metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(1,1,4-tri­methyl­thio­semicarbazide)nickel(II) dinitrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Bath, Claverton Down, Bath BA1 7AY, England
*Correspondence e-mail: r.w.harrington@ncl.ac.uk

(Received 12 January 2005; accepted 26 January 2005; online 19 February 2005)

The determination of the crystal structure of the title compound, [Ni(C4H11N3S)2(H2O)2](NO3)2, reveals a distorted octahedral geometry around the Ni centre, which lies on an inversion centre, with water mol­ecules occupying the axial positions. Hydrogen bonding is observed between the 1,1,4-trimethyl­thio­semicarbazide NH groups and the nitrate anions, and also between the coordinated water mol­ecules and the anions.

Comment

The title compound, (I)[link], was formed as part of our investigations into the crystal engineering of nickel bis(thio­semicarbazide) dicarboxyl­ates, in which the Ni-containing cations and dicarboxyl­ate anions are linked through charge-augmented hydrogen bonds (Allen et al., 1999[Allen, M. T., Burrows, A. D. & Mahon, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 215-223.]; Burrows et al., 2000[Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2000). CrystEngComm, 2, 77-81.], 2004[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des. 4, 813-822.]).

[Scheme 1]

The asymmetric unit in (I)[link] consists of a nickel(II) centre, to which is co-ordinated one 1,1,4-trimethyl­thio­semicarbazide ligand, via the S and dimethyl­amine N atoms, and one water mol­ecule. A nitrate anion completes the asymmetric unit. The remainder of the molecular unit is generated by transformation through a crystallographic inversion centre, on which the metal is located. The structure of (I)[link] is shown in Fig. 1[link].

The geometry around the Ni centre is distorted octahedral, with bond angles ranging from 82.95 (3) to 97.05 (3)°. Each nitrate anion forms hydrogen bonds to three separate NiII species. The presence of parallel N—H donors (D) on the 1,1,4-trimethyl­thio­semicarbazide ligand and parallel O acceptors (A) on the nitrates facilitates the formation of DD:AA interactions, graph set R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res., 4, 120-126.]), which link the cations and anions. Each of the remaining AA faces of the nitrates is involved in a single O—H⋯O interaction with coordinated water mol­ecules

The combination of the DD:AA hydrogen bonds with one such O—H⋯O interaction results in the formation of `slipped' hydrogen-bonded chains along the crystallographic a axis, as illustrated in Fig. 2[link]. Within the chains are hydrogen-bonded rings of graph set R42(16). The `slipped' description of these chains is relative to chains observed in networks formed from reactions with linear dicarboxyl­ates, such as fumarate or terephthalate, where the cations are linked solely via DD:AA interactions to the anion carboxyl­ate groups (Allen et al., 1999[Allen, M. T., Burrows, A. D. & Mahon, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 215-223.]; Burrows et al., 2004[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des. 4, 813-822.]). The formation of the three-dimensional structure is faciliated by the second O—H⋯O interaction, graph set R65(23), illustrated in Fig. 3[link]. Thus all of the hydrogen-bond donors are satisfied. By contrast, not all of the hydrogen-bond acceptors available to the O atoms of the nitrate anion are utilized, O2 being the only atom to form two interactions, with atoms H3 and H4B. In the cases of atoms O1 and O3, only one hydrogen bond is formed. Details of the hydrogen bonding are given in Table 1[link].

[Figure 1]
Figure 1
A view of the mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by small spheres. [Symmetry code: (i) x + 1, y + 1, z + 1.]
[Figure 2]
Figure 2
Interactions (dashed lines) forming hydrogen-bonded chains in (I)[link].
[Figure 3]
Figure 3
Hydrogen-bond interactions (dashed lines) in the formation of the R65(23) graph set.

Experimental

Equimolar aqueous solutions of bis(1,1,4-trimethyl­thio­semicarbazide)nickel(II) nitrate (Burrows et al, 2004[Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des. 4, 813-822.]) and the sodium salt of either succinic or itaconic acid were allowed to evaporate slowly over a period of two weeks. In both cases, the formation of green crystals of (I)[link] resulted. Analysis by single-crystal X-ray diffraction revealed the identity of the products and confirmed that the dicarboxyl­ate was not incorporated into the crystalline material in either case.

Crystal data
  • [Ni(C4H11N3S)2(H2O)2](NO3)2

  • Mr = 485.20

  • Monoclinic, P 21 /c

  • a = 9.464 (2) Å

  • b = 12.358 (2) Å

  • c = 9.775 (2) Å

  • β = 117.7671 (13)°

  • V = 1011.60 (4) Å3

  • Z = 2

  • Dx = 1.593 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1024 reflections

  • θ = 4.1–27.5°

  • μ = 1.22 mm−1

  • T = 170 (2) K

  • Block, green

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.])Tmin = 0.697, Tmax = 0.697

  • 15 566 measured reflections

  • 2317 independent reflections

  • 2203 reflections with I > 2σ(I)

  • Rint = 0.025

  • θmax = 27.5°

  • h = −12 → 12

  • k = −15 → 16

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.06

  • 2317 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0213P)2 + 0.4059P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.0133 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.862 (15) 1.913 (15) 2.7703 (14) 173 (2)
O4—H4B⋯O2 0.847 (15) 1.875 (16) 2.7074 (14) 167 (2)
N2—H2⋯O1ii 0.866 (13) 2.103 (14) 2.9565 (16) 168.6 (15)
N3—H3⋯O2ii 0.867 (13) 1.990 (14) 2.8551 (15) 175.6 (15)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

The positions of the water, amino and amido H atoms were located in a difference map and refined isotropically, subject to a distance restraint of 0.89 (2) Å. H atoms on all C atoms were included in calculated positions, constrained to an ideal geometry with C—H distances of 0.98 Å and with Uiso(H) = 1.5Ueq(C). Each group was allowed to rotate freely about its C—N bond.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2001[Bruker. (2001) SHELXTL. Version 6. Bruker AXS inc., Madison, Wisconsin, USA.]), printCIF and local programs.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001), printCIF and local programs.

Diaquabis(1,1,4-trimethylthiosemicarbazide)nickel(II) dinitrate top
Crystal data top
[Ni(C4H11N3S)2(H2O)2](NO3)2F(000) = 508
Mr = 485.20Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 1024 reflections
a = 9.4640 (2) Åθ = 4.1–27.5°
b = 12.3580 (2) ŵ = 1.22 mm1
c = 9.7750 (2) ÅT = 170 K
β = 117.7671 (13)°Block, green
V = 1011.60 (4) Å30.30 × 0.30 × 0.30 mm
Z = 2
Data collection top
Nonius KappaCCD area-detector
diffractometer
2317 independent reflections
Radiation source: sealed tube2203 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.5°, θmin = 4.1°
Absorption correction: multi-scan
from symmetry-related measurements (Blessing, 1995)
h = 1212
Tmin = 0.697, Tmax = 0.697k = 1516
15566 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom & difmap
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0213P)2 + 0.4059P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2317 reflectionsΔρmax = 0.26 e Å3
144 parametersΔρmin = 0.26 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0133 (16)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.01900 (9)
S10.45094 (4)0.47524 (3)0.71566 (4)0.02431 (10)
O10.01934 (13)0.22074 (10)0.58796 (14)0.0439 (3)
O20.09424 (12)0.32177 (9)0.45410 (13)0.0415 (3)
O30.24872 (12)0.19351 (9)0.59396 (12)0.0354 (2)
O40.30050 (12)0.40960 (8)0.36503 (12)0.0301 (2)
H4A0.280 (2)0.3818 (16)0.2767 (19)0.056 (6)*
H4B0.246 (2)0.3740 (16)0.398 (2)0.061 (6)*
N10.33577 (12)0.63500 (9)0.45151 (12)0.0229 (2)
N20.23053 (14)0.61040 (10)0.51535 (13)0.0275 (2)
H20.1510 (17)0.6543 (13)0.4910 (19)0.032 (4)*
N30.18327 (14)0.54724 (10)0.70802 (13)0.0276 (2)
H30.0975 (17)0.5861 (13)0.6625 (18)0.031 (4)*
N40.12171 (13)0.24468 (9)0.54663 (12)0.0265 (2)
C10.27924 (15)0.54831 (10)0.64284 (14)0.0224 (2)
C20.20559 (18)0.47758 (13)0.83646 (17)0.0328 (3)
H2A0.18800.40210.80190.049*
H2B0.12920.49780.87350.049*
H2C0.31460.48600.92050.049*
C30.41701 (18)0.73925 (11)0.51787 (18)0.0325 (3)
H3A0.33700.79650.49230.049*
H3B0.48890.75750.47460.049*
H3C0.47880.73250.63050.049*
C40.23263 (17)0.64895 (12)0.28301 (16)0.0315 (3)
H4C0.15280.70510.26530.047*
H4D0.17860.58050.23810.047*
H4E0.29830.67050.23430.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01794 (13)0.01924 (14)0.01906 (13)0.00020 (7)0.00798 (10)0.00053 (7)
S10.02300 (17)0.02794 (18)0.02205 (17)0.00512 (12)0.01056 (13)0.00483 (12)
O10.0389 (6)0.0526 (7)0.0514 (7)0.0139 (5)0.0305 (5)0.0202 (5)
O20.0262 (5)0.0448 (6)0.0486 (7)0.0051 (4)0.0132 (5)0.0236 (5)
O30.0315 (5)0.0403 (6)0.0359 (5)0.0147 (4)0.0169 (4)0.0088 (4)
O40.0284 (5)0.0326 (5)0.0300 (5)0.0108 (4)0.0143 (4)0.0081 (4)
N10.0239 (5)0.0238 (5)0.0234 (5)0.0027 (4)0.0130 (4)0.0038 (4)
N20.0248 (5)0.0316 (6)0.0307 (6)0.0097 (5)0.0168 (5)0.0096 (5)
N30.0261 (6)0.0310 (6)0.0291 (6)0.0056 (5)0.0157 (5)0.0059 (5)
N40.0259 (5)0.0287 (6)0.0225 (5)0.0022 (4)0.0093 (4)0.0002 (4)
C10.0229 (6)0.0216 (6)0.0223 (6)0.0006 (5)0.0102 (5)0.0008 (5)
C20.0353 (8)0.0380 (8)0.0308 (7)0.0002 (6)0.0203 (6)0.0055 (6)
C30.0374 (7)0.0209 (7)0.0404 (8)0.0020 (5)0.0193 (6)0.0005 (5)
C40.0314 (7)0.0369 (8)0.0255 (7)0.0107 (6)0.0127 (6)0.0099 (6)
Geometric parameters (Å, º) top
Ni1—S12.3802 (3)N2—H20.866 (13)
Ni1—S1i2.3802 (3)N2—C11.3487 (16)
Ni1—O42.0573 (10)N3—H30.867 (13)
Ni1—O4i2.0573 (10)N3—C11.3305 (16)
Ni1—N12.1765 (10)N3—C21.4543 (18)
Ni1—N1i2.1765 (10)C2—H2A0.9800
S1—C11.6985 (13)C2—H2B0.9800
O1—N41.2467 (15)C2—H2C0.9800
O2—N41.2547 (15)C3—H3A0.9800
O3—N41.2412 (14)C3—H3B0.9800
O4—H4A0.862 (15)C3—H3C0.9800
O4—H4B0.847 (15)C4—H4C0.9800
N1—N21.4328 (14)C4—H4D0.9800
N1—C31.4857 (17)C4—H4E0.9800
N1—C41.4823 (17)
S1—Ni1—S1i180.0H3—N3—C1115.7 (11)
S1—Ni1—O489.93 (3)H3—N3—C2119.7 (11)
S1i—Ni1—O490.07 (3)C1—N3—C2124.22 (12)
S1i—Ni1—O4i89.93 (3)O1—N4—O2118.85 (11)
S1—Ni1—O4i90.07 (3)O1—N4—O3121.48 (11)
S1—Ni1—N182.95 (3)O2—N4—O3119.67 (11)
S1i—Ni1—N1i82.95 (3)S1—C1—N2122.56 (9)
S1i—Ni1—N197.05 (3)S1—C1—N3121.82 (10)
S1—Ni1—N1i97.05 (3)N2—C1—N3115.62 (11)
O4—Ni1—O4i180.00 (5)N3—C2—H2A109.5
O4—Ni1—N185.85 (4)N3—C2—H2B109.5
O4—Ni1—N1i94.15 (4)N3—C2—H2C109.5
O4i—Ni1—N1i85.85 (4)H2A—C2—H2B109.5
O4i—Ni1—N194.15 (4)H2A—C2—H2C109.5
N1—Ni1—N1i180.0H2B—C2—H2C109.5
Ni1—S1—C195.96 (4)N1—C3—H3A109.5
Ni1—O4—H4A124.9 (14)N1—C3—H3B109.5
Ni1—O4—H4B125.0 (15)N1—C3—H3C109.5
H4A—O4—H4B106 (2)H3A—C3—H3B109.5
Ni1—N1—N2108.26 (7)H3A—C3—H3C109.5
Ni1—N1—C3113.44 (8)H3B—C3—H3C109.5
Ni1—N1—C4111.40 (8)N1—C4—H4C109.5
N2—N1—C3108.49 (10)N1—C4—H4D109.5
N2—N1—C4106.09 (10)N1—C4—H4E109.5
C3—N1—C4108.85 (11)H4C—C4—H4D109.5
N1—N2—H2116.0 (11)H4C—C4—H4E109.5
N1—N2—C1121.02 (10)H4D—C4—H4E109.5
H2—N2—C1119.3 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3ii0.86 (2)1.91 (2)2.7703 (14)173 (2)
O4—H4B···O20.85 (2)1.88 (2)2.7074 (14)167 (2)
N2—H2···O1iii0.87 (1)2.10 (1)2.9565 (16)169 (2)
N3—H3···O2iii0.87 (1)1.99 (1)2.8551 (15)176 (2)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x, y+1, z+1.
 

Footnotes

Current address: School of Natural Sciences, Bedson Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, England.

Acknowledgements

The EPSRC is thanked for funding.

References

First citationAllen, M. T., Burrows, A. D. & Mahon, M. F. (1999). J. Chem. Soc. Dalton Trans. pp. 215–223.  Web of Science CSD CrossRef Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker. (2001) SHELXTL. Version 6. Bruker AXS inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, A. D., Harrington, R. W. & Mahon, M. F. (2000). CrystEngComm, 2, 77–81.  Web of Science CSD CrossRef Google Scholar
First citationBurrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des. 4, 813-822.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res., 4, 120–126.  CrossRef Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds