metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­[1,3-bis­­(di­phenyl­phosphino)­propane-κ2P,P′]­nickel(0)

CROSSMARK_Color_square_no_text.svg

aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, England
*Correspondence e-mail: sianc.davies@bbsrc.ac.uk

(Received 9 February 2005; accepted 15 February 2005; online 26 February 2005)

The neutral title complex, [Ni(C27H26P2)2], contains a distorted tetrahedrally coordinated Ni0 atom lying on a twofold rotation axis. The bridging propane groups of the ligands are twisted by approximately 90° with respect to each other.

Comment

As part of our ongoing studies to synthesize nickel compounds relevant to the structure and function of the microbial nickel-containing enzyme acetyl–CoA synthase, a range of new starting materials is required (Duff et al., 2005[Duff, S. E., Barclay, J. E., Davies, S. C. & Evans, D. J. (2005). Inorg. Chem. Commun. 8, 170-173.]; Evans, 2005[Evans, D. J. (2005). Coord. Chem. Rev. In the press. (Available online at www.sciencedirect.com; doi:10.1016/j.ccr.2004.09.012.)]). The title compound, (I[link]), was obtained as a minor product from the attempted methyl­ation of [NiCl2(dppp)], where dppp is 1,3-bis­(di­phenyl­phosphino)­propane. Nickel(0) diphosphine (diphos) compounds of the type [Ni(diphos)2] were first prepared 45 years ago by Chatt & Hart (1960[Chatt, J. & Hart, F. A. (1960). J. Chem. Soc. pp. 1378-1389.]). Compound (I[link]) has since been prepared by various methods (van Hecke & Horrocks, 1966[Hecke, G. R. van & Horrocks, W. D. Jr (1966). Inorg. Chem. pp. 1968-1974.]; Giannoccaro & Vasapollo, 1983[Giannoccaro, P. & Vasapollo, G. (1983). Inorg. Chim. Acta, 72, 51-55.]; Fisher & Alyea, 1989[Fisher, K. J. & Alyea, E. C. (1989). Polyhedron, 8, 13-15.]; Bricout et al., 1995[Bricout, H., Carpentier, J.-F. & Mortreux, A. (1995). J. Chem. Soc. Chem Commun. pp. 1863-1864.]), but its structure has not been reported until now. [link]

[Scheme 1]

In (I[link]), the Ni atom, which lies on a twofold rotation axis, displays a distorted tetrahedral coordination geometry; bond lengths to the P atoms are as expected, while the P—Ni—P angles range from 99.52 (2)° within one dppp ligand to 120.49 (3)° between the ligands (see Table 1[link]). The ligands are arranged unsymmetrically about the Ni atom, with P—Ni—P angles between the ligands of 106.38 (3) and 115.43 (3)°. The P atoms are also distorted tetrahedral, with angles ranging from 98.58 (9) to 122.21 (6)°; the trend is for angles involving the Ni atom and the ligating phenyl C atoms to be the largest and the angles involving the bridging C atoms and the ligating phenyl C atoms to be the smallest. The P—C—C and C—C—C angles about the bridging C atoms are also distorted, being slightly larger than the ideal tetrahedral value (see Table 1[link]). Dimensions within the phenyl rings are not unusual.

Each mol­ecule is arranged with the bridging propane groups twisted by approximately 90° with respect to each other, the angle between the normals to the NiP2 planes being 92.44 (2)°. When viewed along the twofold rotation axis, three of the phenyl rings of each dppp ligand lie with their normals at approximately right angles to the crystallographic b axis. The normal to the fourth phenyl ring in each ligand is approximately parallel to the crystallographic b axis. The mol­ecules are arranged in chains parallel to the crystallographic c axis, with four chains enclosing a channel parallel to the c axis with normal van der Waals contacts binding the mol­ecules within and across the rows (see Fig. 2[link]).

The structure of the related compound [Ni(dppe)2], (II), where dppe is 1,2-bis­(di­phenyl­phosphino)­ethane, has been reported previously (Hartung et al., 1989[Hartung, H., Baumeister, U., Walther, B. & Maschmeier, M. (1989). Z. Anorg. Allg. Chem. 578, 177-184.]). The distorted tetrahedral coordination about the Ni atom is similar in both mol­ecules, with bond lengths to the Ni atom in (II) lying in the range 2.152 (3)–2.177 (3) Å. Bond angles are slightly different in the two, due to the steric effects of an ethyl rather than a propyl bridging group; in complex (II), the P—Ni—P angles within ligands are 90.8 (1) and 90.1 (1)°, while interligand P—Ni—P angles lie between 113.8 (1) and 129.3 (1)°.

[Figure 1]
Figure 1
A view of (I[link]), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) −x, y, ½ − z.]
[Figure 2]
Figure 2
Packing diagram of (I[link]), viewed along the crystallographic c axis. Atoms are represented by arbitrary spheres. H atoms have been omitted.

Experimental

To a stirred slurry of [NiCl2(dppp)] (0.20 g, 0.37 mmol) in tetra­hydro­furan (13 ml) was added a solution of methyl magnesium iodide in diethyl ether (3 M solution, 1.6 ml, 4.8 mmol) and additional tetra­hydro­furan (20 ml). After 2 d, the mixture was filtered, and the filtrate was allowed to stand for two weeks; the solvent was then removed in vacuo. The solid residue was washed with diethyl ether to give a mixture of a brown solid and orange crystals of (I[link]).

Crystal data
  • [Ni(C27H26P2)2]

  • Mr = 883.55

  • Monoclinic, C2/c

  • a = 18.303 (6) Å

  • b = 13.212 (2) Å

  • c = 20.023 (4) Å

  • β = 109.67 (2)°

  • V = 4559 (2) Å3

  • Z = 4

  • Dx = 1.287 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 10–11°

  • μ = 0.60 mm−1

  • T = 293 (2) K

  • Rhomb, orange

  • 0.67 × 0.52 × 0.24 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/θ scans

  • Absorption correction: ψ scan (EMPABS; Sheldrick et al., 1977[Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford. Abstracts, p. 147.]) Tmin = 0.823, Tmax = 0.865

  • 7286 measured reflections

  • 6631 independent reflections

  • 4569 reflections with I > 2σ(I)

  • Rint = 0.008

  • θmax = 30°

  • h = −1 → 25

  • k = −1 → 18

  • l = −28 → 28

  • 3 standard reflections frequency: 167 min intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.07

  • 6631 reflections

  • 371 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.033P)2 + 0.7751P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—P1 2.1752 (6)
Ni1—P1i 2.1753 (6)
Ni1—P2 2.1790 (6)
Ni1—P2i 2.1790 (6)
P1—C121 1.8413 (18)
P1—C111 1.8449 (18)
P1—C12 1.8484 (19)
P2—C21 1.8473 (19)
P2—C211 1.8486 (19)
P2—C221 1.8552 (19)
P1—Ni1—P1i 106.38 (3)
P1—Ni1—P2 99.52 (2)
P1i—Ni1—P2 115.43 (3)
P1—Ni1—P2i 115.43 (3)
P1i—Ni1—P2i 99.51 (2)
P2—Ni1—P2i 120.49 (3)
C121—P1—C111 100.36 (8)
C121—P1—C12 100.74 (9)
C111—P1—C12 98.71 (9)
C121—P1—Ni1 118.59 (6)
C111—P1—Ni1 119.59 (6)
C12—P1—Ni1 115.31 (7)
C21—P2—C211 98.92 (9)
C21—P2—C221 98.58 (9)
C211—P2—C221 99.78 (9)
C21—P2—Ni1 112.49 (7)
C211—P2—Ni1 122.21 (6)
C221—P2—Ni1 120.47 (7)
C1—C12—P1 113.75 (14)
C12—C1—C21 113.54 (17)
C1—C21—P2 113.02 (13)
Ni1—P1—C12—C1 −46.88 (17)
P1—C12—C1—C21 73.0 (2)
C12—C1—C21—P2 −78.6 (2)
C1—C21—P2—Ni1 55.34 (16)
Symmetry code: (i) [-x,y,{\script{1\over 2}}-z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 Processing Program (Hursthouse, 1976[Hursthouse, M. B. (1976). CAD-4 Processing Program. Queen Mary College, London.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: CAD-4 Processing Program (Hursthouse, 1976); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

bis[1,3-bis(diphenylphosphino)propane]nickel(0) top
Crystal data top
[Ni(C27H26P2)2]F(000) = 1856
Mr = 883.55Dx = 1.287 Mg m3
Monoclinic, C2/cMo_ Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 18.303 (6) Åθ = 10–11°
b = 13.212 (2) ŵ = 0.60 mm1
c = 20.023 (4) ÅT = 293 K
β = 109.67 (2)°Rhomb, orange
V = 4559 (2) Å30.67 × 0.52 × 0.24 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
4569 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 30°, θmin = 1.5°
ω/θ scansh = 125
Absorption correction: ψ scan
(EMPABS; Sheldrick et al., 1977)
k = 118
Tmin = 0.823, Tmax = 0.865l = 2828
7286 measured reflections3 standard reflections every 167 min
6631 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.033P)2 + 0.7751P]
where P = (Fo2 + 2Fc2)/3
6631 reflections(Δ/σ)max = 0.003
371 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. Data were corrected for Lorentz polarization effects (Hursthouse, 1976), absorption by semiempirical ψ-scan methods (Sheldrick et al., 1977) and negative intensities by Bayesian statistics (French & Wilson, 1978).

French, S. & Wilson, K. (1978). Acta Cryst. A34, 517–525.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.00211 (2)0.25000.02603 (8)
P10.04468 (2)0.10075 (3)0.34176 (2)0.02942 (10)
P20.08743 (2)0.07975 (3)0.28021 (2)0.03126 (10)
C1110.12759 (10)0.05877 (14)0.41856 (9)0.0344 (4)
C1120.13913 (11)0.04289 (16)0.43062 (10)0.0406 (4)
H1120.1056 (13)0.0891 (17)0.3983 (12)0.057 (7)*
C1130.19995 (13)0.07926 (18)0.48799 (11)0.0502 (5)
H1130.2042 (14)0.155 (2)0.4927 (13)0.074 (8)*
C1140.25006 (13)0.0130 (2)0.53318 (11)0.0570 (6)
H1140.2924 (13)0.0361 (17)0.5729 (12)0.057 (6)*
C1150.23919 (15)0.0889 (2)0.52262 (13)0.0682 (7)
H1150.2733 (16)0.141 (2)0.5581 (14)0.085 (8)*
C1160.17854 (14)0.12530 (18)0.46590 (12)0.0567 (6)
H1160.1697 (14)0.1929 (19)0.4588 (12)0.063 (7)*
C1210.07722 (10)0.22882 (13)0.32874 (8)0.0333 (4)
C1220.04587 (12)0.31772 (16)0.34380 (11)0.0457 (5)
H1220.0055 (13)0.3146 (17)0.3628 (12)0.059 (7)*
C1230.07029 (14)0.41097 (17)0.32785 (13)0.0565 (6)
H1230.0494 (13)0.4704 (19)0.3373 (12)0.059 (7)*
C1240.12711 (15)0.41724 (18)0.29788 (12)0.0570 (6)
H1240.1449 (15)0.481 (2)0.2875 (13)0.075 (8)*
C1250.16018 (14)0.33040 (18)0.28383 (11)0.0533 (5)
H1250.1982 (14)0.3318 (19)0.2608 (13)0.073 (8)*
C1260.13487 (12)0.23706 (16)0.29849 (11)0.0441 (4)
H1260.1576 (12)0.1790 (16)0.2872 (10)0.049 (6)*
C120.02427 (11)0.13028 (16)0.38852 (10)0.0387 (4)
H12A0.0594 (11)0.1765 (15)0.3599 (10)0.039 (5)*
H12B0.0039 (12)0.1644 (16)0.4323 (11)0.051 (6)*
C10.06657 (12)0.03820 (17)0.40259 (10)0.0419 (4)
H1A0.0319 (11)0.0144 (14)0.4246 (10)0.033 (5)*
H1B0.0900 (12)0.0558 (15)0.4353 (10)0.045 (6)*
C210.12839 (10)0.00308 (16)0.33623 (10)0.0383 (4)
H21A0.1655 (12)0.0442 (16)0.3475 (10)0.042 (5)*
H21B0.1575 (12)0.0511 (16)0.3064 (11)0.045 (6)*
C2110.17899 (10)0.12446 (15)0.21406 (9)0.0381 (4)
C2120.19222 (13)0.22572 (17)0.19513 (12)0.0478 (5)
H2120.1570 (11)0.2741 (15)0.2186 (10)0.041 (6)*
C2130.26050 (16)0.2561 (2)0.14274 (13)0.0605 (6)
H2130.2650 (15)0.328 (2)0.1318 (13)0.074 (8)*
C2140.31584 (15)0.1867 (2)0.10910 (13)0.0659 (7)
H2140.3636 (17)0.204 (2)0.0721 (15)0.095 (9)*
C2150.30412 (14)0.0864 (2)0.12650 (13)0.0610 (6)
H2150.3406 (16)0.034 (2)0.1062 (15)0.084 (9)*
C2160.23574 (12)0.05534 (18)0.17845 (11)0.0469 (5)
H2160.2283 (13)0.0155 (17)0.1895 (11)0.054 (7)*
C2210.06057 (11)0.19386 (14)0.33727 (10)0.0407 (4)
C2220.00923 (14)0.24073 (16)0.34617 (13)0.0509 (5)
H2220.0392 (14)0.2186 (19)0.3225 (13)0.069 (8)*
C2230.03409 (19)0.3226 (2)0.39189 (17)0.0753 (8)
H2230.0810 (16)0.349 (2)0.3959 (14)0.078 (9)*
C2240.0111 (2)0.3577 (2)0.42868 (17)0.0862 (10)
H2240.0044 (18)0.409 (2)0.4578 (16)0.094 (10)*
C2250.0812 (2)0.3138 (2)0.41992 (17)0.0876 (10)
H2250.1124 (18)0.341 (2)0.4459 (16)0.103 (10)*
C2260.10644 (17)0.2326 (2)0.37443 (15)0.0663 (7)
H2260.1560 (15)0.199 (2)0.3690 (13)0.082 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02445 (14)0.02904 (15)0.02616 (14)0.0000.01059 (11)0.000
P10.0278 (2)0.0329 (2)0.0280 (2)0.00107 (17)0.00993 (16)0.00261 (17)
P20.0289 (2)0.0340 (2)0.0336 (2)0.00280 (17)0.01413 (17)0.00095 (18)
C1110.0335 (9)0.0417 (10)0.0273 (8)0.0000 (7)0.0093 (7)0.0011 (7)
C1120.0436 (10)0.0457 (11)0.0313 (9)0.0015 (9)0.0110 (8)0.0024 (8)
C1130.0575 (13)0.0526 (13)0.0406 (10)0.0115 (11)0.0167 (10)0.0071 (10)
C1140.0456 (12)0.0739 (17)0.0404 (11)0.0060 (11)0.0000 (9)0.0150 (11)
C1150.0611 (15)0.0683 (17)0.0513 (13)0.0150 (13)0.0124 (11)0.0063 (12)
C1160.0598 (14)0.0455 (12)0.0473 (12)0.0082 (11)0.0051 (10)0.0029 (10)
C1210.0341 (9)0.0337 (9)0.0281 (8)0.0029 (7)0.0051 (7)0.0021 (7)
C1220.0453 (11)0.0382 (10)0.0521 (11)0.0005 (9)0.0144 (9)0.0064 (9)
C1230.0609 (14)0.0353 (11)0.0638 (14)0.0009 (10)0.0085 (12)0.0059 (10)
C1240.0652 (15)0.0409 (12)0.0541 (13)0.0170 (11)0.0058 (11)0.0035 (10)
C1250.0560 (13)0.0559 (14)0.0495 (12)0.0181 (11)0.0196 (10)0.0004 (10)
C1260.0451 (11)0.0450 (11)0.0440 (10)0.0027 (9)0.0173 (9)0.0016 (9)
C120.0372 (10)0.0452 (11)0.0372 (9)0.0001 (8)0.0172 (8)0.0089 (8)
C10.0436 (11)0.0547 (12)0.0346 (9)0.0010 (9)0.0227 (8)0.0032 (9)
C210.0343 (9)0.0457 (11)0.0414 (9)0.0031 (9)0.0214 (8)0.0014 (9)
C2110.0342 (9)0.0468 (11)0.0377 (9)0.0108 (8)0.0180 (8)0.0013 (8)
C2120.0477 (12)0.0490 (12)0.0515 (12)0.0092 (10)0.0231 (10)0.0072 (10)
C2130.0672 (16)0.0634 (16)0.0570 (13)0.0298 (13)0.0291 (12)0.0210 (12)
C2140.0538 (14)0.093 (2)0.0480 (13)0.0289 (14)0.0132 (11)0.0053 (13)
C2150.0432 (12)0.0832 (19)0.0508 (12)0.0117 (13)0.0080 (10)0.0121 (13)
C2160.0392 (10)0.0542 (13)0.0456 (11)0.0085 (9)0.0121 (9)0.0055 (10)
C2210.0448 (10)0.0371 (10)0.0412 (10)0.0045 (8)0.0158 (8)0.0046 (8)
C2220.0527 (13)0.0392 (11)0.0606 (13)0.0006 (10)0.0186 (11)0.0066 (10)
C2230.0733 (18)0.0480 (14)0.095 (2)0.0121 (14)0.0153 (16)0.0154 (14)
C2240.117 (3)0.0536 (17)0.083 (2)0.0052 (18)0.0271 (19)0.0309 (15)
C2250.128 (3)0.0631 (18)0.090 (2)0.0032 (19)0.060 (2)0.0292 (16)
C2260.0747 (17)0.0596 (15)0.0774 (17)0.0023 (13)0.0426 (14)0.0234 (13)
Geometric parameters (Å, º) top
Ni1—P12.1752 (6)C126—H1260.94 (2)
Ni1—P1i2.1753 (6)C12—C11.519 (3)
Ni1—P22.1790 (6)C12—H12A0.93 (2)
Ni1—P2i2.1790 (6)C12—H12B0.97 (2)
P1—C1211.8413 (18)C1—C211.527 (3)
P1—C1111.8449 (18)C1—H1A0.944 (19)
P1—C121.8484 (19)C1—H1B0.93 (2)
P2—C211.8473 (19)C21—H21A0.95 (2)
P2—C2111.8486 (19)C21—H21B0.97 (2)
P2—C2211.8552 (19)C211—C2161.387 (3)
C111—C1121.369 (3)C211—C2121.389 (3)
C111—C1161.395 (3)C212—C2131.393 (3)
C112—C1131.389 (3)C212—H2120.92 (2)
C112—H1120.95 (2)C213—C2141.364 (4)
C113—C1141.366 (3)C213—H2130.97 (3)
C113—H1131.00 (3)C214—C2151.369 (4)
C114—C1151.368 (3)C214—H2140.96 (3)
C114—H1140.95 (2)C215—C2161.393 (3)
C115—C1161.380 (3)C215—H2150.95 (3)
C115—H1151.03 (3)C216—H2160.96 (2)
C116—H1160.91 (2)C221—C2221.376 (3)
C121—C1221.384 (3)C221—C2261.393 (3)
C121—C1261.386 (3)C222—C2231.390 (3)
C122—C1231.384 (3)C222—H2220.89 (2)
C122—H1220.94 (2)C223—C2241.361 (4)
C123—C1241.367 (4)C223—H2230.91 (3)
C123—H1230.92 (2)C224—C2251.365 (5)
C124—C1251.370 (3)C224—H2240.87 (3)
C124—H1240.95 (3)C225—C2261.381 (4)
C125—C1261.383 (3)C225—H2250.96 (3)
C125—H1250.95 (3)C226—H2260.98 (3)
P1—Ni1—P1i106.38 (3)C1—C12—P1113.75 (14)
P1—Ni1—P299.52 (2)C1—C12—H12A110.4 (12)
P1i—Ni1—P2115.43 (3)P1—C12—H12A106.0 (12)
P1—Ni1—P2i115.43 (3)C1—C12—H12B110.8 (12)
P1i—Ni1—P2i99.51 (2)P1—C12—H12B108.1 (12)
P2—Ni1—P2i120.49 (3)H12A—C12—H12B107.5 (17)
C121—P1—C111100.36 (8)C12—C1—C21113.54 (17)
C121—P1—C12100.74 (9)C12—C1—H1A111.8 (11)
C111—P1—C1298.71 (9)C21—C1—H1A109.2 (11)
C121—P1—Ni1118.59 (6)C12—C1—H1B108.5 (13)
C111—P1—Ni1119.59 (6)C21—C1—H1B108.8 (13)
C12—P1—Ni1115.31 (7)H1A—C1—H1B104.7 (17)
C21—P2—C21198.92 (9)C1—C21—P2113.02 (13)
C21—P2—C22198.58 (9)C1—C21—H21A112.1 (12)
C211—P2—C22199.78 (9)P2—C21—H21A107.3 (12)
C21—P2—Ni1112.49 (7)C1—C21—H21B111.4 (12)
C211—P2—Ni1122.21 (6)P2—C21—H21B106.4 (12)
C221—P2—Ni1120.47 (7)H21A—C21—H21B106.2 (17)
C112—C111—C116118.06 (18)C216—C211—C212117.54 (19)
C112—C111—P1118.49 (14)C216—C211—P2119.96 (15)
C116—C111—P1123.44 (16)C212—C211—P2122.40 (16)
C111—C112—C113121.25 (19)C211—C212—C213120.8 (2)
C111—C112—H112119.0 (13)C211—C212—H212120.2 (13)
C113—C112—H112119.7 (13)C213—C212—H212118.9 (13)
C114—C113—C112119.9 (2)C214—C213—C212120.5 (2)
C114—C113—H113124.1 (14)C214—C213—H213123.5 (15)
C112—C113—H113116.0 (14)C212—C213—H213116.0 (16)
C113—C114—C115119.9 (2)C213—C214—C215119.9 (2)
C113—C114—H114121.5 (14)C213—C214—H214123.7 (18)
C115—C114—H114118.6 (14)C215—C214—H214116.4 (18)
C114—C115—C116120.3 (2)C214—C215—C216120.0 (3)
C114—C115—H115121.5 (15)C214—C215—H215124.4 (17)
C116—C115—H115118.0 (15)C216—C215—H215115.6 (17)
C115—C116—C111120.6 (2)C211—C216—C215121.3 (2)
C115—C116—H116121.4 (15)C211—C216—H216120.0 (13)
C111—C116—H116118.0 (15)C215—C216—H216118.8 (13)
C122—C121—C126117.44 (18)C222—C221—C226117.7 (2)
C122—C121—P1124.83 (15)C222—C221—P2119.18 (15)
C126—C121—P1117.65 (14)C226—C221—P2123.04 (17)
C123—C122—C121121.0 (2)C221—C222—C223121.3 (2)
C123—C122—H122119.4 (14)C221—C222—H222119.8 (16)
C121—C122—H122119.5 (14)C223—C222—H222119.0 (17)
C124—C123—C122120.5 (2)C224—C223—C222119.9 (3)
C124—C123—H123117.9 (15)C224—C223—H223123.1 (18)
C122—C123—H123121.5 (15)C222—C223—H223117.0 (18)
C123—C124—C125119.6 (2)C223—C224—C225120.1 (3)
C123—C124—H124121.2 (16)C223—C224—H224120 (2)
C125—C124—H124119.3 (16)C225—C224—H224120 (2)
C124—C125—C126120.0 (2)C224—C225—C226120.4 (3)
C124—C125—H125121.8 (16)C224—C225—H225118.4 (19)
C126—C125—H125118.0 (16)C226—C225—H225121.2 (19)
C125—C126—C121121.4 (2)C225—C226—C221120.6 (3)
C125—C126—H126118.1 (13)C225—C226—H226121.0 (16)
C121—C126—H126120.5 (13)C221—C226—H226118.3 (16)
Ni1—P1—C12—C146.88 (17)C12—C1—C21—P278.6 (2)
P1—C12—C1—C2173.0 (2)C1—C21—P2—Ni155.34 (16)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The BBSRC (UK) and the John Innes Foundation (SED) are thanked for financial support.

References

First citationBricout, H., Carpentier, J.-F. & Mortreux, A. (1995). J. Chem. Soc. Chem Commun. pp. 1863–1864.  CrossRef Web of Science Google Scholar
First citationChatt, J. & Hart, F. A. (1960). J. Chem. Soc. pp. 1378–1389.  CrossRef Web of Science Google Scholar
First citationDuff, S. E., Barclay, J. E., Davies, S. C. & Evans, D. J. (2005). Inorg. Chem. Commun. 8, 170–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEvans, D. J. (2005). Coord. Chem. Rev. In the press. (Available online at www.sciencedirect.com; doi:10.1016/j.ccr.2004.09.012.)  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFisher, K. J. & Alyea, E. C. (1989). Polyhedron, 8, 13–15.  CrossRef CAS Web of Science Google Scholar
First citationGiannoccaro, P. & Vasapollo, G. (1983). Inorg. Chim. Acta, 72, 51–55.  CrossRef CAS Web of Science Google Scholar
First citationHartung, H., Baumeister, U., Walther, B. & Maschmeier, M. (1989). Z. Anorg. Allg. Chem. 578, 177–184.  CSD CrossRef CAS Web of Science Google Scholar
First citationHecke, G. R. van & Horrocks, W. D. Jr (1966). Inorg. Chem. pp. 1968–1974.  Google Scholar
First citationHursthouse, M. B. (1976). CAD-4 Processing Program. Queen Mary College, London.  Google Scholar
First citationSheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). EMPABS. 4th European Crystallographic Meeting, Oxford. Abstracts, p. 147.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds