organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,5-Tri­chloro-6-(4-methyl­piperidin-1-yl)-1,4-benzo­quinone: a synchrotron study

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bDepartment of Physics, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: jmc61@cam.ac.uk

(Received 19 January 2005; accepted 4 February 2005; online 19 February 2005)

The title compound, C12H12Cl3NO2, is a purple chromophore with an absorption at 563 nm in acetone solution. The benzeno­id ring in the structure exhibits strong quinoid-like character. In the crystal structure, the mol­ecules pack in alternating layers that are stabilized by close Cl⋯Cl intermolecular contacts.

Comment

The reactions of primary, secondary and tertiary amines with 2,3,5,6-tetra­chloro-1,4-benzo­quinone (chloranil), which yield highly coloured products, are well documented (Sivadjian, 1935[Sivadjian, J. (1935). Bull. Soc. Chim. Fr. 2, 623-625.]; Buckley et al., 1957[Buckley, D., Dunstan, S. & Henbest, H. B. (1957). J. Chem. Soc. pp. 4880-4891.]; Buckley & Henbest, 1956[Buckley, D. & Henbest, H. B. (1956). Chem. Ind. pp. 1096-1096.]), and indeed the differently coloured products have been used as qualitative indicators of the degree of substitution on amines (Buuhoi et al., 1954[Buuhoi, N. P., Royer, R. & Huberthabart, M. (1954). Recl Trav. Chim. Pays-Bas 73, 188-192.]).

Recent interest has focused on the reactions of en­amines derived from tertiary amines with chloranil (Krivokapic & Anderson, 2002[Krivokapic, A. & Anderson, H. L. (2002). Acta Cryst. E58, o259-o260.]; Alnabari & Bittner, 2000[Alnabari, M. & Bittner, S. (2000). Synthesis, pp. 1087-1090.]) and other symmetrical quinoidal (Szablewski, 1994[Szablewski, M. (1994). J. Org. Chem. 59, 954-956.]) systems, yielding conjugated chromophores with long-wavelength absorptions which are of interest for non-linear optics.[link]

[Scheme 1]

The title compound, (I[link]), is the result of a reaction between the secondary amine 4-methyl­piperidine and chloranil. Although reactions between chloranil and heterocyclic secondary amines have been investigated (Smith & Davis, 1984[Smith, R. E. & Davis, W. R. (1984). Anal. Chem. 56, 2345-2349.]; Muralikrishna & Krishnamurthy, 1984[Muralikrishna, U. & Krishnamurthy, M. (1984). Spectrochim. Acta A, 40, 65-68.]), as have been photo-induced reactions of the products (Kallmayer & Fritzen, 1992[Kallmayer, H. J. & Fritzen, W (1992). Pharm. Acta Helv. 67, 210-213.]), we believe that no structure of such a compound has been reported to date.

The molecular structure of (I[link]) is illustrated in Fig. 1[link]. The benzeno­id ring exhibits strong quinoidal character (see Table 1[link]) due to the strong electronic influence of the two keto groups, substituted para to each other on the ring. The satur­ated ring displays a typical chair conformation.

In the crystal structure, the mol­ecules pack in alternating AB layers; A and B being related by a center of symmetry (Fig. 2[link]). The crystal packing is stabilized by close Cl⋯Cl intermolecular contacts [Cl1i⋯Cl1ii = 3.2333 (12) Å]. Another, albeit much weaker, Cl⋯Cl intermolecular contact [Cl3ii⋯Cl3iii = 3.5450 (14) Å] is also present (see Fig. 2[link] for details).

[Figure 1]
Figure 1
The molecular structure of compound (I[link]). Anisotropic displacement parameters are displayed at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of compound (I[link]), viewed down the a axis. The Cl⋯Cl contacts are illustrated by dashed lines [Symmetry codes: (i) x, y, z; (ii) 1 − x, 1 − y, 1 − z; (iii) x + 1, y − 1, z + 1.]

Experimental

2,3,5,6-Tetra­chloro-1,4-benzo­quinone (1 g, 4 × 10−3 mol) was stirred in toluene (250 ml) with 4-methyl­piperidine (0.8 g, 8 × 10−3 mol) at room temperature for 3 h. The solution very rapidly became dark purple in colour. Column chromatography of the reaction mixture performed on neutral silica gel with di­chloro­methane eluent was used to purify the product. After evaporating the solvent from the product-containing fraction in vacuo, the purified compound was recrystallized from hot di­chloro­methane, yielding purple microcrystals (0.260 g, 21%). Microanalysis calculated for C12H12Cl3NO2: C 46.71, N 4.54, H 3.92%; found: C 47.01, N 4.81, H 3.98%. 1H NMR (400 Hz, CD2Cl2): δ 1.00 (doublet, 1 × CH3), 1.40 (quartet, 2 × 1H), 1.65 (multiplet, —CH—), 1.75 (doublet, 2 × 1H), 3.25 (triplet, 2 × 1H), 3.75 (doublet, 2 × 1H). 13C NMR (400 Hz, CD2Cl2): δ 22, 30, 35, 118, 138, 141, 171, 175. MS: m/z, M+(EI+) 306.89. (100% molecular ion). The product displayed positive (bathochromic) solvatochromism (λmax = 549 nm in hexane, 554 nm in diethyl ether, 556 nm in acetone, 571 nm in nitro­methane and 576 nm in di­chloro­methane).

Crystal data
  • C12H12Cl3NO2

  • Mr = 308.58

  • Triclinic, [P\overline 1]

  • a = 6.9577 (14) Å

  • b = 9.3611 (19) Å

  • c = 10.724 (2) Å

  • α = 70.64 (3)°

  • β = 83.96 (3)°

  • γ = 82.27 (3)°

  • V = 651.6 (2) Å3

  • Z = 2

  • Dx = 1.573 Mg m−3

  • Synchrotron radiation, λ = 0.6928 Å

  • Cell parameters from 3573 reflections

  • θ = 2.5–27.6°

  • μ = 0.70 mm−1

  • T = 150 (2) K

  • Needle, deep purple

  • 0.09 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 0.99

  • 4339 measured reflections

  • 3099 independent reflections

  • 2932 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 28.3°

  • h = −9 → 8

  • k = −12 → 10

  • l = −13 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.092

  • S = 1.05

  • 3099 reflections

  • 163 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1747P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected bond lengths (Å)

C1—C6 1.3741 (18)
C3—C4 1.3363 (18)
C1—C2 1.5192 (17)
C2—C3 1.4914 (18)
C4—C5 1.4979 (18)
C5—C6 1.4564 (18)

The H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.98–1.00 Å and Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms.

Data collection: SMART (Bruker, 1998[Bruker (1998). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

2,3,5-Trichloro-6-(4-methylpiperidin-1-yl)-1,4-benzoquinone top
Crystal data top
C12H12Cl3NO2Z = 2
Mr = 308.58F(000) = 316
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Synchrotron radiation, λ = 0.6928 Å
a = 6.9577 (14) ÅCell parameters from 3573 reflections
b = 9.3611 (19) Åθ = 2.5–27.6°
c = 10.724 (2) ŵ = 0.70 mm1
α = 70.64 (3)°T = 150 K
β = 83.96 (3)°Needle, deep purple
γ = 82.27 (3)°0.09 × 0.04 × 0.02 mm
V = 651.6 (2) Å3
Data collection top
Bruker SMART
diffractometer
3099 independent reflections
Radiation source: Station 9.8, SRS, Daresbury labs, UK2932 reflections with I > 2σ(I)
Si (111) monochromatorRint = 0.024
CCD scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 98
Tmin = 0.91, Tmax = 0.99k = 1210
4339 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1747P]
where P = (Fo2 + 2Fc2)/3
3099 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. H atoms were positioned according to idealized geometries and treated as riding atoms [Uiso(H) = 1.2Ueq(C) for non-methyl H atoms; Uiso(H) = 1.5Ueq(C) for methyl H atoms].

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40844 (5)0.67593 (3)0.46314 (3)0.02639 (10)
Cl20.12225 (5)1.17185 (4)0.59392 (3)0.02531 (10)
Cl30.52239 (5)0.88092 (4)0.16632 (3)0.02700 (11)
O20.23842 (15)0.85730 (12)0.62530 (10)0.0287 (2)
O10.38847 (15)1.19610 (11)0.12496 (9)0.0279 (2)
C50.26794 (17)0.93849 (14)0.51072 (12)0.0202 (2)
N10.23548 (16)1.35048 (12)0.29519 (11)0.0223 (2)
C20.36597 (18)1.12306 (14)0.24144 (12)0.0201 (2)
C10.27294 (17)1.19709 (14)0.34266 (12)0.0192 (2)
C60.22229 (17)1.10331 (15)0.46732 (12)0.0197 (2)
C40.36487 (17)0.86981 (14)0.40931 (12)0.0198 (2)
C70.38420 (18)1.44789 (14)0.21613 (12)0.0219 (2)
H7A0.49481.38360.18940.026*
H7B0.43351.49990.27110.026*
C110.05998 (19)1.43523 (15)0.33421 (14)0.0261 (3)
H11A0.09241.48670.39520.031*
H11B0.03721.36420.38110.031*
C80.3023 (2)1.56646 (15)0.09304 (13)0.0249 (3)
H8A0.26851.51490.03250.030*
H8B0.40241.63470.04610.030*
C30.41441 (17)0.95444 (14)0.28565 (12)0.0201 (2)
C90.1219 (2)1.66056 (15)0.12904 (14)0.0270 (3)
H9A0.16111.71670.18540.032*
C100.0247 (2)1.55350 (15)0.21080 (15)0.0279 (3)
H10A0.06961.50030.15510.033*
H10B0.13901.61400.23820.033*
C120.0382 (3)1.77758 (19)0.00529 (17)0.0406 (4)
H12A0.07771.83620.03090.061*
H12B0.00291.72510.05300.061*
H12C0.13561.84660.04150.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03073 (19)0.01802 (16)0.02813 (18)0.00103 (12)0.00157 (13)0.00509 (12)
Cl20.02420 (17)0.03121 (18)0.02312 (17)0.00301 (12)0.00309 (12)0.01355 (13)
Cl30.03295 (19)0.02597 (18)0.02271 (17)0.00095 (13)0.00197 (12)0.01137 (13)
O20.0344 (5)0.0274 (5)0.0209 (5)0.0057 (4)0.0029 (4)0.0037 (4)
O10.0370 (5)0.0247 (5)0.0194 (4)0.0033 (4)0.0020 (4)0.0046 (4)
C50.0167 (6)0.0235 (6)0.0205 (6)0.0045 (4)0.0007 (4)0.0065 (5)
N10.0195 (5)0.0195 (5)0.0261 (5)0.0018 (4)0.0045 (4)0.0069 (4)
C20.0186 (5)0.0214 (6)0.0203 (6)0.0025 (4)0.0004 (4)0.0071 (5)
C10.0163 (5)0.0206 (6)0.0215 (6)0.0024 (4)0.0004 (4)0.0080 (5)
C60.0174 (5)0.0237 (6)0.0198 (6)0.0027 (4)0.0004 (4)0.0098 (5)
C40.0182 (5)0.0183 (5)0.0230 (6)0.0018 (4)0.0025 (4)0.0065 (4)
C70.0209 (6)0.0214 (6)0.0229 (6)0.0054 (4)0.0021 (4)0.0062 (5)
C110.0233 (6)0.0222 (6)0.0306 (7)0.0013 (5)0.0065 (5)0.0086 (5)
C80.0274 (6)0.0226 (6)0.0227 (6)0.0023 (5)0.0017 (5)0.0058 (5)
C30.0186 (6)0.0221 (6)0.0211 (6)0.0006 (4)0.0014 (4)0.0096 (5)
C90.0285 (7)0.0221 (6)0.0291 (7)0.0002 (5)0.0001 (5)0.0083 (5)
C100.0236 (6)0.0238 (6)0.0362 (7)0.0004 (5)0.0004 (5)0.0112 (5)
C120.0421 (9)0.0309 (8)0.0392 (8)0.0074 (6)0.0042 (7)0.0022 (6)
Geometric parameters (Å, º) top
Cl1—C41.7069 (13)C7—H7B0.9900
Cl2—C61.7315 (13)C11—C101.530 (2)
Cl3—C31.7083 (13)C11—H11A0.9900
O2—C51.2245 (16)C11—H11B0.9900
O1—C21.2139 (16)C8—C91.5254 (19)
N1—C11.3534 (16)C8—H8A0.9900
N1—C111.4653 (16)C8—H8B0.9900
N1—C71.4757 (17)C9—C101.522 (2)
C1—C61.3741 (18)C9—C121.526 (2)
C3—C41.3363 (18)C9—H9A1.0000
C1—C21.5192 (17)C10—H10A0.9900
C2—C31.4914 (18)C10—H10B0.9900
C4—C51.4979 (18)C12—H12A0.9800
C5—C61.4564 (18)C12—H12B0.9800
C7—C81.5219 (19)C12—H12C0.9800
C7—H7A0.9900
O2—C5—C6123.14 (12)H11A—C11—H11B108.2
O2—C5—C4119.91 (12)C7—C8—C9111.12 (11)
C6—C5—C4116.88 (11)C7—C8—H8A109.4
C1—N1—C11123.69 (11)C9—C8—H8A109.4
C1—N1—C7121.70 (11)C7—C8—H8B109.4
C11—N1—C7113.90 (10)C9—C8—H8B109.4
O1—C2—C3119.68 (12)H8A—C8—H8B108.0
O1—C2—C1121.60 (11)C4—C3—C2120.51 (11)
C3—C2—C1118.51 (11)C4—C3—Cl3123.93 (10)
N1—C1—C6127.03 (12)C2—C3—Cl3115.47 (9)
N1—C1—C2114.93 (11)C10—C9—C8108.97 (11)
C6—C1—C2117.83 (11)C10—C9—C12112.57 (13)
C1—C6—C5123.64 (11)C8—C9—C12111.00 (12)
C1—C6—Cl2122.83 (10)C10—C9—H9A108.1
C5—C6—Cl2113.15 (9)C8—C9—H9A108.1
C3—C4—C5122.34 (11)C12—C9—H9A108.1
C3—C4—Cl1122.41 (10)C9—C10—C11112.52 (12)
C5—C4—Cl1115.24 (9)C9—C10—H10A109.1
N1—C7—C8111.48 (11)C11—C10—H10A109.1
N1—C7—H7A109.3C9—C10—H10B109.1
C8—C7—H7A109.3C11—C10—H10B109.1
N1—C7—H7B109.3H10A—C10—H10B107.8
C8—C7—H7B109.3C9—C12—H12A109.5
H7A—C7—H7B108.0C9—C12—H12B109.5
N1—C11—C10109.52 (11)H12A—C12—H12B109.5
N1—C11—H11A109.8C9—C12—H12C109.5
C10—C11—H11A109.8H12A—C12—H12C109.5
N1—C11—H11B109.8H12B—C12—H12C109.5
C10—C11—H11B109.8
 

Footnotes

Mailing address: St Catharine's College, Cambridge CB2 1RL, England

Acknowledgements

The authors acknowledge Simon J. Teat (CCLRC Daresbury Laboratory) for local synchrotron support and the Synchrotron Radiation Source, CCLRC Daresbury Laboratory, England, for access to scientific facilities. JMC also thanks the Royal Society for a University Research Fellowship and St Catharine's College, Cambridge, for a Bibby Research Fellowship. KFB is grateful to the EPSRC for a PhD studentship (0280020X) and the Centre of Molecular Structure and Dynamics (CMSD), CCLRC, for a CASE sponsorship.

References

First citationAlnabari, M. & Bittner, S. (2000). Synthesis, pp. 1087–1090.  CrossRef Google Scholar
First citationBruker (1998). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuckley, D., Dunstan, S. & Henbest, H. B. (1957). J. Chem. Soc. pp. 4880–4891.  CrossRef Web of Science Google Scholar
First citationBuckley, D. & Henbest, H. B. (1956). Chem. Ind. pp. 1096–1096.  Google Scholar
First citationBuuhoi, N. P., Royer, R. & Huberthabart, M. (1954). Recl Trav. Chim. Pays-Bas 73, 188–192.  CAS Google Scholar
First citationKallmayer, H. J. & Fritzen, W (1992). Pharm. Acta Helv. 67, 210–213.  CAS Google Scholar
First citationKrivokapic, A. & Anderson, H. L. (2002). Acta Cryst. E58, o259–o260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuralikrishna, U. & Krishnamurthy, M. (1984). Spectrochim. Acta A, 40, 65–68.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSivadjian, J. (1935). Bull. Soc. Chim. Fr. 2, 623–625.  CAS Google Scholar
First citationSmith, R. E. & Davis, W. R. (1984). Anal. Chem. 56, 2345–2349.  CrossRef CAS Web of Science Google Scholar
First citationSzablewski, M. (1994). J. Org. Chem. 59, 954–956.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds