organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Chloro­methyl-4-aza-1-azoniabi­cyclo­[2.2.2]­octane tetra­fluoro­borate deutero­chloro­form solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk

(Received 18 January 2005; accepted 8 February 2005; online 19 February 2005)

The title structure, C7H14ClN2+·BF4·CDCl3, comprises 1-chloro­methyl-4-aza-1-azoniabi­cyclo­[2.2.2]­octane cations, BF4 anions and CDCl3 solvent mol­ecules, each having Cs crystallographic symmetry. The cation has a staggered conformation and the anion and solvent mol­ecule are connected via a C—D⋯F interaction.

Comment

In the course of our studies of electrophilic fluorination methodology (Chambers et al., 2004[Chambers, R. D., Holling, D., Sandford, G., Batsanov, A. S. & Howard, J. A. K. (2004). J. Fluorine Chem. 125, 661-671.]), 1-chloro­methyl-4-aza-1-azoniabi­cyclo­[2.2.2]­octane tetra­fluoro­borate deutero­chloro­form solvate, (I[link]), was obtained as a by-product in the reaction of `Selectfluor', (II[link]), with N-ethylpiperidine. Compound (I[link]) was obtained by recrystallization from deutero­chloro­form. The crystal structure of solvent-free 1-chloro­methyl-4-aza-1-azoniabi­cyclo­[2.2.2]­octane tetra­fluoro­borate has been reported previously by Banks et al. (1993[Banks, R. E., Sharif, I. & Pritchard, R. G. (1993). Acta Cryst. C49, 492-495.]).[link]

[Scheme 1]

The cation, anion and solvent mol­ecule (Fig. 1[link] and Table 1[link]) all lie on a crystallographic mirror plane, which passes through atoms Cl1/N1/N2/C1–C3 of the cation (which, therefore, has a staggered conformation around the N1—C1 bond), atoms B, F1 and F2 of the anion, and atoms C6, Cl3 and D of the deutero­chloro­form mol­ecule. The solvent molecule and the anion are linked by a C6—D⋯F1 hydrogen bond (Table 2[link]) The N—C bonds at quaternized atom N1 are longer by 0.047 (4) Å than at N2.

[Figure 1]
Figure 1
Twice the asymmetric unit of (I[link]), showing atomic displacement ellipsoids (at the 50% probability level) and the D—F hydrogen bond (dashed line). Primed atoms are generated by the reflection operation (x, [1 \over 2] − y, z).

Experimental

A mixture comprising (II[link]) (3.5 g, 12.1 mmol) and N-ethyl­piperidine (1.0 g, 11.1 mmol) in aceto­nitrile was heated at reflux temperature 355 K for 18 h. The reaction mixture appeared dark red in colour. On completion of the reaction, the mixture was poured into water and extracted with di­chloro­methane (3 × 100 ml). The organic phase was dried with magnesium sulfate. After evaporation, the crude product was purified by distillation on a Kugelrohr apparatus. Crystals of X-ray quality were grown from a deutero­chloro­form solution of the non-volatile residue at room temperature.

Crystal data
  • C7H14ClN2+·BF4·CDCl3

  • Mr = 368.84

  • Orthorhombic, Pnma

  • a = 22.368 (3) Å

  • b = 8.4961 (11) Å

  • c = 7.4726 (10) Å

  • V = 1420.1 (3) Å3

  • Z = 4

  • Dx = 1.725 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 884 reflections

  • θ = 12.2–25.4°

  • μ = 0.86 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.50 × 0.20 × 0.06 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.672, Tmax = 0.950

  • 16850 measured reflections

  • 2037 independent reflections

  • 1760 reflections with I > 2σ(I)

  • Rint = 0.045

  • θmax = 29.1°

  • h = −30 → 30

  • k = −11 → 11

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.095

  • S = 1.21

  • 2037 reflections

  • 134 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0364P)2 + 1.1232P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—C1 1.763 (3)
N1—C1 1.507 (3)
N1—C4 1.507 (2)
N1—C2 1.510 (4)
N2—C3 1.456 (4)
N2—C5 1.464 (2)
F1—B 1.388 (4)
F2—B 1.393 (4)
F3—B 1.381 (2)
Cl2—C6 1.767 (2)
Cl3—C6 1.759 (3)
C1—N1—C4 111.96 (13)
C1—N1—C2 107.0 (2)
C4—N1—C2 108.54 (14)
C3—N2—C5 108.94 (15)
C5—N2—C5i 108.2 (2)
N1—C1—Cl1 111.99 (18)
N1—C2—C3 108.8 (2)
N2—C3—C2 112.0 (2)
N1—C4—C5 108.63 (17)
N2—C5—C4 111.79 (17)
Symmetry code: (i) [x,{\script{1\over 2}}-y,z].

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—D6⋯F1 0.90 (4) 2.28 (4) 3.123 (4) 156 (3)

All H and D atoms were refined isotropically with C—H bond distances in the range 0.93 (3)–0.99 (3) Å and C—D distances of 0.90 (4) Å.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.060) and SAINT (Version 6.02A), Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.060) and SAINT (Version 6.02A), Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

1-Chloromethyl-4-aza-1-azoniabicyclo[2.2.2]octane tetrafluoroborate deuterochloroform solvate top
Crystal data top
C7H14ClN2+·BF4·CDCl3F(000) = 744
Mr = 368.84Dx = 1.725 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 884 reflections
a = 22.368 (3) Åθ = 12.2–25.4°
b = 8.4961 (11) ŵ = 0.86 mm1
c = 7.4726 (10) ÅT = 120 K
V = 1420.1 (3) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.06 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2037 independent reflections
Radiation source: fine-focus sealed tube1760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8 pixels mm-1θmax = 29.1°, θmin = 1.8°
ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1111
Tmin = 0.672, Tmax = 0.950l = 1010
16850 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.095All H-atom parameters refined
S = 1.21 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.1232P]
where P = (Fo2 + 2Fc2)/3
2037 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Experimental. The data collection nominally covered full sphere of reciprocal space, by a combination of 5 sets of ω scans; each set at different φ and/or 2θ angles and each scan (20 sec exposure) covering 0.3° in ω. Crystal to detector distance 4.41 cm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25564 (3)0.25000.34874 (9)0.01955 (16)
N10.33556 (10)0.25000.6221 (3)0.0139 (4)
N20.35116 (11)0.25000.9627 (3)0.0189 (5)
C10.33068 (12)0.25000.4210 (4)0.0180 (5)
H10.3499 (9)0.157 (3)0.379 (3)0.014 (5)*
C20.40138 (13)0.25000.6669 (4)0.0305 (8)
H20.4162 (12)0.151 (4)0.617 (4)0.046 (9)*
C30.40859 (14)0.25000.8711 (4)0.0254 (6)
H30.4297 (10)0.160 (3)0.904 (4)0.027 (7)*
C40.30739 (11)0.1057 (2)0.7039 (3)0.0234 (4)
H410.2661 (12)0.113 (3)0.677 (4)0.028 (7)*
H420.3276 (12)0.018 (4)0.651 (4)0.042 (8)*
C50.31737 (10)0.1104 (2)0.9081 (3)0.0218 (4)
H510.2774 (11)0.111 (3)0.964 (4)0.027 (7)*
H520.3387 (11)0.022 (3)0.943 (4)0.031 (7)*
F10.57683 (8)0.25000.6439 (3)0.0376 (5)
F20.65427 (8)0.25000.4503 (3)0.0317 (4)
F30.66116 (7)0.11659 (19)0.7124 (2)0.0437 (4)
B0.63872 (15)0.25000.6307 (4)0.0205 (6)
Cl20.48099 (2)0.07856 (6)0.26682 (7)0.02478 (14)
Cl30.56793 (4)0.25000.05699 (11)0.0326 (2)
C60.52554 (13)0.25000.2552 (4)0.0216 (5)
D60.5509 (15)0.25000.349 (5)0.019 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0222 (3)0.0214 (3)0.0150 (3)00.0041 (2)0
N10.0171 (10)0.0161 (10)0.0086 (9)00.0007 (8)0
N20.0243 (11)0.0173 (11)0.0152 (10)00.0005 (9)0
C10.0187 (12)0.0241 (14)0.0112 (11)00.0005 (10)0
C20.0164 (13)0.060 (2)0.0147 (13)00.0011 (11)0
C30.0239 (14)0.0385 (18)0.0140 (13)00.0032 (11)0
C40.0417 (12)0.0143 (9)0.0142 (9)0.0067 (9)0.0015 (8)0.0001 (7)
C50.0322 (10)0.0181 (9)0.0150 (8)0.0039 (8)0.0018 (8)0.0046 (7)
F10.0254 (9)0.0646 (15)0.0228 (9)00.0009 (8)0
F20.0347 (10)0.0394 (11)0.0210 (9)00.0080 (8)0
F30.0573 (10)0.0285 (8)0.0452 (9)0.0129 (7)0.0061 (7)0.0111 (7)
B0.0247 (15)0.0180 (14)0.0187 (14)00.0002 (12)0
Cl20.0308 (3)0.0220 (2)0.0216 (2)0.00027 (19)0.00304 (19)0.00215 (19)
Cl30.0323 (4)0.0371 (4)0.0285 (4)0.0000.0129 (3)0
C60.0236 (13)0.0245 (14)0.0166 (12)00.0011 (11)0
Geometric parameters (Å, º) top
Cl1—C11.763 (3)C4—H420.96 (3)
N1—C11.507 (3)C4—C51.543 (3)
N1—C41.507 (2)C5—H520.93 (3)
N1—C21.510 (4)C5—H510.99 (3)
N2—C31.456 (4)F1—B1.388 (4)
N2—C51.464 (2)F2—B1.393 (4)
C1—H10.95 (2)F3—B1.381 (2)
C2—H20.98 (3)Cl2—C61.767 (2)
C2—C31.535 (4)Cl3—C61.759 (3)
C3—H30.93 (3)C6—D60.90 (4)
C4—H410.95 (3)
C1—N1—C4111.96 (13)H41—C4—N1105.3 (17)
C4i—N1—C4108.8 (2)H42—C4—N1105.6 (18)
C1—N1—C2107.0 (2)H41—C4—C5110.6 (17)
C4—N1—C2108.54 (14)H42—C4—C5111.1 (19)
C3—N2—C5108.94 (15)N1—C4—C5108.63 (17)
C5—N2—C5i108.2 (2)H52—C5—H51110 (2)
H1i—C1—H1112 (3)H52—C5—N2108.0 (17)
H1—C1—N1107.2 (14)H51—C5—N2110.3 (16)
H1—C1—Cl1109.3 (13)H52—C5—C4109.5 (17)
N1—C1—Cl1111.99 (18)H51—C5—C4106.8 (15)
H2i—C2—H2119 (4)N2—C5—C4111.79 (17)
H2—C2—N1104.2 (17)F3i—B—F3110.3 (3)
H2—C2—C3110.2 (19)F3—B—F1109.34 (18)
N1—C2—C3108.8 (2)F3—B—F2109.68 (18)
H3i—C3—H3110 (3)F1—B—F2108.5 (2)
H3—C3—N2108.8 (15)Cl3—C6—Cl2110.21 (11)
H3—C3—C2108.5 (16)Cl2i—C6—Cl2111.04 (16)
N2—C3—C2112.0 (2)Cl3—C6—D6109 (2)
H41—C4—H42115 (2)Cl2—C6—D6108.4 (11)
C2—N1—C1—Cl1180.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—D6···F10.90 (4)2.28 (4)3.123 (4)156 (3)
 

Acknowledgements

We thank the Asahi Glass Co. (Japan) for funding (studentship to JT).

References

First citationBanks, R. E., Sharif, I. & Pritchard, R. G. (1993). Acta Cryst. C49, 492–495.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SMART (Version 5.060) and SAINT (Version 6.02A), Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChambers, R. D., Holling, D., Sandford, G., Batsanov, A. S. & Howard, J. A. K. (2004). J. Fluorine Chem. 125, 661–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds