metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(biuretato-κ2O,O′)nickel(II) dichloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 3 February 2005; accepted 8 February 2005; online 12 February 2005)

The title compound, [Ni(C2H5N3O2)2(H2O)2]Cl2, contains Ni2+ cations octa­hedrally coordinated by two bidentate biuret mol­ecules in an O,O′-bidentate coordination mode and two water mol­ecules, the latter in a trans configuration. Two chloride anions provide charge compensation. Numerous N—H⋯O (mean H⋯O = 2.17 Å, mean N—H⋯O = 164° and mean N⋯O = 2.991 Å), N—H⋯Cl (mean H⋯Cl = 2.46 Å, mean N—H⋯Cl = 162° and mean N⋯Cl = 3.278 Å) and O—H⋯Cl (mean H⋯Cl = 2.19 Å, mean O—H⋯Cl = 159° and mean O⋯Cl = 3.068 Å) hydrogen bonds help to stabilize the crystal packing.

Comment

Biuret, H2N—CO—NH—CO—NH2 (or C2H5N3O2), has long been recognized as a ligand in coordination chemistry (Wiedemann, 1848[Wiedemann, G. (1848). Ann. Chem. 68, 324-330.]). In low-pH or neutral conditions, biuret commonly shows O,O′-bidentate coordination to metal cations [e.g. with zinc (Nardelli et al., 1963[Nardelli, M., Faca, G. & Giraldi, G. (1963). Acta Cryst. 16, 343-352.]), copper (Freeman & Smith, 1966[Freeman, H. C. & Smith, J. E. W. L. (1966). Acta Cryst. 20, 153-159.]) or samarium (Haddad, 1987[Haddad, S. F. (1987). Acta Cryst. C43, 1882-1885.])]. When biuret is deprotonated in basic conditions, N,N′-bidentate coordination can arise [e.g. with copper (Pajunen & Pajunen, 1982[Pajunen, A. & Pajunen, S. (1982). Acta Cryst. B38, 1586-1588.])].

[Scheme 1]

In the present paper, we report the synthesis and structure of a nickel(II) complex of biuret, viz. [Ni(C2H5N3O2)2(H2O)2]Cl2, (I)[link] (Fig. 1[link]). Compound (I)[link] contains Ni2+ cations coordinated by two distinct biuret mol­ecules, in O,O′-bidentate mode (thus forming six-membered chelate rings), and two trans water mol­ecules. The structure is completed by two uncoordinated chloride ions, which provide charge balance and participate in an extensive hydrogen-bond network (see below). The resulting NiO6 moiety of the [Ni(C2H5N3O2)2(H2O)2]2+ grouping (Table 1[link]) is close to being an undistorted octa­hedron [Ni—O = 2.014 (2)–2.083 (2) Å, mean Ni—O = 2.041 (3) Å; cis and trans O—Ni—O = 87.47 (9)–93.51 (8)° and 176.14 (9)–178.94 (8)°, respectively], indicating that the nickel(II) cation is a good `fit' for the biuret O,O′ bite angle. The two biuret mol­ecules in (I)[link] can be broken down into two H2N—CO—NH fragments, fused via the central HN group [i.e. via atoms N2 and N5 in (I)]. For the non-H atoms, the four H2N—CO—NH fragments are all essentially planar (for C1/O1/N1/N2, r.m.s. deviation from the least-squares plane = 0.0021 Å; for C2/O2/N2/N3, 0.0017 Å; for C3/O3/N4/N5, 0.0023 Å; for C4/O4/N5/N6, 0.0032 Å). The dihedral angle between the C1- and C2-containing fragments is 4.8 (3)°, with a corresponding value of 3.19 (3)° for the C3 and C4 fragments. This configuration can be compared with a twist angle between the fused H2N—CO—NH fragments of 6.35° in [Cu(C2H5N3O2)2]Cl2 (Freeman & Smith, 1966[Freeman, H. C. & Smith, J. E. W. L. (1966). Acta Cryst. 20, 153-159.]). The dihedral angle between mean planes of the two biuret ligand mol­ecules in (I)[link] is 1.90 (13)°.

The Ni atom in (I)[link] is slightly displaced from the least-squares plane of the approximate square of biuret O atoms (O1–O4) coordinating to it, by 0.0086 (13) Å. The biuret O4 square itself is slightly folded, with deviations from the O1–O4 mean plane of −0.0121 (12), 0.0119 (12), 0.0121 (12) and −0.0119 (12) Å for atoms O1, O2, O3 and O4, respectively. In the copper analogue (Freeman & Smith, 1966[Freeman, H. C. & Smith, J. E. W. L. (1966). Acta Cryst. 20, 153-159.]), the CuO4 square is constrained by space-group symmetry to be perfectly flat. Overall, the [Ni(C2H5N3O2)2]2+ grouping in (I)[link] is close to planar [r.m.s. deviation from the mean plane = 0.030 Å; maximum deviation = 0.076 (3) Å for N2], whereas the [Cu(C2H5N3O2)2]2+ grouping in [Cu(C2H5N3O2)2]Cl2 is distinctly puckered (Freeman & Smith, 1966[Freeman, H. C. & Smith, J. E. W. L. (1966). Acta Cryst. 20, 153-159.]) about the O⋯O′ axes (bite lines) of the biuret mol­ecules. As well as electrostatic and van der Waals forces, numerous hydrogen bonds (Table 2[link]) help to define the crystal packing in (I)[link]. These include N—H⋯O bonds (mean H⋯O = 2.17 Å, mean N—H⋯O = 164° and mean N⋯O = 2.991 Å) to O acceptors from both the biuret and the water ligands, N—H⋯Cl inter­actions (mean H⋯Cl = 2.46 Å, mean N—H⋯Cl = 162° and mean N⋯Cl = 3.278 Å) and O—H⋯Cl inter­actions (mean H⋯Cl = 2.19 Å, mean O—H⋯Cl = 159° and mean O⋯Cl = 3.068 Å).

Perhaps the most inter­esting hydrogen bonds are N3—H4⋯O3iii and N4—H6⋯O2iv (see Fig. 2[link] and Table 2[link] for symmetry information), which link the [Ni(C2H5N3O2)2(H2O)2]2+ groupings into a chain propagating along [100]. The supramolecular (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) motif is an R22(8) ring. The remaining H bonds serve to crosslink the [100] chains into a three-dimensional network (Fig. 3[link]) via the chloride ions. Overall, Cl1 and Cl2 accept five hydrogen bonds each.

[Figure 1]
Figure 1
Asymmetric unit of (I)[link], showing 50% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii and the hydrogen bond is indicated by dashed lines.
[Figure 2]
Figure 2
Detail of (I)[link], showing how the N3—H4⋯O3iii and N4—H6⋯O2iv hydrogen bonds (dashed lines; see Table 2[link] for symmetry codes) link the [Ni(C2H5N3O2)2(H2O)2]2+ groupings into an infinite chain propagating along [100].
[Figure 3]
Figure 3
Projection on to (100) of (I)[link], showing the hydrogen-bond cross-linking (dashed lines) between the chains shown in Fig. 2[link].

Experimental

Aqueous solutions of NiCl2 and biuret (both 0.1 M) were mixed in a 1:1 ratio at room temperature, resulting in a green solution. Small block-like green crystals of (I)[link] grew over the course of a few days as the water slowly evaporated and were harvested by vacuum filtration and washing with acetone.

Crystal data
  • [Ni(C2H5N3O2)2(H2O)2]Cl2

  • Mr = 371.82

  • Monoclinic, P 21 /c

  • a = 7.3872 (4) Å

  • b = 27.5675 (16) Å

  • c = 7.6687 (4) Å

  • β = 117.344 (1)°

  • V = 1387.21 (13) Å3

  • Z = 4

  • Dx = 1.780 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3015 reflections

  • θ = 3.0–29.5°

  • μ = 1.82 mm−1

  • T = 293 (2) K

  • Block, green

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.773, Tmax = 0.839

  • 14042 measured reflections

  • 4037 independent reflections

  • 2416 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 30.0°

  • h = −10 → 8

  • k = −38 → 38

  • l = −9 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.101

  • S = 0.96

  • 4037 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O3 2.014 (2)
Ni1—O2 2.018 (2)
Ni1—O4 2.024 (2)
Ni1—O1 2.024 (2)
Ni1—O6 2.080 (2)
Ni1—O5 2.083 (2)
O1—C1—N2—C2 −5.1 (6)
O2—C2—N2—C1 6.7 (6)
O4—C4—N5—C3 4.3 (6)
O3—C3—N5—C4 −3.3 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl2i 0.86 2.49 3.340 (3) 173
N1—H2⋯O5ii 0.86 2.33 3.089 (4) 147
N2—H3⋯Cl2ii 0.86 2.45 3.266 (3) 158
N3—H4⋯O3iii 0.86 2.10 2.943 (4) 168
N3—H5⋯Cl2ii 0.86 2.43 3.239 (3) 158
N4—H6⋯O2iv 0.86 2.06 2.910 (4) 168
N4—H7⋯Cl1v 0.86 2.45 3.252 (3) 155
N5—H8⋯Cl1v 0.86 2.51 3.310 (3) 156
N6—H9⋯Cl1vi 0.86 2.41 3.259 (3) 169
N6—H10⋯O6vii 0.86 2.17 3.023 (3) 173
O5—H11⋯Cl2 0.94 2.16 3.068 (2) 161
O5—H12⋯Cl1iii 0.91 2.21 3.115 (2) 171
O6—H13⋯Cl2viii 0.98 2.18 3.060 (2) 149
O6—H14⋯Cl1viii 0.88 2.20 3.027 (2) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z+1; (iii) x+1, y, z; (iv) x-1, y, z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) x, y, z-1.

The water H atoms were found in difference maps and were refined as riding on their carrier atoms in their as-found relative positions. The N-bound H atoms were placed in calculated positions assuming sp2 hybridization for the N atoms and refined as riding on their carrier atoms. The constraint Uiso(H) = 1.2Ueq(carrier atom) was applied in all cases.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Diaquabis(biuretato-κ2O,O')nickel(II) dichloride top
Crystal data top
[Ni(C2H5N3O2)2(H2O)2]Cl2F(000) = 760
Mr = 371.82Dx = 1.780 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3015 reflections
a = 7.3872 (4) Åθ = 3.0–29.5°
b = 27.5675 (16) ŵ = 1.82 mm1
c = 7.6687 (4) ÅT = 293 K
β = 117.344 (1)°Block, green
V = 1387.21 (13) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
4037 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 108
Tmin = 0.773, Tmax = 0.839k = 3838
14042 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0438P)2]
where P = (Fo2 + 2Fc2)/3
4037 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.80268 (6)0.125527 (13)0.32664 (6)0.03046 (12)
C10.8121 (5)0.02016 (11)0.2587 (5)0.0363 (8)
C21.1095 (5)0.06564 (11)0.2773 (5)0.0406 (8)
N10.7399 (4)0.02492 (10)0.2330 (5)0.0531 (9)
H10.62340.03050.22870.064*
H20.80990.04840.22080.064*
N21.0015 (4)0.02374 (10)0.2650 (4)0.0419 (7)
H31.05870.00310.26070.050*
N31.2783 (5)0.05885 (11)0.2623 (6)0.0654 (11)
H41.35440.08320.26970.078*
H51.31230.03010.24510.078*
O10.7160 (3)0.05514 (7)0.2769 (4)0.0407 (6)
O21.0539 (3)0.10651 (8)0.3023 (4)0.0434 (6)
C30.4936 (5)0.18368 (11)0.3785 (5)0.0365 (7)
C40.7877 (5)0.23070 (11)0.3984 (5)0.0345 (7)
N40.3254 (5)0.18961 (11)0.3945 (5)0.0589 (9)
H60.25030.16500.38610.071*
H70.29040.21810.41350.071*
N50.6018 (4)0.22604 (9)0.3972 (4)0.0414 (7)
H80.54650.25240.40950.050*
N60.8615 (5)0.27574 (9)0.4285 (5)0.0494 (8)
H90.97610.28160.42920.059*
H100.79440.29890.44730.059*
O30.5507 (3)0.14320 (7)0.3511 (3)0.0367 (5)
O40.8813 (3)0.19646 (7)0.3708 (3)0.0367 (5)
O50.9625 (3)0.11171 (8)0.6268 (3)0.0414 (6)
H110.87460.10240.67900.050*
H121.03700.13740.69950.050*
O60.6618 (3)0.14025 (7)0.0272 (3)0.0385 (5)
H130.63100.10960.04520.046*
H140.54290.15080.01290.046*
Cl10.25969 (13)0.19350 (3)0.87623 (14)0.0473 (2)
Cl20.70170 (15)0.05765 (3)0.78053 (15)0.0485 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0271 (2)0.02096 (17)0.0516 (3)0.00128 (16)0.02523 (18)0.00374 (17)
C10.0340 (18)0.0300 (15)0.046 (2)0.0049 (13)0.0197 (17)0.0057 (13)
C20.0303 (17)0.0339 (17)0.059 (2)0.0039 (14)0.0220 (17)0.0066 (15)
N10.0429 (18)0.0282 (14)0.101 (3)0.0037 (12)0.0440 (19)0.0091 (15)
N20.0354 (16)0.0285 (14)0.070 (2)0.0013 (11)0.0310 (16)0.0050 (13)
N30.0457 (18)0.0348 (16)0.140 (3)0.0083 (14)0.063 (2)0.0249 (18)
O10.0345 (12)0.0243 (11)0.0723 (16)0.0021 (9)0.0322 (12)0.0070 (10)
O20.0354 (12)0.0303 (11)0.0780 (18)0.0031 (10)0.0377 (13)0.0103 (11)
C30.0331 (18)0.0339 (16)0.049 (2)0.0029 (14)0.0242 (16)0.0034 (14)
C40.0314 (17)0.0336 (16)0.0414 (19)0.0041 (13)0.0191 (16)0.0028 (14)
N40.0500 (19)0.0343 (16)0.120 (3)0.0020 (14)0.062 (2)0.0050 (17)
N50.0369 (16)0.0295 (14)0.069 (2)0.0034 (12)0.0344 (16)0.0088 (13)
N60.0484 (18)0.0267 (14)0.092 (3)0.0073 (13)0.0484 (19)0.0138 (14)
O30.0318 (12)0.0256 (10)0.0634 (16)0.0018 (9)0.0309 (12)0.0046 (10)
O40.0349 (12)0.0255 (10)0.0611 (15)0.0037 (9)0.0320 (12)0.0080 (10)
O50.0379 (13)0.0349 (12)0.0555 (15)0.0046 (10)0.0251 (12)0.0016 (10)
O60.0378 (13)0.0303 (11)0.0530 (14)0.0005 (9)0.0257 (12)0.0044 (10)
Cl10.0364 (4)0.0373 (4)0.0693 (6)0.0004 (4)0.0253 (5)0.0030 (4)
Cl20.0576 (6)0.0355 (4)0.0704 (6)0.0030 (4)0.0449 (5)0.0062 (4)
Geometric parameters (Å, º) top
Ni1—O32.014 (2)N3—H50.8600
Ni1—O22.018 (2)C3—O31.245 (4)
Ni1—O42.024 (2)C3—N41.314 (4)
Ni1—O12.024 (2)C3—N51.385 (4)
Ni1—O62.080 (2)C4—O41.244 (4)
Ni1—O52.083 (2)C4—N61.333 (4)
C1—O11.243 (4)C4—N51.375 (4)
C1—N11.331 (4)N4—H60.8600
C1—N21.382 (4)N4—H70.8600
C2—O21.244 (4)N5—H80.8600
C2—N31.317 (4)N6—H90.8600
C2—N21.382 (4)N6—H100.8600
N1—H10.8600O5—H110.9419
N1—H20.8600O5—H120.9121
N2—H30.8600O6—H130.9778
N3—H40.8600O6—H140.8833
O3—Ni1—O2178.94 (8)C2—N3—H5120.0
O3—Ni1—O487.54 (8)H4—N3—H5120.0
O2—Ni1—O493.51 (8)C1—O1—Ni1128.1 (2)
O3—Ni1—O191.35 (9)C2—O2—Ni1129.2 (2)
O2—Ni1—O187.61 (9)O3—C3—N4122.4 (3)
O4—Ni1—O1178.38 (9)O3—C3—N5123.3 (3)
O3—Ni1—O692.32 (9)N4—C3—N5114.3 (3)
O2—Ni1—O687.91 (10)O4—C4—N6121.4 (3)
O4—Ni1—O687.47 (9)O4—C4—N5124.0 (3)
O1—Ni1—O691.41 (9)N6—C4—N5114.6 (3)
O3—Ni1—O591.17 (9)C3—N4—H6120.0
O2—Ni1—O588.63 (10)C3—N4—H7120.0
O4—Ni1—O591.04 (9)H6—N4—H7120.0
O1—Ni1—O590.15 (9)C4—N5—C3127.3 (3)
O6—Ni1—O5176.14 (9)C4—N5—H8116.3
O1—C1—N1122.1 (3)C3—N5—H8116.3
O1—C1—N2124.2 (3)C4—N6—H9120.0
N1—C1—N2113.7 (3)C4—N6—H10120.0
O2—C2—N3122.4 (3)H9—N6—H10120.0
O2—C2—N2123.1 (3)C3—O3—Ni1129.2 (2)
N3—C2—N2114.5 (3)C4—O4—Ni1128.5 (2)
C1—N1—H1120.0Ni1—O5—H11111.6
C1—N1—H2120.0Ni1—O5—H12114.2
H1—N1—H2120.0H11—O5—H12107.0
C1—N2—C2127.3 (3)Ni1—O6—H13109.0
C1—N2—H3116.4Ni1—O6—H1499.6
C2—N2—H3116.4H13—O6—H14104.8
C2—N3—H4120.0
O1—C1—N2—C25.1 (6)O4—C4—N5—C34.3 (6)
N1—C1—N2—C2175.6 (3)N6—C4—N5—C3176.8 (3)
O2—C2—N2—C16.7 (6)O3—C3—N5—C43.3 (6)
N3—C2—N2—C1173.9 (3)N4—C3—N5—C4176.0 (3)
N1—C1—O1—Ni1177.6 (3)N4—C3—O3—Ni1178.9 (3)
N2—C1—O1—Ni11.7 (5)N5—C3—O3—Ni10.3 (5)
O3—Ni1—O1—C1175.2 (3)O4—Ni1—O3—C31.1 (3)
O2—Ni1—O1—C14.6 (3)O1—Ni1—O3—C3177.7 (3)
O6—Ni1—O1—C192.5 (3)O6—Ni1—O3—C386.3 (3)
O5—Ni1—O1—C184.0 (3)O5—Ni1—O3—C392.1 (3)
N3—C2—O2—Ni1179.4 (3)N6—C4—O4—Ni1178.9 (2)
N2—C2—O2—Ni11.3 (5)N5—C4—O4—Ni12.2 (5)
O4—Ni1—O2—C2178.0 (3)O3—Ni1—O4—C40.1 (3)
O1—Ni1—O2—C23.2 (3)O2—Ni1—O4—C4179.9 (3)
O6—Ni1—O2—C294.7 (3)O6—Ni1—O4—C492.3 (3)
O5—Ni1—O2—C287.0 (3)O5—Ni1—O4—C491.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.862.493.340 (3)173
N1—H2···O5ii0.862.333.089 (4)147
N2—H3···Cl2ii0.862.453.266 (3)158
N3—H4···O3iii0.862.102.943 (4)168
N3—H5···Cl2ii0.862.433.239 (3)158
N4—H6···O2iv0.862.062.910 (4)168
N4—H7···Cl1v0.862.453.252 (3)155
N5—H8···Cl1v0.862.513.310 (3)156
N6—H9···Cl1vi0.862.413.259 (3)169
N6—H10···O6vii0.862.173.023 (3)173
O5—H11···Cl20.942.163.068 (2)161
O5—H12···Cl1iii0.912.213.115 (2)171
O6—H13···Cl2viii0.982.183.060 (2)149
O6—H14···Cl1viii0.882.203.027 (2)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x1, y, z; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z1/2; (vii) x, y+1/2, z+1/2; (viii) x, y, z1.
 

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFreeman, H. C. & Smith, J. E. W. L. (1966). Acta Cryst. 20, 153–159.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHaddad, S. F. (1987). Acta Cryst. C43, 1882–1885.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M., Faca, G. & Giraldi, G. (1963). Acta Cryst. 16, 343–352.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPajunen, A. & Pajunen, S. (1982). Acta Cryst. B38, 1586–1588.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWiedemann, G. (1848). Ann. Chem. 68, 324–330.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds