organic compounds
1-(Hydroxymethyl)-3,5-dimethylpyrazole
aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia and Montenegro
*Correspondence e-mail: ivana.radosavljevic@durham.ac.uk
The structure of the title compound, C6H10N2O, has been determined from single crystals obtained by recrystallization from acetone. Intermolecular O—H⋯N hydrogen bonding gives rise to R22(10) dimers.
Comment
1-(Hydroxymethyl)-3,5-dimethylpyrazole (HL), (I), was first synthesized by a reaction of 3,5-dimethylpyrazole with paraformaldehyde (Driessen, 1982). HL can act as a chelating ligand, as shown by the examples of four isomorphous cubane-type cluster coordination compounds of the formula [MXL(EtOH)4] (M = CoII, NiII, X = Cl, Br; Paap et al., 1985), where the deprotonated species acts as a bidentate ligand, coordinating the metals through its pyridine N atom and the methoxy O atom. With a metal with different coordination preferences, such as Pd, HL acts as a monodentate ligand through the pyrazole N atom, forming a square-planar complex (Boixassa et al., 2002).
The molecular structure of (I) is shown in Fig. 1. The substituted pyrazole ring is essentially planar, the largest displacement being 0.01 Å for C4. The O1—C1—N1—N2 torsion angle is 90.19 (9)°. The structure is stabilized by intermolecular O—H⋯N hydrogen bonding between adjacent molecules [H⋯N = 1.89 (2) Å, O⋯N = 2.760 (1) Å and O—H⋯N = 171.0 (2)°]. These interactions give rise to dimers with an R22(10) hydrogen-bonding motif (Etter et al., 1990) (Fig. 2).
Experimental
Needle-shaped clear single crystals of (I) were obtained by recrystallization of the commercial product (Aldrich) from acetone.
Crystal data
|
Refinement
|
H atoms were found in a difference Fourier map and refined using an isotropic approximation. Refined C—H bond lengths are in the range 0.95 (2)–1.04 (2) Å and the O—H bond length is 0.88 (2) Å.
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536805003971/wk6045sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805003971/wk6045Isup2.hkl
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.C6H10N2O | F(000) = 272 |
Mr = 126.16 | Dx = 1.238 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6570 reflections |
a = 7.2877 (2) Å | θ = 3.1–34.3° |
b = 11.9265 (3) Å | µ = 0.09 mm−1 |
c = 8.1586 (2) Å | T = 120 K |
β = 107.396 (1)° | Prism, white |
V = 676.68 (3) Å3 | 0.80 × 0.20 × 0.20 mm |
Z = 4 |
Bruker SMART CCD area-detector diffractometer | 2113 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω scans | θmax = 34.5°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.92, Tmax = 0.98 | k = −18→19 |
13356 measured reflections | l = −12→12 |
2742 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | All H-atom parameters refined |
wR(F2) = 0.100 | Chebychev polynomial, (Watkin, 1994; Prince, 1982): w = 1.0/[A0T0(x) + A1T1(x) ··· + An-1]Tn-1(x)], where Ai are the Chebychev coefficients listed below and x = Fc/Fmax; method = Robust Weighting (Prince, 1982); W = w[1-(δF/6σF)2]2; Ai are 3.44 4.59 1.31 |
S = 1.00 | (Δ/σ)max < 0.001 |
2113 reflections | Δρmax = 0.40 e Å−3 |
122 parameters | Δρmin = −0.31 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
O1 | −0.02535 (9) | −0.04616 (6) | 0.23811 (8) | 0.0220 | |
N1 | 0.26298 (10) | 0.04284 (6) | 0.40283 (9) | 0.0190 | |
N2 | 0.25525 (10) | 0.08755 (6) | 0.55433 (9) | 0.0189 | |
C1 | 0.16421 (12) | −0.06190 (7) | 0.34201 (12) | 0.0226 | |
C2 | 0.36052 (11) | 0.10985 (8) | 0.32329 (10) | 0.0211 | |
C3 | 0.42099 (11) | 0.20151 (7) | 0.42920 (12) | 0.0218 | |
C4 | 0.35202 (11) | 0.18413 (7) | 0.57094 (11) | 0.0194 | |
C5 | 0.38717 (15) | 0.08069 (11) | 0.15405 (13) | 0.0317 | |
C6 | 0.37831 (13) | 0.25601 (8) | 0.72617 (13) | 0.0280 | |
H1 | −0.101 (2) | −0.0516 (14) | 0.304 (2) | 0.040 (4)* | |
H2 | 0.237 (2) | −0.0995 (12) | 0.2760 (19) | 0.028 (3)* | |
H3 | 0.166 (2) | −0.1056 (13) | 0.446 (2) | 0.033 (4)* | |
H4 | 0.362 (3) | 0.3355 (17) | 0.692 (2) | 0.053 (5)* | |
H5 | 0.508 (3) | 0.2465 (15) | 0.808 (3) | 0.055 (5)* | |
H6 | 0.277 (3) | 0.2393 (16) | 0.783 (2) | 0.051 (5)* | |
H7 | 0.265 (3) | 0.0639 (15) | 0.071 (2) | 0.047 (5)* | |
H8 | 0.496 (2) | 0.2622 (12) | 0.408 (2) | 0.031 (3)* | |
H9 | 0.480 (3) | 0.0133 (16) | 0.167 (2) | 0.048 (4)* | |
H10 | 0.455 (3) | 0.1415 (17) | 0.119 (3) | 0.059 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0180 (2) | 0.0279 (3) | 0.0187 (3) | −0.0024 (2) | 0.0034 (2) | −0.0020 (2) |
N1 | 0.0176 (3) | 0.0203 (3) | 0.0181 (3) | −0.0014 (2) | 0.0041 (2) | −0.0009 (2) |
N2 | 0.0180 (3) | 0.0193 (3) | 0.0190 (3) | −0.0019 (2) | 0.0049 (2) | −0.0013 (2) |
C1 | 0.0191 (3) | 0.0201 (3) | 0.0260 (4) | 0.0000 (2) | 0.0028 (3) | −0.0044 (3) |
C2 | 0.0164 (3) | 0.0278 (4) | 0.0183 (3) | 0.0008 (3) | 0.0038 (2) | 0.0043 (3) |
C3 | 0.0174 (3) | 0.0225 (3) | 0.0242 (3) | −0.0022 (2) | 0.0042 (3) | 0.0053 (3) |
C4 | 0.0158 (3) | 0.0188 (3) | 0.0222 (3) | −0.0013 (2) | 0.0033 (2) | −0.0003 (3) |
C5 | 0.0273 (4) | 0.0490 (6) | 0.0191 (4) | 0.0018 (4) | 0.0075 (3) | 0.0018 (4) |
C6 | 0.0247 (4) | 0.0270 (4) | 0.0313 (4) | −0.0050 (3) | 0.0068 (3) | −0.0095 (3) |
O1—C1 | 1.4007 (10) | C6—H6 | 1.000 (18) |
N1—C1 | 1.4530 (11) | C6—H4 | 0.98 (2) |
N1—C2 | 1.3568 (11) | O1—H1 | 0.878 (17) |
N2—N1 | 1.3627 (10) | C1—H2 | 0.972 (14) |
N2—C4 | 1.3362 (10) | C1—H3 | 0.995 (16) |
C2—C5 | 1.4918 (13) | C3—H8 | 0.952 (15) |
C3—C2 | 1.3814 (13) | C5—H7 | 0.963 (18) |
C3—C4 | 1.4073 (12) | C5—H10 | 0.97 (2) |
C6—C4 | 1.4934 (12) | C5—H9 | 1.038 (19) |
C6—H5 | 0.988 (19) | ||
C4—C6—H5 | 111.2 (11) | H2—C1—H3 | 111.2 (12) |
C4—C6—H6 | 110.7 (11) | C2—C3—C4 | 105.78 (7) |
H5—C6—H6 | 110.5 (15) | C2—C3—H8 | 125.3 (9) |
C4—C6—H4 | 109.8 (11) | C4—C3—H8 | 128.9 (9) |
H5—C6—H4 | 108.1 (14) | C3—C2—N1 | 106.36 (7) |
H6—C6—H4 | 106.2 (15) | C3—C2—C5 | 131.14 (8) |
C1—O1—H1 | 107.9 (11) | N1—C2—C5 | 122.49 (8) |
N1—N2—C4 | 105.40 (7) | C6—C4—C3 | 128.72 (8) |
N2—N1—C1 | 119.71 (7) | C6—C4—N2 | 120.72 (8) |
N2—N1—C2 | 111.90 (7) | C3—C4—N2 | 110.55 (7) |
C1—N1—C2 | 128.31 (7) | C2—C5—H7 | 110.6 (11) |
N1—C1—O1 | 112.93 (7) | C2—C5—H10 | 108.5 (12) |
N1—C1—H2 | 106.8 (9) | H7—C5—H10 | 113.3 (16) |
O1—C1—H2 | 109.3 (9) | C2—C5—H9 | 110.3 (11) |
N1—C1—H3 | 106.2 (9) | H7—C5—H9 | 110.4 (15) |
O1—C1—H3 | 110.4 (8) | H10—C5—H9 | 103.5 (14) |
Acknowledgements
This work was financed in part by the Ministry of Science and Environmental Protection of the Republic of Serbia (project No. 1318 – Physicochemical, structural and biological investigation of complex compounds). IRE thanks the EPSRC for an Academic Fellowship.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Boixassa, A., Pons, J., Virgili, A., Solans, X., Font-Bardia, M. & Ros, J. (2002). Inorg. Chim. Acta, 340, 49–55. Web of Science CSD CrossRef CAS Google Scholar
Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Driessen, W. L. (1982). Recl Trav. Chim. Pays-Bas, 101, 441–443. CrossRef CAS Google Scholar
Etter, M. C., Macdonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Paap, F., Bouwman, E., Driessen, W. L., de Graaf, R. A. G. & Reedijk, J. (1985). J. Chem. Soc. Dalton Trans. pp. 737–741. CSD CrossRef Web of Science Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Shape Software (2000). ATOMS. Version 5.1. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Watkin, D. J. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.