metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloro{1-[(di­methyl­amino)­methyl-κN]-1H-indolyl-κC2}(tri­phenyl­phosphine-κP)­palladium(II) di­chloro­methane solvate

CROSSMARK_Color_square_no_text.svg

aChemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and bDipartimento di Chimica Organica `A. Mangani', Universita di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
*Correspondence e-mail: richard.cooper@chem.ox.ac.uk

(Received 2 December 2004; accepted 15 December 2004; online 26 February 2005)

The title compound, [Pd(C11H13N2)Cl(C18H15P)]·CH2Cl2, crystallizes readily from a mixture of di­chloro­methane and light petroleum. The structure is one of few examples of palladacycles that incorporate the N-substituent in five-membered ring heterocycles [Nonoyama & Nakajima (1998[Nonoyama, M. & Nakajima, K. (1998). Polyhedron 18, 533-543.]). Polyhedron 18, 533–543.].

Comment

Cyclo­metallation represents one of the most useful methods for the activation and ortho-functionalization of Csp2—H bonds in aromatic compounds (Ryabov et al., 1993[Ryabov, A. D., van Eldik, R., Le Borgue, G. & Pfeffer, M. (1993). Organometallics, 12, 1386-1393.]). The presence of a tethered donor group allows the initial coord­in­ation of the ligand to the metal and favourable intramolec­ular cyclization. Whereas heteroatom-directed cyclo­­metallation of benzeno­id and heteroaromatic systems has been exhaustively investigated, the chemistry of the analogous indole derivatives has remained virtually unexplored (Valk et al., 1994[Valk, J., Maassarani, F., van der Sluis, P., Spek, A. L., Boersma, J. & van Koten, G. (1994). Organometallics, 13, 2320-2329.]; Tollari et al., 1997[Tollari, S., Demartin, F., Cenini, S., Palmisano, G. & Raimondi, P. (1997). J. Organomet. Chem. 527, 93-102.]). Palladacycles are amongst the most active catalysts for C—C and C—heteroatom bond formation (Herrmann et al., 1999[Herrmann, W. A., Böhm, V. P. W. & Reisinger, C. P. (1999). J. Organomet. Chem. 576, 23-41.]; Albrecht & van Koten, 2001[Albrecht, M. & Van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750-3753.]; Dupont et al., 2001[Dupont, J., Pfeffer, M. & Spencer, J. (2001). Eur. J. Inorg. Chem. pp. 1917-1927.]). In addition to their high activity, they permit easy synthesis, facile modification and comparative stability. We report here the synthesis and structure of a five-membered indole-fused ortho-palladacycle, (2[link]), which incorporates N-isogr­amine, (1[link]), as a C,N-bidentate ligand.[link]

[Scheme 1]

The coordination geometry of the Pd atom closely approximates planarity. The mean plane through the Pd/C/Cl/N/P atoms intersects that of the ring system of the N-isogr­amine ligand (atoms C1–C5/N6/C7–C10) at an angle of 26.69 (6)°. The structure of a related six-membered indole-fused ortho-palladacycle which incorporates an N-methyl­eneoxazoline as the C,N-bidentate ligand has also been reported (Cowley et al., 2005[Cowley, A. R., Cooper, R. I., Capito, E., Brown, J. M., Ricci, A. (2005). Acta Cryst. E61, m582-m584.]).

[Figure 1]
Figure 1
The molecular structure of (2[link]), drawn with 50% probability ellipsoids for the anisotropically refined atoms.

Experimental

A suspension of PdCl2 (0.135 g, 0.76 mmol) and LiCl (0.064 g, 1.52 mmol) in ethanol (5 ml) was heated under reflux condition for 2 h to give a dark red solution of Li2[PdCl4]. The solution was cooled to room temperature and N-isogr­amine (Swaminathan & Narasimhan, 1966[Swaminathan, S. & Narasimhan, K. (1966). Chem. Ber. 99, 889-894.]) (0.11 g, 0.63 mmol) in ethanol (2 ml) and sodium acetate trihydrate (0.086 g, 0.63 mmol) were added. The resulting suspension was stirred at room temperature for 1.5 h. The insoluble brown solid was filtered off, washed with ethanol and dried in vacuo. Degassed CH2Cl2 (8 ml) and PPh3 (0.413 g, 1.58 mmol) were then added to the solid and the mixture was stirred at room temperature for 1 h under an argon atmosphere. Addition of pentane to the solution resulted in precipitation of a yellow solid. Recrystallization of the crude product from di­chloro­methane–pentane gave the yellow product, (2[link]) (m.p. 398–402 K); full spectroscopic and physical characterization will be reported elsewhere.

Crystal data
  • [Pd(C11H13N2)Cl(C18H15P)]·CH2Cl2

  • Mr = 662.31

  • Monoclinic, P21/n

  • a = 11.0324 (1) Å

  • b = 23.9623 (3) Å

  • c = 11.2437 (1) Å

  • β = 102.9338 (8)°

  • V = 2896.99 (5) Å3

  • Z = 4

  • Dx = 1.518 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6527 reflections

  • θ = 1–27°

  • μ = 1.00 mm−1

  • T = 190 K

  • Block, yellow

  • 0.28 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: none

  • 12861 measured reflections

  • 6622 independent reflections

  • 5789 reflections with I > 2σ(I)

  • Rint = 0.012

  • θmax = 27.5°

  • h = −14 → 14

  • k = −31 → 31

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.059

  • S = 1.00

  • 6593 reflections

  • 334 parameters

  • H-atom parameters not refined

  • w = 1/[σ2(F2) + 0.02 + 2.41P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—C2 1.9974 (18)
Pd1—N12 2.1867 (15)
Pd1—P15 2.2536 (5)
Pd1—Cl1 2.3618 (5)
C2—Pd1—N12 80.76 (7)
C2—Pd1—P15 91.69 (5)
N12—Pd1—P15 169.10 (4)
C2—Pd1—Cl1 170.75 (5)
N12—Pd1—Cl1 91.59 (4)
P15—Pd1—Cl1 96.583 (17)
Pd1—C2—C3 142.04 (14)
Pd1—C2—N6 110.00 (12)

The 29 reflections below [sin(θ)/λ]2 of 0.011 (= ∼4.27°) were not used in the refinement. It was suspected that some of them may have been partially obscured by the beam stop. All H atoms were placed in geometrically calculated positions after each refinement cycle, with X—H = 1.0 Å; Uiso(H) values were set at 1.2Ueq of the connected atom.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Chloro{1-[(dimethylamino)methyl-κN]-1H-indole-κC2}(triphenylphosphine- κP)palladium(II) top
Crystal data top
[Pd(C11H13N2)Cl(C18H15P)]·CH2Cl2F(000) = 1344
Mr = 662.31Dx = 1.518 Mg m3
Monoclinic, P21/nMelting point: 400(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.0324 (1) ÅCell parameters from 6527 reflections
b = 23.9623 (3) Åθ = 1–27°
c = 11.2437 (1) ŵ = 1.00 mm1
β = 102.9338 (8)°T = 190 K
V = 2896.99 (5) Å3Block, yellow
Z = 40.28 × 0.20 × 0.20 mm
Data collection top
Nonius Kappa CCD
diffractometer
Rint = 0.012
Graphite monochromatorθmax = 27.5°, θmin = 1.7°
ω scansh = 1414
12861 measured reflectionsk = 3131
6622 independent reflectionsl = 1414
5789 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters not refined
wR(F2) = 0.059 w = 1/[σ2(F2) + 0.02 + 2.41P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.00(Δ/σ)max = 0.001
6593 reflectionsΔρmax = 0.81 e Å3
334 parametersΔρmin = 0.64 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.379810 (12)0.172059 (6)0.040211 (12)0.0171
C20.41809 (17)0.16280 (8)0.22133 (17)0.0209
C30.36227 (18)0.15409 (9)0.31727 (17)0.0255
C40.45169 (18)0.16494 (8)0.42884 (17)0.0234
C50.56341 (18)0.18089 (8)0.39618 (17)0.0218
N60.54108 (14)0.17869 (7)0.27108 (14)0.0223
C70.44971 (19)0.16240 (9)0.55305 (18)0.0289
C80.5571 (2)0.17567 (9)0.63891 (18)0.0306
C90.66611 (19)0.19166 (9)0.60417 (18)0.0294
C100.67149 (18)0.19471 (9)0.48235 (18)0.0267
C110.62266 (17)0.19418 (8)0.19382 (17)0.0215
N120.54648 (14)0.22409 (6)0.08783 (14)0.0208
C130.62260 (19)0.23157 (10)0.00399 (19)0.0325
C140.5127 (2)0.28011 (9)0.1271 (2)0.0342
P150.22953 (4)0.106624 (19)0.01567 (4)0.0176
C160.12054 (16)0.11533 (8)0.11426 (16)0.0199
C170.06807 (18)0.16813 (8)0.11899 (18)0.0256
C180.01287 (19)0.17783 (9)0.1953 (2)0.0307
C190.0400 (2)0.13526 (10)0.2682 (2)0.0334
C200.0112 (2)0.08273 (9)0.26349 (19)0.0316
C210.09117 (18)0.07243 (8)0.18677 (18)0.0251
C220.29387 (17)0.03644 (8)0.04571 (16)0.0203
C230.22890 (19)0.01008 (8)0.00876 (19)0.0289
C240.2785 (2)0.06323 (9)0.0141 (2)0.0333
C250.3946 (2)0.07024 (9)0.0911 (2)0.0370
C260.4591 (2)0.02442 (10)0.1459 (2)0.0410
C270.41016 (19)0.02890 (9)0.12341 (19)0.0306
C280.12718 (17)0.09811 (8)0.13571 (17)0.0212
C290.00183 (18)0.09930 (9)0.15329 (18)0.0285
C300.0770 (2)0.08776 (10)0.2680 (2)0.0364
C310.0241 (2)0.07545 (9)0.36462 (19)0.0356
C320.1041 (2)0.07464 (9)0.34823 (19)0.0326
C330.17974 (18)0.08590 (8)0.23477 (18)0.0267
Cl10.34696 (4)0.19778 (2)0.16733 (4)0.0261
C1000.6360 (2)0.04871 (11)0.4578 (2)0.0438
Cl1020.71605 (5)0.05440 (3)0.33911 (5)0.0403
Cl1010.67962 (6)0.01180 (3)0.54647 (7)0.0529
H310.27410.14220.31060.0304*
H710.37230.15120.57920.0350*
H810.55660.17380.72760.0363*
H910.74170.20110.66850.0336*
H1010.74920.20630.45730.0311*
H1110.69010.21910.23900.0256*
H1120.66050.16010.16580.0256*
H1310.57280.25170.07650.0390*
H1320.69850.25380.03240.0390*
H1330.64790.19420.02990.0390*
H1410.46120.30030.05560.0387*
H1420.59010.30190.16060.0387*
H1430.46400.27580.19160.0387*
H1710.08880.19910.06720.0307*
H1810.05140.21550.19760.0374*
H1910.09670.14240.32460.0415*
H2010.00970.05200.31570.0389*
H2110.12760.03440.18350.0299*
H2310.14550.00520.06500.0339*
H2410.23070.09640.02490.0399*
H2510.43130.10840.10680.0442*
H2610.54210.02960.20260.0458*
H2710.45840.06190.16300.0347*
H2910.04080.10850.08350.0332*
H3010.16950.08840.27990.0411*
H3110.07820.06710.44660.0395*
H3210.14240.06590.41870.0382*
H3310.27220.08530.22370.0313*
H10010.65510.08220.51170.0541*
H10020.54460.04720.42140.0541*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01732 (7)0.01693 (7)0.01648 (8)0.00230 (5)0.00276 (5)0.00053 (5)
C20.0212 (9)0.0200 (9)0.0201 (9)0.0033 (7)0.0017 (7)0.0017 (7)
C30.0225 (10)0.0309 (11)0.0227 (10)0.0054 (8)0.0041 (7)0.0014 (8)
C40.0256 (10)0.0237 (10)0.0209 (9)0.0003 (8)0.0055 (7)0.0011 (7)
C50.0249 (10)0.0207 (9)0.0191 (9)0.0007 (7)0.0031 (7)0.0006 (7)
N60.0200 (8)0.0282 (9)0.0181 (8)0.0032 (6)0.0029 (6)0.0001 (6)
C70.0308 (11)0.0335 (12)0.0232 (10)0.0011 (9)0.0078 (8)0.0002 (8)
C80.0387 (12)0.0328 (11)0.0193 (10)0.0031 (9)0.0043 (8)0.0002 (8)
C90.0315 (11)0.0311 (11)0.0215 (10)0.0010 (9)0.0030 (8)0.0027 (8)
C100.0233 (10)0.0290 (11)0.0255 (10)0.0001 (8)0.0005 (8)0.0000 (8)
C110.0189 (9)0.0230 (9)0.0222 (9)0.0003 (7)0.0034 (7)0.0015 (7)
N120.0199 (8)0.0192 (8)0.0221 (8)0.0044 (6)0.0021 (6)0.0009 (6)
C130.0291 (11)0.0404 (13)0.0279 (10)0.0114 (9)0.0059 (8)0.0064 (9)
C140.0295 (11)0.0182 (10)0.0491 (13)0.0008 (8)0.0036 (9)0.0029 (9)
P150.0161 (2)0.0169 (2)0.0189 (2)0.00120 (17)0.00187 (17)0.00088 (17)
C160.0166 (9)0.0214 (9)0.0200 (9)0.0025 (7)0.0010 (7)0.0027 (7)
C170.0267 (10)0.0212 (10)0.0288 (10)0.0022 (8)0.0062 (8)0.0020 (8)
C180.0275 (10)0.0279 (11)0.0380 (12)0.0017 (8)0.0105 (9)0.0079 (9)
C190.0289 (11)0.0396 (13)0.0354 (12)0.0045 (9)0.0151 (9)0.0081 (10)
C200.0307 (11)0.0343 (12)0.0322 (11)0.0063 (9)0.0121 (9)0.0023 (9)
C210.0232 (9)0.0233 (10)0.0283 (10)0.0018 (8)0.0051 (8)0.0001 (8)
C220.0220 (9)0.0186 (9)0.0210 (9)0.0013 (7)0.0060 (7)0.0000 (7)
C230.0253 (10)0.0225 (10)0.0370 (11)0.0010 (8)0.0028 (8)0.0019 (9)
C240.0361 (12)0.0209 (10)0.0428 (13)0.0023 (9)0.0087 (10)0.0028 (9)
C250.0448 (13)0.0234 (11)0.0422 (13)0.0118 (10)0.0087 (10)0.0043 (10)
C260.0379 (13)0.0332 (12)0.0434 (13)0.0128 (10)0.0087 (10)0.0012 (10)
C270.0303 (11)0.0252 (11)0.0313 (11)0.0041 (8)0.0040 (8)0.0035 (9)
C280.0213 (9)0.0171 (9)0.0224 (9)0.0007 (7)0.0012 (7)0.0009 (7)
C290.0228 (10)0.0310 (11)0.0293 (11)0.0025 (8)0.0005 (8)0.0004 (8)
C300.0251 (11)0.0405 (13)0.0372 (12)0.0034 (9)0.0066 (9)0.0014 (10)
C310.0408 (13)0.0314 (12)0.0265 (11)0.0027 (10)0.0093 (9)0.0012 (9)
C320.0440 (13)0.0276 (11)0.0239 (10)0.0032 (9)0.0027 (9)0.0026 (8)
C330.0264 (10)0.0253 (10)0.0265 (10)0.0035 (8)0.0019 (8)0.0028 (8)
Cl10.0253 (2)0.0321 (3)0.0201 (2)0.00170 (19)0.00353 (17)0.00504 (19)
C1000.0375 (13)0.0391 (14)0.0588 (16)0.0054 (11)0.0192 (11)0.0105 (12)
Cl1020.0352 (3)0.0439 (3)0.0416 (3)0.0006 (2)0.0082 (2)0.0036 (3)
Cl1010.0463 (4)0.0434 (4)0.0730 (5)0.0037 (3)0.0220 (3)0.0208 (3)
Geometric parameters (Å, º) top
Pd1—C21.9974 (18)C17—C181.390 (3)
Pd1—N122.1867 (15)C17—H1711.000
Pd1—P152.2536 (5)C18—C191.383 (3)
Pd1—Cl12.3618 (5)C18—H1811.000
C2—C31.373 (3)C19—C201.385 (3)
C2—N61.400 (2)C19—H1911.000
C3—C41.435 (3)C20—C211.387 (3)
C3—H311.000C20—H2011.000
C4—C51.415 (3)C21—H2111.000
C4—C71.403 (3)C22—C231.391 (3)
C5—N61.374 (2)C22—C271.393 (3)
C5—C101.398 (3)C23—C241.388 (3)
N6—C111.433 (2)C23—H2311.000
C7—C81.388 (3)C24—C251.386 (3)
C7—H711.000C24—H2411.000
C8—C91.398 (3)C25—C261.377 (3)
C8—H811.000C25—H2511.000
C9—C101.386 (3)C26—C271.388 (3)
C9—H911.000C26—H2611.000
C10—H1011.000C27—H2711.000
C11—N121.481 (2)C28—C291.393 (3)
C11—H1111.000C28—C331.397 (3)
C11—H1121.000C29—C301.396 (3)
N12—C131.480 (3)C29—H2911.000
N12—C141.487 (3)C30—C311.375 (3)
C13—H1311.000C30—H3011.000
C13—H1321.000C31—C321.386 (3)
C13—H1331.000C31—H3111.000
C14—H1411.000C32—C331.385 (3)
C14—H1421.000C32—H3211.000
C14—H1431.000C33—H3311.000
P15—C161.8207 (19)C100—Cl1021.762 (2)
P15—C221.8273 (19)C100—Cl1011.765 (3)
P15—C281.8312 (18)C100—H10011.000
C16—C171.397 (3)C100—H10021.000
C16—C211.394 (3)
C2—Pd1—N1280.76 (7)C22—P15—C28101.68 (8)
C2—Pd1—P1591.69 (5)P15—C16—C17117.55 (14)
N12—Pd1—P15169.10 (4)P15—C16—C21122.89 (14)
C2—Pd1—Cl1170.75 (5)C17—C16—C21119.53 (17)
N12—Pd1—Cl191.59 (4)C16—C17—C18120.25 (18)
P15—Pd1—Cl196.583 (17)C16—C17—H171119.877
Pd1—C2—C3142.04 (14)C18—C17—H171119.875
Pd1—C2—N6110.00 (12)C17—C18—C19119.79 (19)
C3—C2—N6107.02 (15)C17—C18—H181120.104
C2—C3—C4108.53 (16)C19—C18—H181120.102
C2—C3—H31125.734C18—C19—C20120.24 (19)
C4—C3—H31125.735C18—C19—H191119.881
C3—C4—C5106.87 (16)C20—C19—H191119.881
C3—C4—C7134.54 (18)C19—C20—C21120.46 (19)
C5—C4—C7118.59 (17)C19—C20—H201119.769
C4—C5—N6106.76 (16)C21—C20—H201119.770
C4—C5—C10122.80 (18)C16—C21—C20119.72 (19)
N6—C5—C10130.43 (18)C16—C21—H211120.142
C2—N6—C5110.81 (15)C20—C21—H211120.142
C2—N6—C11120.84 (15)P15—C22—C23121.03 (14)
C5—N6—C11128.17 (15)P15—C22—C27120.03 (14)
C4—C7—C8118.78 (19)C23—C22—C27118.94 (18)
C4—C7—H71120.608C22—C23—C24120.72 (18)
C8—C7—H71120.609C22—C23—H231119.640
C7—C8—C9121.49 (19)C24—C23—H231119.641
C7—C8—H81119.255C23—C24—C25119.88 (19)
C9—C8—H81119.255C23—C24—H241120.059
C8—C9—C10121.35 (18)C25—C24—H241120.060
C8—C9—H91119.327C24—C25—C26119.7 (2)
C10—C9—H91119.326C24—C25—H251120.156
C5—C10—C9116.99 (18)C26—C25—H251120.156
C5—C10—H101121.505C25—C26—C27120.8 (2)
C9—C10—H101121.505C25—C26—H261119.604
N6—C11—N12107.03 (14)C27—C26—H261119.603
N6—C11—H111110.079C22—C27—C26119.97 (19)
N12—C11—H111110.078C22—C27—H271120.014
N6—C11—H112110.078C26—C27—H271120.013
N12—C11—H112110.078P15—C28—C29121.84 (15)
H111—C11—H112109.467P15—C28—C33119.00 (14)
C11—N12—Pd1102.46 (10)C29—C28—C33118.98 (17)
C11—N12—C13108.15 (15)C28—C29—C30120.25 (19)
Pd1—N12—C13118.39 (12)C28—C29—H291119.873
C11—N12—C14109.44 (15)C30—C29—H291119.872
Pd1—N12—C14109.54 (12)C29—C30—C31120.2 (2)
C13—N12—C14108.50 (16)C29—C30—H301119.889
N12—C13—H131109.466C31—C30—H301119.890
N12—C13—H132109.467C30—C31—C32119.92 (19)
H131—C13—H132109.475C30—C31—H311120.039
N12—C13—H133109.467C32—C31—H311120.040
H131—C13—H133109.475C31—C32—C33120.4 (2)
H132—C13—H133109.477C31—C32—H321119.797
N12—C14—H141109.467C33—C32—H321119.798
N12—C14—H142109.466C28—C33—C32120.21 (19)
H141—C14—H142109.475C28—C33—H331119.894
N12—C14—H143109.467C32—C33—H331119.893
H141—C14—H143109.476Cl102—C100—Cl101111.85 (13)
H142—C14—H143109.476Cl102—C100—H1001108.875
Pd1—P15—C16114.44 (6)Cl101—C100—H1001108.875
Pd1—P15—C22111.90 (6)Cl102—C100—H1002108.875
C16—P15—C22105.97 (8)Cl101—C100—H1002108.875
Pd1—P15—C28118.36 (6)H1001—C100—H1002109.467
C16—P15—C28102.99 (8)
 

Acknowledgements

The authors thank the EPSRC for funding for crystallographic equipment and for a post-doctoral grant (RIC) (GR/R75250).

References

First citationAlbrecht, M. & Van Koten, G. (2001). Angew. Chem. Int. Ed. 40, 3750–3753.  CrossRef CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCowley, A. R., Cooper, R. I., Capito, E., Brown, J. M., Ricci, A. (2005). Acta Cryst. E61, m582–m584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDupont, J., Pfeffer, M. & Spencer, J. (2001). Eur. J. Inorg. Chem. pp. 1917–1927.  CrossRef Google Scholar
First citationHerrmann, W. A., Böhm, V. P. W. & Reisinger, C. P. (1999). J. Organomet. Chem. 576, 23–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNonoyama, M. & Nakajima, K. (1998). Polyhedron 18, 533–543.  CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRyabov, A. D., van Eldik, R., Le Borgue, G. & Pfeffer, M. (1993). Organometallics, 12, 1386–1393.  CSD CrossRef CAS Web of Science Google Scholar
First citationSwaminathan, S. & Narasimhan, K. (1966). Chem. Ber. 99, 889–894.  CrossRef CAS Web of Science Google Scholar
First citationTollari, S., Demartin, F., Cenini, S., Palmisano, G. & Raimondi, P. (1997). J. Organomet. Chem. 527, 93–102.  CSD CrossRef CAS Web of Science Google Scholar
First citationValk, J., Maassarani, F., van der Sluis, P., Spek, A. L., Boersma, J. & van Koten, G. (1994). Organometallics, 13, 2320–2329.  CSD CrossRef CAS Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds