metal-organic compounds
Diaquabis(biuretato-κ2O,O′)nickel(II) dichloride
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The title compound, [Ni(C2H5N3O2)2(H2O)2]Cl2, contains Ni2+ cations octahedrally coordinated by two bidentate biuret molecules in an O,O′-bidentate coordination mode and two water molecules, the latter in a trans configuration. Two chloride anions provide charge compensation. Numerous N—H⋯O (mean H⋯O = 2.17 Å, mean N—H⋯O = 164° and mean N⋯O = 2.991 Å), N—H⋯Cl (mean H⋯Cl = 2.46 Å, mean N—H⋯Cl = 162° and mean N⋯Cl = 3.278 Å) and O—H⋯Cl (mean H⋯Cl = 2.19 Å, mean O—H⋯Cl = 159° and mean O⋯Cl = 3.068 Å) hydrogen bonds help to stabilize the crystal packing.
Comment
Biuret, H2N—CO—NH—CO—NH2 (or C2H5N3O2), has long been recognized as a ligand in coordination chemistry (Wiedemann, 1848). In low-pH or neutral conditions, biuret commonly shows O,O′-bidentate coordination to metal cations [e.g. with zinc (Nardelli et al., 1963), copper (Freeman & Smith, 1966) or samarium (Haddad, 1987)]. When biuret is deprotonated in basic conditions, N,N′-bidentate coordination can arise [e.g. with copper (Pajunen & Pajunen, 1982)].
In the present paper, we report the synthesis and structure of a nickel(II) complex of biuret, viz. [Ni(C2H5N3O2)2(H2O)2]Cl2, (I) (Fig. 1). Compound (I) contains Ni2+ cations coordinated by two distinct biuret molecules, in O,O′-bidentate mode (thus forming six-membered chelate rings), and two trans water molecules. The structure is completed by two uncoordinated chloride ions, which provide charge balance and participate in an extensive hydrogen-bond network (see below). The resulting NiO6 moiety of the [Ni(C2H5N3O2)2(H2O)2]2+ grouping (Table 1) is close to being an undistorted octahedron [Ni—O = 2.014 (2)–2.083 (2) Å, mean Ni—O = 2.041 (3) Å; cis and trans O—Ni—O = 87.47 (9)–93.51 (8)° and 176.14 (9)–178.94 (8)°, respectively], indicating that the nickel(II) cation is a good `fit' for the biuret O,O′ bite angle. The two biuret molecules in (I) can be broken down into two H2N—CO—NH fragments, fused via the central HN group [i.e. via atoms N2 and N5 in (I)]. For the non-H atoms, the four H2N—CO—NH fragments are all essentially planar (for C1/O1/N1/N2, r.m.s. deviation from the least-squares plane = 0.0021 Å; for C2/O2/N2/N3, 0.0017 Å; for C3/O3/N4/N5, 0.0023 Å; for C4/O4/N5/N6, 0.0032 Å). The dihedral angle between the C1- and C2-containing fragments is 4.8 (3)°, with a corresponding value of 3.19 (3)° for the C3 and C4 fragments. This configuration can be compared with a twist angle between the fused H2N—CO—NH fragments of 6.35° in [Cu(C2H5N3O2)2]Cl2 (Freeman & Smith, 1966). The dihedral angle between mean planes of the two biuret ligand molecules in (I) is 1.90 (13)°.
The Ni atom in (I) is slightly displaced from the least-squares plane of the approximate square of biuret O atoms (O1–O4) coordinating to it, by 0.0086 (13) Å. The biuret O4 square itself is slightly folded, with deviations from the O1–O4 mean plane of −0.0121 (12), 0.0119 (12), 0.0121 (12) and −0.0119 (12) Å for atoms O1, O2, O3 and O4, respectively. In the copper analogue (Freeman & Smith, 1966), the CuO4 square is constrained by space-group symmetry to be perfectly flat. Overall, the [Ni(C2H5N3O2)2]2+ grouping in (I) is close to planar [r.m.s. deviation from the mean plane = 0.030 Å; maximum deviation = 0.076 (3) Å for N2], whereas the [Cu(C2H5N3O2)2]2+ grouping in [Cu(C2H5N3O2)2]Cl2 is distinctly puckered (Freeman & Smith, 1966) about the O⋯O′ axes (bite lines) of the biuret molecules. As well as electrostatic and numerous hydrogen bonds (Table 2) help to define the crystal packing in (I). These include N—H⋯O bonds (mean H⋯O = 2.17 Å, mean N—H⋯O = 164° and mean N⋯O = 2.991 Å) to O acceptors from both the biuret and the water ligands, N—H⋯Cl interactions (mean H⋯Cl = 2.46 Å, mean N—H⋯Cl = 162° and mean N⋯Cl = 3.278 Å) and O—H⋯Cl interactions (mean H⋯Cl = 2.19 Å, mean O—H⋯Cl = 159° and mean O⋯Cl = 3.068 Å).
Perhaps the most interesting hydrogen bonds are N3—H4⋯O3iii and N4—H6⋯O2iv (see Fig. 2 and Table 2 for symmetry information), which link the [Ni(C2H5N3O2)2(H2O)2]2+ groupings into a chain propagating along [100]. The supramolecular (Bernstein et al., 1995) motif is an R22(8) ring. The remaining H bonds serve to crosslink the [100] chains into a three-dimensional network (Fig. 3) via the chloride ions. Overall, Cl1 and Cl2 accept five hydrogen bonds each.
Experimental
Aqueous solutions of NiCl2 and biuret (both 0.1 M) were mixed in a 1:1 ratio at room temperature, resulting in a green solution. Small block-like green crystals of (I) grew over the course of a few days as the water slowly evaporated and were harvested by vacuum filtration and washing with acetone.
Crystal data
|
Refinement
|
|
The water H atoms were found in difference maps and were refined as riding on their carrier atoms in their as-found relative positions. The N-bound H atoms were placed in calculated positions assuming sp2 for the N atoms and refined as riding on their carrier atoms. The constraint Uiso(H) = 1.2Ueq(carrier atom) was applied in all cases.
Data collection: SMART (Bruker, 1999); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536805004393/sj6047sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805004393/sj6047Isup2.hkl
Data collection: SMART (Bruker, 1999); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.[Ni(C2H5N3O2)2(H2O)2]Cl2 | F(000) = 760 |
Mr = 371.82 | Dx = 1.780 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3015 reflections |
a = 7.3872 (4) Å | θ = 3.0–29.5° |
b = 27.5675 (16) Å | µ = 1.82 mm−1 |
c = 7.6687 (4) Å | T = 293 K |
β = 117.344 (1)° | Block, green |
V = 1387.21 (13) Å3 | 0.15 × 0.12 × 0.10 mm |
Z = 4 |
Bruker SMART 1000 CCD diffractometer | 4037 independent reflections |
Radiation source: fine-focus sealed tube | 2416 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −10→8 |
Tmin = 0.773, Tmax = 0.839 | k = −38→38 |
14042 measured reflections | l = −9→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3 |
4037 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.76 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.80268 (6) | 0.125527 (13) | 0.32664 (6) | 0.03046 (12) | |
C1 | 0.8121 (5) | 0.02016 (11) | 0.2587 (5) | 0.0363 (8) | |
C2 | 1.1095 (5) | 0.06564 (11) | 0.2773 (5) | 0.0406 (8) | |
N1 | 0.7399 (4) | −0.02492 (10) | 0.2330 (5) | 0.0531 (9) | |
H1 | 0.6234 | −0.0305 | 0.2287 | 0.064* | |
H2 | 0.8099 | −0.0484 | 0.2208 | 0.064* | |
N2 | 1.0015 (4) | 0.02374 (10) | 0.2650 (4) | 0.0419 (7) | |
H3 | 1.0587 | −0.0031 | 0.2607 | 0.050* | |
N3 | 1.2783 (5) | 0.05885 (11) | 0.2623 (6) | 0.0654 (11) | |
H4 | 1.3544 | 0.0832 | 0.2697 | 0.078* | |
H5 | 1.3123 | 0.0301 | 0.2451 | 0.078* | |
O1 | 0.7160 (3) | 0.05514 (7) | 0.2769 (4) | 0.0407 (6) | |
O2 | 1.0539 (3) | 0.10651 (8) | 0.3023 (4) | 0.0434 (6) | |
C3 | 0.4936 (5) | 0.18368 (11) | 0.3785 (5) | 0.0365 (7) | |
C4 | 0.7877 (5) | 0.23070 (11) | 0.3984 (5) | 0.0345 (7) | |
N4 | 0.3254 (5) | 0.18961 (11) | 0.3945 (5) | 0.0589 (9) | |
H6 | 0.2503 | 0.1650 | 0.3861 | 0.071* | |
H7 | 0.2904 | 0.2181 | 0.4135 | 0.071* | |
N5 | 0.6018 (4) | 0.22604 (9) | 0.3972 (4) | 0.0414 (7) | |
H8 | 0.5465 | 0.2524 | 0.4095 | 0.050* | |
N6 | 0.8615 (5) | 0.27574 (9) | 0.4285 (5) | 0.0494 (8) | |
H9 | 0.9761 | 0.2816 | 0.4292 | 0.059* | |
H10 | 0.7944 | 0.2989 | 0.4473 | 0.059* | |
O3 | 0.5507 (3) | 0.14320 (7) | 0.3511 (3) | 0.0367 (5) | |
O4 | 0.8813 (3) | 0.19646 (7) | 0.3708 (3) | 0.0367 (5) | |
O5 | 0.9625 (3) | 0.11171 (8) | 0.6268 (3) | 0.0414 (6) | |
H11 | 0.8746 | 0.1024 | 0.6790 | 0.050* | |
H12 | 1.0370 | 0.1374 | 0.6995 | 0.050* | |
O6 | 0.6618 (3) | 0.14025 (7) | 0.0272 (3) | 0.0385 (5) | |
H13 | 0.6310 | 0.1096 | −0.0452 | 0.046* | |
H14 | 0.5429 | 0.1508 | 0.0129 | 0.046* | |
Cl1 | 0.25969 (13) | 0.19350 (3) | 0.87623 (14) | 0.0473 (2) | |
Cl2 | 0.70170 (15) | 0.05765 (3) | 0.78053 (15) | 0.0485 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0271 (2) | 0.02096 (17) | 0.0516 (3) | −0.00128 (16) | 0.02523 (18) | −0.00374 (17) |
C1 | 0.0340 (18) | 0.0300 (15) | 0.046 (2) | −0.0049 (13) | 0.0197 (17) | −0.0057 (13) |
C2 | 0.0303 (17) | 0.0339 (17) | 0.059 (2) | −0.0039 (14) | 0.0220 (17) | −0.0066 (15) |
N1 | 0.0429 (18) | 0.0282 (14) | 0.101 (3) | −0.0037 (12) | 0.0440 (19) | −0.0091 (15) |
N2 | 0.0354 (16) | 0.0285 (14) | 0.070 (2) | 0.0013 (11) | 0.0310 (16) | −0.0050 (13) |
N3 | 0.0457 (18) | 0.0348 (16) | 0.140 (3) | −0.0083 (14) | 0.063 (2) | −0.0249 (18) |
O1 | 0.0345 (12) | 0.0243 (11) | 0.0723 (16) | −0.0021 (9) | 0.0322 (12) | −0.0070 (10) |
O2 | 0.0354 (12) | 0.0303 (11) | 0.0780 (18) | −0.0031 (10) | 0.0377 (13) | −0.0103 (11) |
C3 | 0.0331 (18) | 0.0339 (16) | 0.049 (2) | −0.0029 (14) | 0.0242 (16) | −0.0034 (14) |
C4 | 0.0314 (17) | 0.0336 (16) | 0.0414 (19) | −0.0041 (13) | 0.0191 (16) | −0.0028 (14) |
N4 | 0.0500 (19) | 0.0343 (16) | 0.120 (3) | −0.0020 (14) | 0.062 (2) | −0.0050 (17) |
N5 | 0.0369 (16) | 0.0295 (14) | 0.069 (2) | −0.0034 (12) | 0.0344 (16) | −0.0088 (13) |
N6 | 0.0484 (18) | 0.0267 (14) | 0.092 (3) | −0.0073 (13) | 0.0484 (19) | −0.0138 (14) |
O3 | 0.0318 (12) | 0.0256 (10) | 0.0634 (16) | −0.0018 (9) | 0.0309 (12) | −0.0046 (10) |
O4 | 0.0349 (12) | 0.0255 (10) | 0.0611 (15) | −0.0037 (9) | 0.0320 (12) | −0.0080 (10) |
O5 | 0.0379 (13) | 0.0349 (12) | 0.0555 (15) | −0.0046 (10) | 0.0251 (12) | −0.0016 (10) |
O6 | 0.0378 (13) | 0.0303 (11) | 0.0530 (14) | 0.0005 (9) | 0.0257 (12) | −0.0044 (10) |
Cl1 | 0.0364 (4) | 0.0373 (4) | 0.0693 (6) | 0.0004 (4) | 0.0253 (5) | −0.0030 (4) |
Cl2 | 0.0576 (6) | 0.0355 (4) | 0.0704 (6) | −0.0030 (4) | 0.0449 (5) | −0.0062 (4) |
Ni1—O3 | 2.014 (2) | N3—H5 | 0.8600 |
Ni1—O2 | 2.018 (2) | C3—O3 | 1.245 (4) |
Ni1—O4 | 2.024 (2) | C3—N4 | 1.314 (4) |
Ni1—O1 | 2.024 (2) | C3—N5 | 1.385 (4) |
Ni1—O6 | 2.080 (2) | C4—O4 | 1.244 (4) |
Ni1—O5 | 2.083 (2) | C4—N6 | 1.333 (4) |
C1—O1 | 1.243 (4) | C4—N5 | 1.375 (4) |
C1—N1 | 1.331 (4) | N4—H6 | 0.8600 |
C1—N2 | 1.382 (4) | N4—H7 | 0.8600 |
C2—O2 | 1.244 (4) | N5—H8 | 0.8600 |
C2—N3 | 1.317 (4) | N6—H9 | 0.8600 |
C2—N2 | 1.382 (4) | N6—H10 | 0.8600 |
N1—H1 | 0.8600 | O5—H11 | 0.9419 |
N1—H2 | 0.8600 | O5—H12 | 0.9121 |
N2—H3 | 0.8600 | O6—H13 | 0.9778 |
N3—H4 | 0.8600 | O6—H14 | 0.8833 |
O3—Ni1—O2 | 178.94 (8) | C2—N3—H5 | 120.0 |
O3—Ni1—O4 | 87.54 (8) | H4—N3—H5 | 120.0 |
O2—Ni1—O4 | 93.51 (8) | C1—O1—Ni1 | 128.1 (2) |
O3—Ni1—O1 | 91.35 (9) | C2—O2—Ni1 | 129.2 (2) |
O2—Ni1—O1 | 87.61 (9) | O3—C3—N4 | 122.4 (3) |
O4—Ni1—O1 | 178.38 (9) | O3—C3—N5 | 123.3 (3) |
O3—Ni1—O6 | 92.32 (9) | N4—C3—N5 | 114.3 (3) |
O2—Ni1—O6 | 87.91 (10) | O4—C4—N6 | 121.4 (3) |
O4—Ni1—O6 | 87.47 (9) | O4—C4—N5 | 124.0 (3) |
O1—Ni1—O6 | 91.41 (9) | N6—C4—N5 | 114.6 (3) |
O3—Ni1—O5 | 91.17 (9) | C3—N4—H6 | 120.0 |
O2—Ni1—O5 | 88.63 (10) | C3—N4—H7 | 120.0 |
O4—Ni1—O5 | 91.04 (9) | H6—N4—H7 | 120.0 |
O1—Ni1—O5 | 90.15 (9) | C4—N5—C3 | 127.3 (3) |
O6—Ni1—O5 | 176.14 (9) | C4—N5—H8 | 116.3 |
O1—C1—N1 | 122.1 (3) | C3—N5—H8 | 116.3 |
O1—C1—N2 | 124.2 (3) | C4—N6—H9 | 120.0 |
N1—C1—N2 | 113.7 (3) | C4—N6—H10 | 120.0 |
O2—C2—N3 | 122.4 (3) | H9—N6—H10 | 120.0 |
O2—C2—N2 | 123.1 (3) | C3—O3—Ni1 | 129.2 (2) |
N3—C2—N2 | 114.5 (3) | C4—O4—Ni1 | 128.5 (2) |
C1—N1—H1 | 120.0 | Ni1—O5—H11 | 111.6 |
C1—N1—H2 | 120.0 | Ni1—O5—H12 | 114.2 |
H1—N1—H2 | 120.0 | H11—O5—H12 | 107.0 |
C1—N2—C2 | 127.3 (3) | Ni1—O6—H13 | 109.0 |
C1—N2—H3 | 116.4 | Ni1—O6—H14 | 99.6 |
C2—N2—H3 | 116.4 | H13—O6—H14 | 104.8 |
C2—N3—H4 | 120.0 | ||
O1—C1—N2—C2 | −5.1 (6) | O4—C4—N5—C3 | 4.3 (6) |
N1—C1—N2—C2 | 175.6 (3) | N6—C4—N5—C3 | −176.8 (3) |
O2—C2—N2—C1 | 6.7 (6) | O3—C3—N5—C4 | −3.3 (6) |
N3—C2—N2—C1 | −173.9 (3) | N4—C3—N5—C4 | 176.0 (3) |
N1—C1—O1—Ni1 | 177.6 (3) | N4—C3—O3—Ni1 | −178.9 (3) |
N2—C1—O1—Ni1 | −1.7 (5) | N5—C3—O3—Ni1 | 0.3 (5) |
O3—Ni1—O1—C1 | −175.2 (3) | O4—Ni1—O3—C3 | 1.1 (3) |
O2—Ni1—O1—C1 | 4.6 (3) | O1—Ni1—O3—C3 | −177.7 (3) |
O6—Ni1—O1—C1 | 92.5 (3) | O6—Ni1—O3—C3 | −86.3 (3) |
O5—Ni1—O1—C1 | −84.0 (3) | O5—Ni1—O3—C3 | 92.1 (3) |
N3—C2—O2—Ni1 | 179.4 (3) | N6—C4—O4—Ni1 | 178.9 (2) |
N2—C2—O2—Ni1 | −1.3 (5) | N5—C4—O4—Ni1 | −2.2 (5) |
O4—Ni1—O2—C2 | 178.0 (3) | O3—Ni1—O4—C4 | −0.1 (3) |
O1—Ni1—O2—C2 | −3.2 (3) | O2—Ni1—O4—C4 | −179.9 (3) |
O6—Ni1—O2—C2 | −94.7 (3) | O6—Ni1—O4—C4 | 92.3 (3) |
O5—Ni1—O2—C2 | 87.0 (3) | O5—Ni1—O4—C4 | −91.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl2i | 0.86 | 2.49 | 3.340 (3) | 173 |
N1—H2···O5ii | 0.86 | 2.33 | 3.089 (4) | 147 |
N2—H3···Cl2ii | 0.86 | 2.45 | 3.266 (3) | 158 |
N3—H4···O3iii | 0.86 | 2.10 | 2.943 (4) | 168 |
N3—H5···Cl2ii | 0.86 | 2.43 | 3.239 (3) | 158 |
N4—H6···O2iv | 0.86 | 2.06 | 2.910 (4) | 168 |
N4—H7···Cl1v | 0.86 | 2.45 | 3.252 (3) | 155 |
N5—H8···Cl1v | 0.86 | 2.51 | 3.310 (3) | 156 |
N6—H9···Cl1vi | 0.86 | 2.41 | 3.259 (3) | 169 |
N6—H10···O6vii | 0.86 | 2.17 | 3.023 (3) | 173 |
O5—H11···Cl2 | 0.94 | 2.16 | 3.068 (2) | 161 |
O5—H12···Cl1iii | 0.91 | 2.21 | 3.115 (2) | 171 |
O6—H13···Cl2viii | 0.98 | 2.18 | 3.060 (2) | 149 |
O6—H14···Cl1viii | 0.88 | 2.20 | 3.027 (2) | 155 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) x−1, y, z; (v) x, −y+1/2, z−1/2; (vi) x+1, −y+1/2, z−1/2; (vii) x, −y+1/2, z+1/2; (viii) x, y, z−1. |
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (1999). SMART (Version 5.624), SAINT-Plus (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Freeman, H. C. & Smith, J. E. W. L. (1966). Acta Cryst. 20, 153–159. CSD CrossRef CAS IUCr Journals Google Scholar
Haddad, S. F. (1987). Acta Cryst. C43, 1882–1885. CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M., Faca, G. & Giraldi, G. (1963). Acta Cryst. 16, 343–352. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Pajunen, A. & Pajunen, S. (1982). Acta Cryst. B38, 1586–1588. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Wiedemann, G. (1848). Ann. Chem. 68, 324–330. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.