organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,7-Bis(4-meth­oxy­phenyl)-1,3,7-tri­phenyl-2,3,5,6,7,7a-hexa­hydro-1H-pyrrolo­[2,3-d]­pyrimidine-2,5,6-trione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England, and bErciyes University, Yozgat Faculty of Arts and Sciences, Department of Chemistry, 66200 Yozgat, Turkey
*Correspondence e-mail: h.adams@sheffield.ac.uk

(Received 27 January 2005; accepted 4 February 2005; online 12 February 2005)

The synthesis of the title compound, C38H29N3O5, proceeds through a [4 + 2]-cyclo­addition reaction. 4-(4-Methoxy­benzoyl)-5-(4-methoxy­phenyl)­furan-2,3-dione was reacted with phenyl isocyanate to synthesize this new derivative of pyrrolo­[2,3-d]­pyrimidine in a low-temperature reaction. The mol­ecule is composed of a pyrrolo­pyrimidine moiety with three phenyl and two p-methoxy­phenyl substituents.

Comment

Some pyrrolo­[2,3-d]­pyrimidines are known to possess considerable antitumor, antiallergic, antiviral and anti-inflammatory activities (Hutzenlaub et al., 1972[Hutzenlaub, W., Tolman, R. L. & Robins, R. K. (1972). J. Med. Chem. 15, 879-883.]; Smith et al., 1972[Smith, C. W., Sidwell, R. W., Robins, R. K. & Tolman, R. L. (1972). J. Med. Chem. 15, 883-887.]). As part of our interest in such compounds, we have synthesized and studied the single-crystal X-ray structure of the title compound, (I[link]).[link]

[Scheme 1]

The molecular structure of (I[link]) is illustrated in Fig. 1[link]. Its structure is similar to that of 7,7a-di­hydro-1,3-bis(4-methyl­phenyl)-4,7,7a-tri­phenyl-1H-pyrrolo­[2,3-d]­pyrim­idin-2,5,6(3H)-trione, (II) (Kollenz et al., 1984[Kollenz, G., Penn, G., Dolenz, G., Akcamur, Y., Peters, K., Peters, E.-M. & von Schnering, H. G. (1984). Chem. Ber. 117, 1299-1309.]). However, the substitution on the pyrrolo­pyrimidine moiety differs. In (I[link]), the substituents on atoms N1 and N2 are phenyl, whereas in (II) they are p-tolyl. The substituents on atoms C1 and C6 in (I[link]) are p-methoxy­phenyl, whereas in (II) these substituents are phenyl. The bond lengths and angles for the pyrrolo­pyrimidine skeleton of (I[link]) and (II) are comparable.

In the crystal structure of (I[link]), there are intermolecular C—H⋯O hydrogen-bonding interactions (Table 1[link]).

[Figure 1]
Figure 1
A view of the molecular structure of (I[link]), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Experimental

A mixture of 4-(4-methoxy­benzoyl)-5-(4-methoxy­phenyl)­furan-2,3-dione (1 g, 2.96 mmol) and phenyl isocyanate (1.05 g, 8.88 mmol) was heated at 333–338 K for 24 h without any solvent in a 25 ml round-bottomed flask equipped with a calcium chloride guard tube. After cooling to room temperature, the residue was treated with an­hydro­us diethyl ether and the crude product recrystallized from acetic acid and ethanol to give yellow crystals of (I[link]) (yield: 1.26 g, 70%; m.p. 474 K). IR (KBr): ν 1730, 1686, 674 cm−1 (C=O), 1579 cm−1 (C=C). 1H NMR (CDCl3): δ 7.67–6.20 (m, 23H, Ph), 3.89, 3.76 (s, 6H, CH3O); 13C NMR (CDCl3): δ 178.35, 165.37, 164.59 (C=O), 162.469–115.58 (C=C, aromatic and aliphatic), 81.36 (N—C—N), 57.53, 57.28 (CH3O). Analysis calculated for C38H29N3O5: C 75.12, H 4.77, N 6.91%; found: C 74.75, H 4.83, N 7.01%.

Crystal data
  • C38H29N3O5

  • Mr = 607.64

  • Monoclinic, P21/c

  • a = 13.196 (2) Å

  • b = 19.853 (3) Å

  • c = 11.9850 (19) Å

  • β = 107.470 (3)°

  • V = 2995.0 (8) Å3

  • Z = 4

  • Dx = 1.348 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2924 reflections

  • θ = 4.5–50.6°

  • μ = 0.09 mm−1

  • T = 150 (2) K

  • Block, yellow

  • 0.47 × 0.29 × 0.29 mm

Data collection
  • Bruker SMART1000 diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.974

  • 25141 measured reflections

  • 6764 independent reflections

  • 3696 reflections with I > 2σ(I)

  • Rint = 0.092

  • θmax = 27.5°

  • h = −16 → 17

  • k = −25 → 24

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.139

  • S = 1.01

  • 6764 reflections

  • 415 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2194P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O2i 0.95 2.32 3.163 (3) 148
C20—H20A⋯O4ii 0.95 2.43 3.366 (3) 169
Symmetry codes: (i) 1-x,1-y,2-z; (ii) [x,{\script{1\over 2}}-y,z-{\script{1\over 2}}].

H atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl groups].

Data collection: SMART (Bruker, 1997[Bruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

4,7-Bis(4-methoxyphenyl)-1,3,7,triphenyl-2,3,5,6,7,7a-hexahydro-1H- pyrrolo[2,3-d]pyrimidine-2,5,6-trione top
Crystal data top
C38H29N3O5F(000) = 1272
Mr = 607.64Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.196 (2) ÅCell parameters from 2924 reflections
b = 19.853 (3) Åθ = 4.5–50.6°
c = 11.9850 (19) ŵ = 0.09 mm1
β = 107.470 (3)°T = 150 K
V = 2995.0 (8) Å3Block, yellow
Z = 40.47 × 0.29 × 0.29 mm
Data collection top
Bruker SMART1000
diffractometer
6764 independent reflections
Radiation source: fine-focus sealed tube3696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
Detector resolution: 100 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scansh = 1617
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 2524
Tmin = 0.959, Tmax = 0.974l = 1515
25141 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.2194P]
where P = (Fo2 + 2Fc2)/3
6764 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22818 (15)0.48148 (9)0.61781 (15)0.0209 (4)
N20.18582 (14)0.38437 (9)0.70492 (15)0.0206 (4)
N30.35882 (14)0.55639 (9)0.74563 (16)0.0235 (5)
O10.52084 (13)0.43269 (9)0.91803 (15)0.0351 (5)
O20.54250 (13)0.56121 (9)0.81429 (15)0.0334 (4)
O30.10243 (13)0.40791 (8)0.51149 (13)0.0289 (4)
O40.43281 (15)0.15394 (9)1.05270 (17)0.0510 (6)
O50.04410 (13)0.58606 (8)0.94390 (13)0.0293 (4)
C10.27425 (18)0.50689 (11)0.73901 (19)0.0205 (5)
C20.33419 (18)0.44833 (12)0.80866 (19)0.0219 (5)
C30.44564 (19)0.46391 (12)0.8553 (2)0.0242 (6)
C40.45856 (19)0.53296 (12)0.8042 (2)0.0259 (6)
C50.16730 (18)0.42464 (11)0.6028 (2)0.0215 (5)
C60.28215 (18)0.38811 (11)0.79458 (19)0.0217 (5)
C70.32216 (18)0.32738 (11)0.8633 (2)0.0229 (5)
C80.31060 (19)0.26354 (12)0.8113 (2)0.0288 (6)
H8A0.27610.25930.72980.035*
C90.3485 (2)0.20700 (13)0.8765 (2)0.0358 (7)
H9A0.34150.16410.84000.043*
C100.3971 (2)0.21303 (13)0.9963 (2)0.0336 (6)
C110.40979 (19)0.27547 (13)1.0502 (2)0.0301 (6)
H11A0.44360.27941.13200.036*
C120.37216 (18)0.33236 (12)0.9828 (2)0.0252 (6)
H12A0.38090.37541.01910.030*
C130.10620 (18)0.33701 (11)0.71430 (19)0.0210 (5)
C140.07666 (18)0.33935 (12)0.8151 (2)0.0261 (6)
H14A0.10120.37470.87000.031*
C150.0107 (2)0.28965 (13)0.8357 (2)0.0326 (6)
H15A0.00960.29070.90530.039*
C160.0254 (2)0.23872 (13)0.7553 (2)0.0343 (7)
H16A0.06730.20320.77130.041*
C170.0003 (2)0.23956 (12)0.6513 (2)0.0324 (6)
H17A0.02920.20630.59360.039*
C180.06626 (18)0.28826 (12)0.6305 (2)0.0254 (6)
H18A0.08440.28830.55960.030*
C190.23359 (18)0.51563 (11)0.51332 (19)0.0216 (5)
C200.3053 (2)0.49193 (12)0.4600 (2)0.0291 (6)
H20A0.34920.45440.49180.035*
C210.3133 (2)0.52310 (14)0.3594 (2)0.0373 (7)
H21A0.36240.50700.32160.045*
C220.2491 (2)0.57799 (14)0.3144 (2)0.0388 (7)
H22A0.25500.60000.24630.047*
C230.1769 (2)0.60060 (14)0.3679 (2)0.0384 (7)
H23A0.13290.63810.33640.046*
C240.16810 (19)0.56921 (12)0.4669 (2)0.0299 (6)
H24A0.11720.58440.50300.036*
C250.34291 (18)0.62442 (12)0.7013 (2)0.0258 (6)
C260.3860 (2)0.64385 (13)0.6147 (2)0.0316 (6)
H26A0.42680.61280.58580.038*
C270.3697 (2)0.70842 (14)0.5699 (2)0.0398 (7)
H27A0.39940.72170.51030.048*
C280.3107 (2)0.75343 (14)0.6113 (3)0.0472 (8)
H28A0.29780.79740.57900.057*
C290.2706 (2)0.73459 (14)0.6994 (3)0.0527 (9)
H29A0.23120.76610.72940.063*
C300.2867 (2)0.67022 (13)0.7453 (3)0.0412 (7)
H30A0.25900.65770.80700.049*
C310.18631 (17)0.53146 (11)0.78843 (19)0.0192 (5)
C320.21130 (19)0.54413 (11)0.9084 (2)0.0240 (6)
H32A0.28280.54020.95670.029*
C330.13332 (19)0.56213 (12)0.9569 (2)0.0265 (6)
H33A0.15140.57111.03840.032*
C340.02751 (18)0.56739 (11)0.8875 (2)0.0235 (5)
C350.00152 (19)0.55514 (11)0.7685 (2)0.0246 (6)
H35A0.06990.55900.72020.029*
C360.08152 (18)0.53710 (11)0.7208 (2)0.0235 (5)
H36A0.06360.52840.63920.028*
C370.15281 (19)0.59270 (15)0.8737 (2)0.0400 (7)
H37A0.19630.60610.92340.060*
H37B0.17830.54950.83620.060*
H37C0.15810.62700.81340.060*
C380.4979 (2)0.15750 (15)1.1707 (2)0.0466 (8)
H38A0.51820.11191.20030.070*
H38B0.45850.17941.21820.070*
H38C0.56190.18371.17500.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0240 (11)0.0196 (11)0.0178 (10)0.0037 (9)0.0043 (8)0.0029 (8)
N20.0208 (11)0.0209 (11)0.0171 (10)0.0027 (8)0.0015 (8)0.0013 (8)
N30.0190 (11)0.0227 (11)0.0286 (12)0.0033 (9)0.0071 (9)0.0055 (9)
O10.0243 (10)0.0377 (11)0.0358 (11)0.0055 (8)0.0022 (8)0.0069 (8)
O20.0208 (9)0.0374 (11)0.0416 (11)0.0076 (8)0.0086 (8)0.0135 (9)
O30.0333 (10)0.0281 (10)0.0187 (9)0.0080 (8)0.0022 (8)0.0001 (7)
O40.0461 (12)0.0344 (12)0.0568 (13)0.0014 (9)0.0083 (10)0.0196 (10)
O50.0256 (10)0.0405 (11)0.0231 (9)0.0030 (8)0.0093 (8)0.0046 (8)
C10.0209 (12)0.0187 (13)0.0194 (12)0.0048 (10)0.0023 (10)0.0047 (10)
C20.0211 (13)0.0246 (14)0.0180 (12)0.0014 (10)0.0029 (10)0.0043 (10)
C30.0223 (14)0.0256 (14)0.0230 (13)0.0027 (11)0.0042 (11)0.0081 (11)
C40.0222 (14)0.0285 (14)0.0254 (13)0.0014 (11)0.0046 (11)0.0129 (11)
C50.0247 (13)0.0212 (13)0.0188 (13)0.0000 (10)0.0070 (11)0.0032 (10)
C60.0236 (13)0.0246 (14)0.0161 (12)0.0038 (10)0.0049 (10)0.0042 (10)
C70.0199 (13)0.0231 (13)0.0243 (13)0.0002 (10)0.0044 (10)0.0014 (10)
C80.0259 (14)0.0271 (14)0.0276 (14)0.0019 (11)0.0008 (11)0.0044 (11)
C90.0282 (15)0.0253 (15)0.0447 (17)0.0019 (12)0.0030 (13)0.0026 (13)
C100.0269 (15)0.0273 (15)0.0403 (16)0.0004 (12)0.0005 (12)0.0085 (13)
C110.0238 (14)0.0391 (17)0.0245 (13)0.0016 (12)0.0031 (11)0.0064 (12)
C120.0228 (13)0.0268 (14)0.0245 (13)0.0035 (11)0.0047 (11)0.0019 (11)
C130.0217 (13)0.0222 (13)0.0177 (12)0.0001 (10)0.0036 (10)0.0025 (10)
C140.0253 (14)0.0308 (15)0.0205 (13)0.0028 (11)0.0041 (11)0.0008 (11)
C150.0329 (16)0.0391 (17)0.0285 (14)0.0060 (13)0.0134 (12)0.0097 (13)
C160.0317 (16)0.0272 (15)0.0472 (18)0.0002 (12)0.0166 (14)0.0109 (13)
C170.0363 (16)0.0249 (15)0.0358 (16)0.0079 (12)0.0103 (13)0.0041 (12)
C180.0284 (14)0.0250 (14)0.0235 (13)0.0039 (11)0.0086 (11)0.0026 (11)
C190.0233 (13)0.0204 (13)0.0193 (12)0.0033 (10)0.0037 (10)0.0016 (10)
C200.0345 (15)0.0198 (14)0.0333 (15)0.0022 (11)0.0106 (12)0.0017 (11)
C210.0475 (18)0.0362 (16)0.0354 (16)0.0127 (14)0.0232 (14)0.0096 (13)
C220.0461 (18)0.0396 (18)0.0261 (15)0.0167 (14)0.0037 (13)0.0065 (13)
C230.0314 (16)0.0337 (16)0.0431 (17)0.0072 (13)0.0005 (14)0.0136 (13)
C240.0237 (14)0.0251 (14)0.0396 (16)0.0030 (11)0.0074 (12)0.0041 (12)
C250.0219 (14)0.0185 (13)0.0350 (15)0.0054 (10)0.0057 (11)0.0094 (11)
C260.0347 (16)0.0271 (15)0.0369 (15)0.0066 (12)0.0167 (13)0.0087 (12)
C270.0373 (17)0.0373 (17)0.0471 (18)0.0098 (13)0.0164 (14)0.0020 (14)
C280.0390 (18)0.0292 (17)0.077 (2)0.0010 (13)0.0229 (17)0.0088 (16)
C290.050 (2)0.0229 (16)0.102 (3)0.0020 (14)0.049 (2)0.0017 (16)
C300.0417 (17)0.0249 (16)0.069 (2)0.0046 (13)0.0340 (16)0.0061 (14)
C310.0210 (13)0.0147 (12)0.0208 (13)0.0000 (9)0.0046 (10)0.0018 (9)
C320.0208 (13)0.0234 (14)0.0232 (13)0.0018 (10)0.0003 (11)0.0030 (10)
C330.0298 (15)0.0275 (14)0.0196 (13)0.0025 (11)0.0035 (11)0.0050 (11)
C340.0269 (14)0.0197 (13)0.0260 (14)0.0005 (10)0.0112 (11)0.0012 (11)
C350.0216 (13)0.0276 (14)0.0219 (13)0.0004 (11)0.0025 (11)0.0007 (11)
C360.0248 (14)0.0250 (13)0.0190 (12)0.0005 (10)0.0038 (11)0.0020 (10)
C370.0232 (15)0.0610 (19)0.0370 (16)0.0024 (14)0.0109 (13)0.0118 (14)
C380.0417 (18)0.055 (2)0.0455 (18)0.0189 (15)0.0165 (15)0.0284 (15)
Geometric parameters (Å, º) top
N1—C51.366 (3)C17—H17A0.9500
N1—C191.445 (3)C18—H18A0.9500
N1—C11.484 (3)C19—C201.375 (3)
N2—C61.399 (3)C19—C241.378 (3)
N2—C51.420 (3)C20—C211.387 (3)
N2—C131.439 (3)C20—H20A0.9500
N3—C41.374 (3)C21—C221.387 (4)
N3—C251.444 (3)C21—H21A0.9500
N3—C11.471 (3)C22—C231.373 (4)
O1—C31.219 (3)C22—H22A0.9500
O2—C41.215 (3)C23—C241.375 (4)
O3—C51.216 (3)C23—H23A0.9500
O4—C101.365 (3)C24—H24A0.9500
O4—C381.418 (3)C25—C301.375 (3)
O5—C341.368 (3)C25—C261.379 (3)
O5—C371.435 (3)C26—C271.381 (4)
C1—C21.509 (3)C26—H26A0.9500
C1—C311.532 (3)C27—C281.372 (4)
C2—C61.364 (3)C27—H27A0.9500
C2—C31.441 (3)C28—C291.368 (4)
C3—C41.532 (3)C28—H28A0.9500
C6—C71.466 (3)C29—C301.382 (4)
C7—C121.388 (3)C29—H29A0.9500
C7—C81.400 (3)C30—H30A0.9500
C8—C91.373 (3)C31—C361.382 (3)
C8—H8A0.9500C31—C321.399 (3)
C9—C101.391 (3)C32—C331.372 (3)
C9—H9A0.9500C32—H32A0.9500
C10—C111.385 (3)C33—C341.398 (3)
C11—C121.391 (3)C33—H33A0.9500
C11—H11A0.9500C34—C351.384 (3)
C12—H12A0.9500C35—C361.390 (3)
C13—C141.377 (3)C35—H35A0.9500
C13—C181.380 (3)C36—H36A0.9500
C14—C151.386 (3)C37—H37A0.9800
C14—H14A0.9500C37—H37B0.9800
C15—C161.379 (4)C37—H37C0.9800
C15—H15A0.9500C38—H38A0.9800
C16—C171.382 (3)C38—H38B0.9800
C16—H16A0.9500C38—H38C0.9800
C17—C181.379 (3)
C5—N1—C19116.98 (18)C13—C18—H18A120.5
C5—N1—C1117.51 (18)C20—C19—C24120.8 (2)
C19—N1—C1125.20 (18)C20—C19—N1117.6 (2)
C6—N2—C5120.92 (19)C24—C19—N1121.6 (2)
C6—N2—C13119.42 (18)C19—C20—C21119.6 (2)
C5—N2—C13119.62 (18)C19—C20—H20A120.2
C4—N3—C25121.07 (19)C21—C20—H20A120.2
C4—N3—C1113.35 (19)C22—C21—C20119.4 (3)
C25—N3—C1125.52 (18)C22—C21—H21A120.3
C10—O4—C38117.8 (2)C20—C21—H21A120.3
C34—O5—C37116.89 (18)C23—C22—C21120.3 (2)
N3—C1—N1111.16 (18)C23—C22—H22A119.8
N3—C1—C2102.81 (18)C21—C22—H22A119.8
N1—C1—C2105.80 (17)C22—C23—C24120.3 (3)
N3—C1—C31114.64 (17)C22—C23—H23A119.9
N1—C1—C31110.55 (17)C24—C23—H23A119.9
C2—C1—C31111.30 (18)C23—C24—C19119.5 (3)
C6—C2—C3130.8 (2)C23—C24—H24A120.2
C6—C2—C1116.5 (2)C19—C24—H24A120.2
C3—C2—C1110.7 (2)C30—C25—C26119.7 (2)
O1—C3—C2132.6 (2)C30—C25—N3120.8 (2)
O1—C3—C4122.3 (2)C26—C25—N3119.4 (2)
C2—C3—C4105.1 (2)C25—C26—C27120.0 (2)
O2—C4—N3126.8 (2)C25—C26—H26A120.0
O2—C4—C3125.5 (2)C27—C26—H26A120.0
N3—C4—C3107.6 (2)C28—C27—C26120.2 (3)
O3—C5—N1124.9 (2)C28—C27—H27A119.9
O3—C5—N2121.0 (2)C26—C27—H27A119.9
N1—C5—N2114.16 (19)C29—C28—C27119.6 (3)
C2—C6—N2116.7 (2)C29—C28—H28A120.2
C2—C6—C7124.6 (2)C27—C28—H28A120.2
N2—C6—C7118.6 (2)C28—C29—C30120.8 (3)
C12—C7—C8118.6 (2)C28—C29—H29A119.6
C12—C7—C6120.0 (2)C30—C29—H29A119.6
C8—C7—C6121.4 (2)C25—C30—C29119.6 (3)
C9—C8—C7120.9 (2)C25—C30—H30A120.2
C9—C8—H8A119.5C29—C30—H30A120.2
C7—C8—H8A119.5C36—C31—C32118.3 (2)
C8—C9—C10119.6 (2)C36—C31—C1122.7 (2)
C8—C9—H9A120.2C32—C31—C1118.86 (19)
C10—C9—H9A120.2C33—C32—C31120.5 (2)
O4—C10—C11124.2 (2)C33—C32—H32A119.8
O4—C10—C9114.9 (2)C31—C32—H32A119.8
C11—C10—C9120.8 (2)C32—C33—C34120.6 (2)
C10—C11—C12118.9 (2)C32—C33—H33A119.7
C10—C11—H11A120.6C34—C33—H33A119.7
C12—C11—H11A120.6O5—C34—C35124.2 (2)
C7—C12—C11121.2 (2)O5—C34—C33116.1 (2)
C7—C12—H12A119.4C35—C34—C33119.6 (2)
C11—C12—H12A119.4C34—C35—C36119.0 (2)
C14—C13—C18121.0 (2)C34—C35—H35A120.5
C14—C13—N2116.9 (2)C36—C35—H35A120.5
C18—C13—N2122.0 (2)C31—C36—C35121.9 (2)
C13—C14—C15119.4 (2)C31—C36—H36A119.0
C13—C14—H14A120.3C35—C36—H36A119.0
C15—C14—H14A120.3O5—C37—H37A109.5
C16—C15—C14120.1 (2)O5—C37—H37B109.5
C16—C15—H15A120.0H37A—C37—H37B109.5
C14—C15—H15A120.0O5—C37—H37C109.5
C15—C16—C17119.7 (2)H37A—C37—H37C109.5
C15—C16—H16A120.2H37B—C37—H37C109.5
C17—C16—H16A120.2O4—C38—H38A109.5
C18—C17—C16120.6 (2)O4—C38—H38B109.5
C18—C17—H17A119.7H38A—C38—H38B109.5
C16—C17—H17A119.7O4—C38—H38C109.5
C17—C18—C13119.0 (2)H38A—C38—H38C109.5
C17—C18—H18A120.5H38B—C38—H38C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O2i0.952.323.163 (3)148
C18—H18A···O30.952.472.883 (3)106
C20—H20A···O4ii0.952.433.366 (3)169
C36—H36A···N10.952.452.815 (3)103
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z1/2.
 

References

First citationBruker (1997). SHELXTL, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHutzenlaub, W., Tolman, R. L. & Robins, R. K. (1972). J. Med. Chem. 15, 879–883.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKollenz, G., Penn, G., Dolenz, G., Akcamur, Y., Peters, K., Peters, E.-M. & von Schnering, H. G. (1984). Chem. Ber. 117, 1299–1309.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSmith, C. W., Sidwell, R. W., Robins, R. K. & Tolman, R. L. (1972). J. Med. Chem. 15, 883–887.  CrossRef CAS PubMed Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds