the anion charge, three and a half NH4+ cations have been selected, taking into consideration FT–IR data and geometrical aspects, such as charge proximity and the number of neighbours with which hydrogen bonding might occur. Since the number of possible hydrogen bonds in which the water molecules and NH4+ cations could be involved is quite large, no attempt was made either to find or to place geometrically the H atoms in these groups. The highest peak in the final difference Fourier map was located 1.25 Å from O4 and the deepest hole 0.94 Å from W1.
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve and refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536805003557/kp6036sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805003557/kp6036Isup2.hkl
Data collection: SMART (Bruker 2001); cell
SMART; data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXTL (Bruker 2001); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL.Na2(NH4)7[La(W5O18)2].16H2O | F(000) = 5376 |
Mr = 3013.94 | Dx = 3.935 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1014 reflections |
a = 11.784 (2) Å | θ = 2.7–28.7° |
b = 14.838 (3) Å | µ = 23.47 mm−1 |
c = 29.143 (6) Å | T = 100 K |
β = 93.26 (3)° | Plate, white |
V = 5087.4 (18) Å3 | 0.35 × 0.21 × 0.06 mm |
Z = 4 |
Bruker SMART CCD-1000 diffractometer | 5183 independent reflections |
Radiation source: fine-focus sealed tube | 4577 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Thin–slice ω and φ scans | θmax = 26.4°, θmin = 3.6° |
Absorption correction: numerical (SADABS; Sheldrick, 1997) | h = −14→14 |
Tmin = 0.045, Tmax = 0.333 | k = −18→18 |
21307 measured reflections | l = −36→36 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | H-atom parameters not defined |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0169P)2 + 65.9468P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
5183 reflections | Δρmax = 1.66 e Å−3 |
326 parameters | Δρmin = −2.16 e Å−3 |
0 restraints |
Experimental. (See detailed section in the paper) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 1.0000 | 0.09129 (4) | 0.7500 | 0.01326 (15) | |
W1 | 0.83850 (3) | 0.08924 (2) | 0.566443 (12) | 0.01359 (9) | |
W2 | 0.73229 (3) | 0.13421 (2) | 0.667717 (12) | 0.01323 (9) | |
W3 | 0.96366 (3) | 0.23890 (2) | 0.638543 (12) | 0.01351 (9) | |
W4 | 1.08600 (3) | 0.04483 (2) | 0.622843 (12) | 0.01412 (9) | |
W5 | 0.85720 (3) | −0.05948 (2) | 0.652336 (12) | 0.01338 (9) | |
O1 | 0.9070 (5) | 0.0899 (4) | 0.6421 (2) | 0.0151 (13) | |
O2 | 0.7856 (5) | 0.0904 (4) | 0.5097 (2) | 0.0203 (14) | |
O3 | 0.7072 (5) | 0.1246 (4) | 0.5987 (2) | 0.0140 (12) | |
O4 | 0.8925 (5) | 0.2099 (4) | 0.57513 (19) | 0.0147 (12) | |
O5 | 0.8069 (5) | −0.0304 (4) | 0.5862 (2) | 0.0179 (13) | |
O6 | 0.9913 (5) | 0.0531 (4) | 0.5620 (2) | 0.0166 (13) | |
O7 | 0.7168 (5) | 0.0047 (4) | 0.6651 (2) | 0.0154 (12) | |
O8 | 0.5963 (5) | 0.1687 (4) | 0.6779 (2) | 0.0178 (13) | |
O9 | 0.8039 (5) | 0.2481 (4) | 0.6531 (2) | 0.0169 (13) | |
O10 | 0.9999 (5) | 0.3494 (4) | 0.6269 (2) | 0.0211 (14) | |
O11 | 1.0941 (5) | 0.1747 (4) | 0.6174 (2) | 0.0180 (13) | |
O12 | 1.2100 (5) | 0.0079 (4) | 0.5996 (2) | 0.0251 (15) | |
O13 | 1.0057 (5) | −0.0692 (4) | 0.6278 (2) | 0.0127 (12) | |
O14 | 0.8107 (6) | −0.1701 (4) | 0.6510 (2) | 0.0207 (14) | |
O15 | 0.8013 (5) | 0.1329 (4) | 0.7240 (2) | 0.0161 (13) | |
O16 | 1.0112 (5) | 0.2266 (4) | 0.6976 (2) | 0.0155 (12) | |
O17 | 1.1215 (5) | 0.0473 (4) | 0.6834 (2) | 0.0159 (13) | |
O18 | 0.9127 (5) | −0.0436 (4) | 0.7097 (2) | 0.0155 (12) | |
Na1 | 0.1204 (3) | 0.2857 (2) | 0.47812 (12) | 0.0186 (7) | |
N1 | 0.0000 | 0.7900 (7) | 0.7500 | 0.032 (3) | |
N2 | 0.1042 (7) | 0.3948 (5) | 0.7263 (3) | 0.0261 (19) | |
N3 | 0.8511 (6) | 0.1850 (5) | 0.4290 (2) | 0.0167 (15) | |
N4 | 0.9494 (7) | 0.5085 (5) | 0.4338 (3) | 0.0235 (17) | |
O1W | 0.0583 (6) | 0.2921 (5) | 0.4003 (2) | 0.0260 (15) | |
O2W | −0.0695 (6) | 0.3137 (4) | 0.5005 (2) | 0.0222 (14) | |
O3W | 0.1434 (6) | 0.4411 (4) | 0.4788 (3) | 0.0309 (17) | |
O4W | 0.0678 (6) | 0.1349 (4) | 0.4829 (2) | 0.0255 (15) | |
O5W | 0.2105 (5) | 0.2822 (4) | 0.5533 (2) | 0.0220 (14) | |
O6W | 0.3948 (7) | 0.0042 (6) | 0.6641 (3) | 0.053 (2) | |
O7W | 0.7070 (7) | 0.3741 (6) | 0.7112 (3) | 0.047 (2) | |
O8W | 0.6629 (7) | 0.1685 (6) | 0.7958 (3) | 0.047 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0161 (3) | 0.0145 (3) | 0.0090 (3) | 0.000 | −0.0008 (3) | 0.000 |
W1 | 0.01746 (18) | 0.01594 (17) | 0.00727 (18) | 0.00045 (13) | −0.00023 (14) | 0.00015 (12) |
W2 | 0.01532 (17) | 0.01612 (18) | 0.00823 (18) | 0.00101 (13) | 0.00057 (13) | −0.00002 (12) |
W3 | 0.01793 (18) | 0.01355 (17) | 0.00901 (18) | −0.00041 (13) | 0.00038 (14) | 0.00072 (12) |
W4 | 0.01569 (18) | 0.01644 (18) | 0.01024 (19) | 0.00115 (13) | 0.00088 (14) | −0.00047 (12) |
W5 | 0.01770 (18) | 0.01348 (17) | 0.00886 (18) | −0.00063 (12) | −0.00014 (14) | 0.00007 (12) |
O1 | 0.021 (3) | 0.013 (3) | 0.011 (3) | −0.003 (2) | 0.004 (3) | 0.002 (2) |
O2 | 0.026 (3) | 0.023 (3) | 0.012 (3) | −0.001 (3) | 0.001 (3) | 0.003 (2) |
O3 | 0.012 (3) | 0.017 (3) | 0.012 (3) | 0.001 (2) | 0.002 (2) | 0.000 (2) |
O4 | 0.022 (3) | 0.019 (3) | 0.003 (3) | 0.000 (2) | −0.001 (2) | 0.004 (2) |
O5 | 0.022 (3) | 0.020 (3) | 0.012 (3) | 0.000 (3) | 0.000 (3) | 0.001 (2) |
O6 | 0.020 (3) | 0.020 (3) | 0.009 (3) | 0.003 (2) | 0.001 (3) | 0.001 (2) |
O7 | 0.019 (3) | 0.020 (3) | 0.007 (3) | 0.004 (2) | 0.000 (2) | 0.003 (2) |
O8 | 0.018 (3) | 0.025 (3) | 0.010 (3) | 0.004 (3) | −0.005 (2) | 0.000 (2) |
O9 | 0.017 (3) | 0.016 (3) | 0.018 (4) | 0.005 (2) | 0.003 (3) | 0.001 (2) |
O10 | 0.022 (3) | 0.015 (3) | 0.026 (4) | −0.005 (3) | 0.000 (3) | 0.004 (3) |
O11 | 0.016 (3) | 0.017 (3) | 0.022 (4) | −0.002 (2) | 0.003 (3) | 0.002 (2) |
O12 | 0.022 (3) | 0.026 (3) | 0.027 (4) | 0.002 (3) | 0.006 (3) | −0.006 (3) |
O13 | 0.016 (3) | 0.013 (3) | 0.010 (3) | 0.000 (2) | −0.001 (2) | 0.000 (2) |
O14 | 0.028 (3) | 0.018 (3) | 0.015 (3) | −0.003 (3) | 0.000 (3) | 0.002 (2) |
O15 | 0.015 (3) | 0.019 (3) | 0.014 (3) | 0.000 (2) | 0.001 (2) | −0.002 (2) |
O16 | 0.021 (3) | 0.022 (3) | 0.003 (3) | −0.002 (2) | 0.001 (2) | 0.001 (2) |
O17 | 0.018 (3) | 0.017 (3) | 0.014 (3) | 0.002 (2) | 0.003 (3) | 0.001 (2) |
O18 | 0.022 (3) | 0.015 (3) | 0.009 (3) | −0.003 (2) | 0.001 (3) | −0.001 (2) |
Na1 | 0.0227 (18) | 0.0187 (17) | 0.0145 (19) | 0.0011 (14) | 0.0011 (15) | −0.0017 (13) |
N1 | 0.075 (10) | 0.004 (5) | 0.015 (6) | 0.000 | −0.004 (6) | 0.000 |
N2 | 0.030 (4) | 0.022 (4) | 0.028 (5) | −0.011 (3) | 0.013 (4) | −0.004 (3) |
N3 | 0.021 (4) | 0.022 (4) | 0.008 (4) | 0.002 (3) | 0.002 (3) | 0.001 (3) |
N4 | 0.026 (4) | 0.024 (4) | 0.020 (5) | −0.003 (3) | −0.002 (3) | 0.008 (3) |
O1W | 0.028 (4) | 0.033 (4) | 0.017 (4) | 0.004 (3) | −0.003 (3) | 0.003 (3) |
O2W | 0.028 (3) | 0.027 (3) | 0.013 (3) | 0.007 (3) | 0.005 (3) | 0.006 (3) |
O3W | 0.034 (4) | 0.020 (3) | 0.037 (5) | −0.003 (3) | −0.007 (3) | 0.004 (3) |
O4W | 0.037 (4) | 0.020 (3) | 0.020 (4) | −0.007 (3) | 0.005 (3) | −0.001 (3) |
O5W | 0.024 (3) | 0.030 (4) | 0.013 (3) | 0.003 (3) | 0.004 (3) | 0.003 (3) |
O6W | 0.046 (5) | 0.059 (6) | 0.052 (6) | 0.017 (4) | −0.013 (4) | −0.022 (5) |
O7W | 0.053 (5) | 0.046 (5) | 0.041 (6) | 0.004 (4) | 0.009 (4) | −0.007 (4) |
O8W | 0.050 (5) | 0.042 (5) | 0.050 (6) | −0.005 (4) | 0.014 (4) | −0.009 (4) |
La1—O15 | 2.497 (6) | W3—O10 | 1.732 (6) |
La1—O15i | 2.497 (6) | W3—O16 | 1.789 (6) |
La1—O18 | 2.511 (6) | W3—O11 | 1.939 (6) |
La1—O18i | 2.511 (6) | W3—O9 | 1.958 (6) |
La1—O16i | 2.530 (6) | W3—O4 | 2.031 (6) |
La1—O16 | 2.530 (6) | W3—O1 | 2.314 (5) |
La1—O17 | 2.562 (6) | W4—O12 | 1.734 (6) |
La1—O17i | 2.562 (6) | W4—O17 | 1.790 (6) |
W1—O2 | 1.734 (7) | W4—O11 | 1.936 (6) |
W1—O6 | 1.890 (6) | W4—O13 | 1.948 (6) |
W1—O5 | 1.910 (6) | W4—O6 | 2.043 (6) |
W1—O4 | 1.913 (6) | W4—O1 | 2.312 (6) |
W1—O3 | 1.928 (6) | W5—O14 | 1.731 (6) |
W1—O1 | 2.304 (6) | W5—O18 | 1.776 (6) |
W2—O8 | 1.724 (6) | W5—O13 | 1.933 (6) |
W2—O15 | 1.789 (6) | W5—O7 | 1.963 (6) |
W2—O7 | 1.931 (6) | W5—O5 | 2.031 (6) |
W2—O9 | 1.947 (6) | W5—O1 | 2.316 (5) |
W2—O3 | 2.022 (6) | Na1—Na1ii | 3.411 (7) |
W2—O1 | 2.324 (6) | ||
Na1···O1W | 2.346 (8) | Na1···O4W | 2.328 (7) |
Na1···O2W | 2.402 (7) | Na1···O5W | 2.379 (8) |
Na1···O3W | 2.321 (7) | Na1ii···O5W | 2.456 (7) |
O15—La1—O15i | 151.4 (3) | O12—W4—O11 | 103.6 (3) |
O15—La1—O18 | 72.7 (2) | O17—W4—O11 | 92.8 (3) |
O15—La1—O18i | 133.7 (2) | O12—W4—O13 | 100.3 (3) |
O15i—La1—O18i | 72.71 (19) | O17—W4—O13 | 91.9 (3) |
O18—La1—O18i | 74.3 (3) | O11—W4—O13 | 153.8 (2) |
O15—La1—O16i | 84.66 (19) | O12—W4—O6 | 96.4 (3) |
O15i—La1—O16i | 72.61 (19) | O17—W4—O6 | 159.9 (3) |
O18—La1—O16i | 151.71 (19) | O11—W4—O6 | 84.1 (3) |
O18i—La1—O16i | 112.58 (19) | O13—W4—O6 | 82.7 (2) |
O15—La1—O16 | 72.61 (19) | O12—W4—O1 | 170.7 (3) |
O15i—La1—O16 | 84.7 (2) | O17—W4—O1 | 85.4 (2) |
O18—La1—O16 | 112.58 (19) | O11—W4—O1 | 77.4 (2) |
O18i—La1—O16 | 151.71 (19) | O13—W4—O1 | 77.2 (2) |
O16i—La1—O16 | 75.0 (3) | O6—W4—O1 | 74.5 (2) |
O15—La1—O17 | 112.8 (2) | O14—W5—O18 | 104.3 (3) |
O15i—La1—O17 | 74.8 (2) | O14—W5—O13 | 102.3 (3) |
O18—La1—O17 | 70.99 (19) | O18—W5—O13 | 93.8 (3) |
O18i—La1—O17 | 85.41 (19) | O14—W5—O7 | 101.3 (3) |
O16i—La1—O17 | 135.25 (19) | O18—W5—O7 | 91.5 (3) |
O16—La1—O17 | 72.16 (19) | O13—W5—O7 | 153.7 (2) |
O15—La1—O17i | 74.8 (2) | O14—W5—O5 | 96.0 (3) |
O15i—La1—O17i | 112.8 (2) | O18—W5—O5 | 159.6 (3) |
O18—La1—O17i | 85.41 (19) | O13—W5—O5 | 83.5 (2) |
O18i—La1—O17i | 70.99 (19) | O7—W5—O5 | 82.7 (2) |
O16i—La1—O17i | 72.16 (19) | O14—W5—O1 | 170.8 (3) |
O16—La1—O17i | 135.25 (19) | O18—W5—O1 | 84.9 (2) |
O17—La1—O17i | 150.5 (3) | O13—W5—O1 | 77.4 (2) |
O2—W1—O6 | 103.3 (3) | O7—W5—O1 | 77.4 (2) |
O2—W1—O5 | 103.3 (3) | O5—W5—O1 | 74.8 (2) |
O6—W1—O5 | 87.7 (3) | W1—O1—W4 | 92.4 (2) |
O2—W1—O4 | 102.5 (3) | W1—O1—W3 | 92.7 (2) |
O6—W1—O4 | 87.9 (3) | W4—O1—W3 | 89.7 (2) |
O5—W1—O4 | 154.1 (3) | W1—O1—W5 | 92.4 (2) |
O2—W1—O3 | 102.0 (3) | W4—O1—W5 | 89.8 (2) |
O6—W1—O3 | 154.7 (3) | W3—O1—W5 | 174.9 (3) |
O5—W1—O3 | 86.0 (3) | W1—O1—W2 | 92.3 (2) |
O4—W1—O3 | 87.2 (2) | W4—O1—W2 | 175.3 (3) |
O2—W1—O1 | 179.0 (3) | W3—O1—W2 | 90.4 (2) |
O6—W1—O1 | 77.5 (2) | W5—O1—W2 | 89.66 (19) |
O5—W1—O1 | 77.2 (2) | W1—O3—W2 | 115.3 (3) |
O4—W1—O1 | 76.9 (2) | W1—O4—W3 | 115.8 (3) |
O3—W1—O1 | 77.3 (2) | W1—O5—W5 | 115.6 (3) |
O8—W2—O15 | 102.9 (3) | W1—O6—W4 | 115.7 (3) |
O8—W2—O7 | 102.4 (3) | W2—O7—W5 | 114.3 (3) |
O15—W2—O7 | 93.6 (3) | W2—O9—W3 | 114.9 (3) |
O8—W2—O9 | 101.5 (3) | W4—O11—W3 | 114.8 (3) |
O15—W2—O9 | 91.7 (3) | W5—O13—W4 | 114.6 (3) |
O7—W2—O9 | 153.7 (2) | W2—O15—La1 | 130.6 (3) |
O8—W2—O3 | 96.2 (3) | W3—O16—La1 | 129.6 (3) |
O15—W2—O3 | 160.9 (2) | W4—O17—La1 | 130.0 (3) |
O7—W2—O3 | 83.3 (2) | W5—O18—La1 | 131.7 (3) |
O9—W2—O3 | 83.3 (3) | O3W—Na1—O4W | 170.1 (3) |
O8—W2—O1 | 171.2 (3) | O3W—Na1—O1W | 89.9 (3) |
O15—W2—O1 | 85.8 (2) | O4W—Na1—O1W | 91.6 (3) |
O7—W2—O1 | 77.8 (2) | O3W—Na1—O5W | 88.2 (3) |
O9—W2—O1 | 76.9 (2) | O4W—Na1—O5W | 91.7 (3) |
O3—W2—O1 | 75.1 (2) | O1W—Na1—O5W | 171.7 (3) |
O10—W3—O16 | 102.5 (3) | O3W—Na1—O2W | 86.3 (3) |
O10—W3—O11 | 101.2 (3) | O4W—Na1—O2W | 83.9 (3) |
O16—W3—O11 | 92.5 (3) | O1W—Na1—O2W | 90.6 (3) |
O10—W3—O9 | 103.1 (3) | O5W—Na1—O2W | 97.3 (3) |
O16—W3—O9 | 93.0 (3) | O3W—Na1—O5Wii | 108.3 (3) |
O11—W3—O9 | 153.2 (2) | O4W—Na1—O5Wii | 81.5 (3) |
O10—W3—O4 | 96.7 (3) | O1W—Na1—O5Wii | 82.6 (2) |
O16—W3—O4 | 160.8 (3) | O5W—Na1—O5Wii | 90.3 (2) |
O11—W3—O4 | 84.3 (3) | O2W—Na1—O5Wii | 163.8 (3) |
O9—W3—O4 | 81.9 (3) | O3W—Na1—Na1ii | 101.7 (2) |
O10—W3—O1 | 171.2 (3) | O4W—Na1—Na1ii | 85.1 (2) |
O16—W3—O1 | 86.3 (2) | O1W—Na1—Na1ii | 126.7 (2) |
O11—W3—O1 | 77.3 (2) | O5W—Na1—Na1ii | 46.06 (17) |
O9—W3—O1 | 76.9 (2) | O2W—Na1—Na1ii | 141.3 (2) |
O4—W3—O1 | 74.5 (2) | O5Wii—Na1—Na1ii | 44.23 (17) |
O12—W4—O17 | 103.6 (3) | Na1—O5W—Na1ii | 89.7 (2) |
O6—W1—O1—W4 | 0.1 (2) | O4—W1—O6—W4 | 76.9 (3) |
O5—W1—O1—W4 | 90.6 (2) | O3—W1—O6—W4 | −1.9 (8) |
O4—W1—O1—W4 | −90.6 (2) | O1—W1—O6—W4 | −0.1 (3) |
O3—W1—O1—W4 | 179.3 (2) | O12—W4—O6—W1 | 178.5 (3) |
O6—W1—O1—W3 | 90.0 (2) | O17—W4—O6—W1 | 3.7 (9) |
O5—W1—O1—W3 | −179.6 (3) | O11—W4—O6—W1 | −78.4 (3) |
O4—W1—O1—W3 | −0.8 (2) | O13—W4—O6—W1 | 78.9 (3) |
O3—W1—O1—W3 | −90.8 (2) | O1—W4—O6—W1 | 0.1 (3) |
O6—W1—O1—W5 | −89.7 (2) | O8—W2—O7—W5 | 178.7 (3) |
O5—W1—O1—W5 | 0.7 (2) | O15—W2—O7—W5 | −77.2 (3) |
O4—W1—O1—W5 | 179.5 (3) | O9—W2—O7—W5 | 24.0 (7) |
O3—W1—O1—W5 | 89.5 (2) | O3—W2—O7—W5 | 83.8 (3) |
O6—W1—O1—W2 | −179.5 (2) | O1—W2—O7—W5 | 7.7 (3) |
O5—W1—O1—W2 | −89.0 (2) | O14—W5—O7—W2 | −178.4 (3) |
O4—W1—O1—W2 | 89.8 (2) | O18—W5—O7—W2 | 76.7 (3) |
O3—W1—O1—W2 | −0.3 (2) | O13—W5—O7—W2 | −25.0 (7) |
O17—W4—O1—W1 | −178.9 (2) | O5—W5—O7—W2 | −83.7 (3) |
O11—W4—O1—W1 | 87.1 (2) | O1—W5—O7—W2 | −7.8 (3) |
O13—W4—O1—W1 | −85.9 (2) | O8—W2—O9—W3 | −179.7 (3) |
O6—W4—O1—W1 | −0.1 (2) | O15—W2—O9—W3 | 76.8 (4) |
O17—W4—O1—W3 | 88.4 (2) | O7—W2—O9—W3 | −24.9 (8) |
O11—W4—O1—W3 | −5.6 (2) | O3—W2—O9—W3 | −84.7 (3) |
O13—W4—O1—W3 | −178.7 (3) | O1—W2—O9—W3 | −8.5 (3) |
O6—W4—O1—W3 | −92.8 (2) | O10—W3—O9—W2 | 179.5 (3) |
O17—W4—O1—W5 | −86.5 (2) | O16—W3—O9—W2 | −76.9 (4) |
O11—W4—O1—W5 | 179.5 (3) | O11—W3—O9—W2 | 24.6 (8) |
O13—W4—O1—W5 | 6.5 (2) | O4—W3—O9—W2 | 84.4 (3) |
O6—W4—O1—W5 | 92.3 (2) | O1—W3—O9—W2 | 8.6 (3) |
O16—W3—O1—W1 | 179.8 (2) | O12—W4—O11—W3 | 177.9 (3) |
O11—W3—O1—W1 | −86.8 (2) | O17—W4—O11—W3 | −77.3 (4) |
O9—W3—O1—W1 | 85.9 (2) | O13—W4—O11—W3 | 22.8 (8) |
O4—W3—O1—W1 | 0.7 (2) | O6—W4—O11—W3 | 82.7 (3) |
O16—W3—O1—W4 | −87.9 (2) | O1—W4—O11—W3 | 7.3 (3) |
O11—W3—O1—W4 | 5.6 (2) | O10—W3—O11—W4 | −178.4 (3) |
O9—W3—O1—W4 | 178.2 (3) | O16—W3—O11—W4 | 78.3 (4) |
O4—W3—O1—W4 | 93.1 (2) | O9—W3—O11—W4 | −23.4 (8) |
O16—W3—O1—W2 | 87.4 (2) | O4—W3—O11—W4 | −82.7 (3) |
O11—W3—O1—W2 | −179.1 (3) | O1—W3—O11—W4 | −7.3 (3) |
O9—W3—O1—W2 | −6.5 (2) | O14—W5—O13—W4 | 179.0 (3) |
O4—W3—O1—W2 | −91.6 (2) | O18—W5—O13—W4 | −75.5 (3) |
O18—W5—O1—W1 | −179.2 (3) | O7—W5—O13—W4 | 25.7 (7) |
O13—W5—O1—W1 | 85.9 (2) | O5—W5—O13—W4 | 84.3 (3) |
O7—W5—O1—W1 | −86.4 (2) | O1—W5—O13—W4 | 8.5 (3) |
O5—W5—O1—W1 | −0.7 (2) | O12—W4—O13—W5 | −179.4 (3) |
O18—W5—O1—W4 | 88.5 (2) | O17—W4—O13—W5 | 76.4 (3) |
O13—W5—O1—W4 | −6.5 (2) | O11—W4—O13—W5 | −23.9 (8) |
O7—W5—O1—W4 | −178.8 (3) | O6—W4—O13—W5 | −84.2 (3) |
O5—W5—O1—W4 | −93.0 (2) | O1—W4—O13—W5 | −8.5 (3) |
O18—W5—O1—W2 | −86.9 (2) | O8—W2—O15—La1 | 179.2 (4) |
O13—W5—O1—W2 | 178.2 (3) | O7—W2—O15—La1 | 75.5 (4) |
O7—W5—O1—W2 | 5.9 (2) | O9—W2—O15—La1 | −78.7 (4) |
O5—W5—O1—W2 | 91.6 (2) | O3—W2—O15—La1 | −4.2 (10) |
O15—W2—O1—W1 | −179.0 (2) | O1—W2—O15—La1 | −2.0 (3) |
O7—W2—O1—W1 | 86.4 (2) | O15i—La1—O15—W2 | 101.7 (4) |
O9—W2—O1—W1 | −86.2 (2) | O18—La1—O15—W2 | −58.4 (4) |
O3—W2—O1—W1 | 0.3 (2) | O18i—La1—O15—W2 | −104.9 (4) |
O15—W2—O1—W3 | −86.2 (2) | O16i—La1—O15—W2 | 138.8 (4) |
O7—W2—O1—W3 | 179.2 (3) | O16—La1—O15—W2 | 62.8 (4) |
O9—W2—O1—W3 | 6.5 (2) | O17—La1—O15—W2 | 1.5 (4) |
O3—W2—O1—W3 | 93.0 (2) | O17i—La1—O15—W2 | −148.3 (4) |
O15—W2—O1—W5 | 88.6 (2) | O10—W3—O16—La1 | 179.7 (4) |
O7—W2—O1—W5 | −6.0 (2) | O11—W3—O16—La1 | −78.3 (4) |
O9—W2—O1—W5 | −178.6 (3) | O9—W3—O16—La1 | 75.5 (4) |
O3—W2—O1—W5 | −92.1 (2) | O4—W3—O16—La1 | 1.7 (10) |
O2—W1—O3—W2 | −179.0 (3) | O1—W3—O16—La1 | −1.1 (4) |
O6—W1—O3—W2 | 2.1 (7) | O15i—La1—O16—W3 | 137.3 (4) |
O5—W1—O3—W2 | 78.2 (3) | O15—La1—O16—W3 | −60.3 (4) |
O4—W1—O3—W2 | −76.9 (3) | O18—La1—O16—W3 | 1.8 (4) |
O1—W1—O3—W2 | 0.4 (3) | O18i—La1—O16—W3 | 100.7 (5) |
O8—W2—O3—W1 | 178.6 (3) | O16i—La1—O16—W3 | −149.3 (5) |
O15—W2—O3—W1 | 1.9 (9) | O17—La1—O16—W3 | 61.5 (4) |
O7—W2—O3—W1 | −79.5 (3) | O17i—La1—O16—W3 | −105.4 (4) |
O9—W2—O3—W1 | 77.8 (3) | O12—W4—O17—La1 | −179.8 (4) |
O1—W2—O3—W1 | −0.4 (3) | O11—W4—O17—La1 | 75.5 (4) |
O2—W1—O4—W3 | −179.8 (3) | O13—W4—O17—La1 | −78.7 (4) |
O6—W1—O4—W3 | −76.7 (3) | O6—W4—O17—La1 | −5.1 (10) |
O5—W1—O4—W3 | 3.7 (8) | O1—W4—O17—La1 | −1.7 (3) |
O3—W1—O4—W3 | 78.6 (3) | O15i—La1—O17—W4 | −149.2 (4) |
O1—W1—O4—W3 | 1.0 (3) | O15—La1—O17—W4 | 1.6 (4) |
O10—W3—O4—W1 | 178.1 (3) | O18—La1—O17—W4 | 62.5 (4) |
O16—W3—O4—W1 | −3.9 (9) | O18i—La1—O17—W4 | 137.5 (4) |
O11—W3—O4—W1 | 77.4 (3) | O16i—La1—O17—W4 | −104.7 (4) |
O9—W3—O4—W1 | −79.5 (3) | O16—La1—O17—W4 | −60.0 (4) |
O1—W3—O4—W1 | −1.0 (3) | O17i—La1—O17—W4 | 101.2 (4) |
O2—W1—O5—W5 | 179.9 (3) | O14—W5—O18—La1 | −179.2 (4) |
O6—W1—O5—W5 | 76.8 (3) | O13—W5—O18—La1 | 77.1 (4) |
O4—W1—O5—W5 | −3.6 (8) | O7—W5—O18—La1 | −77.2 (4) |
O3—W1—O5—W5 | −78.7 (3) | O5—W5—O18—La1 | −4.2 (10) |
O1—W1—O5—W5 | −0.9 (3) | O1—W5—O18—La1 | 0.1 (4) |
O14—W5—O5—W1 | −179.5 (3) | O15i—La1—O18—W5 | −105.9 (4) |
O18—W5—O5—W1 | 5.3 (9) | O15—La1—O18—W5 | 61.1 (4) |
O13—W5—O5—W1 | −77.8 (3) | O18i—La1—O18—W5 | −151.9 (5) |
O7—W5—O5—W1 | 79.8 (3) | O16i—La1—O18—W5 | 99.5 (5) |
O1—W5—O5—W1 | 0.9 (3) | O16—La1—O18—W5 | −1.0 (5) |
O2—W1—O6—W4 | 179.2 (3) | O17—La1—O18—W5 | −61.4 (4) |
O5—W1—O6—W4 | −77.6 (3) | O17i—La1—O18—W5 | 136.6 (4) |
Symmetry codes: (i) −x+2, y, −z+3/2; (ii) −x+1/2, −y+1/2, −z+1. |
Categories | average | difference | |
W—OI | 2.304 (6)–2.324 (6) | [2.314] | (0.020) |
W—OII (short) | 1.890 (6)–1.963 (6) | [1.927] | (0.073) |
W—OII (long) | 2.022 (6)–2.031 (6) | [2.027] | (0.009) |
W—OIII | 1.776 (6)–1.790 (6) | [1.783] | (0.014) |
W—OIV | 1.726 (6)–1.734 (6) | [1.730] | (0.008) |
Acknowledgements
We are grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support under the POCTI programme (supported by FEDER).
References
Almeida Paz, F. A., Sousa, F. L., Soares-Santos, P. C. R., Cavaleiro, A. M. V., Nogueira, H. I. S., Klinowsi, J. & Trindade, T. (2004). Acta Cryst. E60, m1–m5. CSD CrossRef IUCr Journals Google Scholar
Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta Cryst. B58, 364–369. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2001). DIAMOND. Version 2.1a. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT, SMART and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Griffith, W. P., Morley-Smith, N., Nogueira, H. I. S., Shoair, A. G. F., Suriaatmaja, M., White, A. J. P. & Williams, D. J. (2000). J. Org. Chem. 607, 146–155. CrossRef CAS Google Scholar
Iball, J., Low, J. N. & Weakley, T. J. R. (1974). J. Chem. Soc. Dalton Trans. pp. 2021–2024. CrossRef Web of Science Google Scholar
Müller, A., Peters, F., Pope, M. T. & Gatteschi, D. (1998). Chem. Rev. 98, 239–271. Web of Science CrossRef PubMed Google Scholar
Ozeki, T., Takahashi, M. & Yamase, T. (1992). Acta Cryst. C48, 1370–1374. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ozeki, T. & Yamase, T. (1993). Acta Cryst. C49, 1574–1577. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128–134. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ozeki, T. & Yamase, T. (1994b). Acta Cryst. C50, 327–330. CrossRef CAS Web of Science IUCr Journals Google Scholar
Peacock, R. D. & Weakley, T. J. R. (1971). J. Chem. Soc. A, pp. 1836–1839. CrossRef Google Scholar
Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer. Google Scholar
Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry: From Topology via Self-Assembly to Applications. Dordrecht: Kluwer. Google Scholar
Pope, M. T. & Müller, A. (1994). Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity. Dordrecht: Kluwer. Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sousa, F. L., Paz, F. A. A., Cavaleiro, A. M. V., Klinowski, J. & Nogueira, H. I. S. (2004). Chem. Commun. pp. 2656–2657. Web of Science CrossRef Google Scholar
Sousa, F. L., Paz, F. A. A., Soares-Santos, P. C. R., Cavaleiro, A. M. V., Nogueira, H. I. S., Klinowski, J. & Trindade, T. (2004). J. Mol. Struct. pp. 61–67. Web of Science CSD CrossRef Google Scholar
Sugeta, M. & Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444–449. CrossRef CAS Web of Science Google Scholar
Xue, G., Vaissermann, J. & Gouzerh, P. (2002). J. Cluster Sci. 13, 409–421. Web of Science CrossRef CAS Google Scholar
Yamase, T. & Ozeki, T. (1993). Acta Cryst. C49, 1577–1580. CrossRef CAS Web of Science IUCr Journals Google Scholar
Yamase, T., Ozeki, T. & Tosaka, M. (1994). Acta Cryst. C50, 1849–1852. CrossRef CAS Web of Science IUCr Journals Google Scholar
Yamase, T., Ozeki, T. & Ueda, K. (1993). Acta Cryst. C49, 1572–1574. CrossRef CAS Web of Science IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.