metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetato­[1-(oxazolin-2-yl­methyl-κN)-1H-indolyl-κC2](tri­phenyl­phosphine)­palladium(II) di­chloro­methane solvate

CROSSMARK_Color_square_no_text.svg

aChemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and bDipartimento di Chimica Organica `A. Mangani', Universita di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
*Correspondence e-mail: richard.cooper@chem.ox.ac.uk

(Received 2 December 2004; accepted 10 December 2004; online 26 February 2005)

The title compound, [Pd(C2H3O2)(C18H15P)(C12H11N2O)]·CH2Cl2, crystallizes readily from a mixture of di­chloro­methane and light petroleum. The structure is one of few examples of palladacycles that incorporate the N-substituent in five-membered-ring heterocycles [Nonoyama & Nakajima (1998[Nonoyama, M. & Nakajima, K. (1998). Polyhedron, 18, 533-543.]). Polyhedron, 18, 533–543].

Comment

Recently, cyclo­palladated oxazoline-based complexes have attracted attention due to their catalytic efficiency and the high potential of the oxazolinyl group as an inducer of chirality (Richards & Stark, 1997[Richards, C. J. & Stark, M. A. (1997). Tetrahedron Lett. 38, 5881-5884.]; Denmark et al., 1997[Denmark, S. E., Stavenger, R. A., Faucher, A.-M. & Edwards, J. P. (1997). J. Org. Chem. 62, 3375-3389.]). A few complexes based on ortho-palladation of an aryl­oxazoline in the arene, ferrocene and [2.2]­para­cyclo­phane series have been crystallographically characterized (Balavoine et al., 1990[Balavoine, G., Clinet, J. C., Zerbib, P. & Boubekeur, K. (1990). J. Organomet. Chem. 389, 259-275.]; Bölm et al., 2002[Bölm, C., Wenz, K. & Raabe, G. (2002). J. Organomet. Chem. 662, 23-33.]; Gorunova et al., 2004[Gorunova, O. N., Keuseman, K. J., Goebel, B. M., Kataeva, N. A., Churakov, A. V., Kuz'mina, L. G., Dunina, V. V. & Smoliakova, I. P. (2004). J. Organomet. Chem. 689, 2382-2394.]; Kirsch et al., 2004[Kirsch, S. F., Overman, L. E. & Watson, M. P. (2004). J. Org. Chem. 69, 8101-8104.]; Smoliakova et al., 2000[Smoliakova, I. P., Keuseman, K. J., Haagenson, D. C., Wellmann, D. M., Colligan, P. B., Kataeva, N. A., Churakov, A. V., Kuz'mina, L. G. & Dunina, V. V. (2000). J. Organomet. Chem. 603, 86-97.]). We report here the synthesis and structure of a six-membered indole-fused ortho-palladacycle, (2[link]), which incorporates an N-methyl­eneoxazoline as a C,N-bidentate ligand. We found that the application of of an equimolar amount of the weak electrophilic reagent Li2PdCl4 in the reaction with indole-derived oxazoline, (1[link]), in EtOH in the presence of AcONa as a base (Smoliakova et al., 2000[Smoliakova, I. P., Keuseman, K. J., Haagenson, D. C., Wellmann, D. M., Colligan, P. B., Kataeva, N. A., Churakov, A. V., Kuz'mina, L. G. & Dunina, V. V. (2000). J. Organomet. Chem. 603, 86-97.]) led to the formation of a bis-oxazoline coordination complex with no traces of the desired cyclo­palladated compound. On the other hand, one of the most efficient cyclo­palladation methods is the use of highly electrophilic Pd(OAc)2 in AcOH. By applying this method intramolecular C—H bond activation has been achieved and the desired cyclo­palladated compound, (2[link]), was obtained in good yield. This is the first crystallographically characterized oxazoline-derived palladacycle with a six-membered chelate ring, but activation of a benzyl­ic Csp3 atom to form a six-ring palladacycle has been reported as an alternative and controllable reaction path in the para­cyclo­phane series (Bölm et al., 2002[Bölm, C., Wenz, K. & Raabe, G. (2002). J. Organomet. Chem. 662, 23-33.]).[link]

[Scheme 1]

The coordination geometry of the Pd atom closely approaches planarity. The mean plane through the reported atomic positions of the Pd/C/N/O/P atoms intersects those of the fragments C1–C9/N1, N2/O1/C10–C12 and O2/O3/C13/C14 at 39.80 (10), 36.1 (2) and 84.43 (16)°, respectively.

The solvent interacts with neighbouring mol­ecules of the Pd complex. One of these interactions is apparently through a C—H⋯O hydrogen bond to the carbonyl O atom [C33⋯O3 = 3.129 (5) Å], while there is a second short contact between the oxazolinyl O atom and one of the Cl atoms of a second mol­ecule of solvent [O1⋯Cl1i = 3.030 (3) Å; symmetry code: (i) −x, −y, 1 − z].

[Figure 1]
Figure 1
The molecular structure of (2[link]). Displacement ellipsoids are drawn at the 50% probability level.

Experimental

A mixture of Pd(OAc)2 (52 mg, 0.23 mmol) and AcONa (32 mg, 0.23 mmol) was partially dissolved in acetic acid (1 ml). Oxazoline, (1[link]) (50 mg, 0.25 mmol), was dissolved in AcOH (1 ml). The two solutions were combined and stirred at room temperature overnight. The reaction mixture was then stirred at 323 K for 1 h and 24 h at room temperature. The mixture was filtered through Celite, the solvent removed and the yellow solid was dried in vacuo. Degassed CH2Cl2 (5 ml) and PPh3 (66 mg, 0.25 mmol) were then added to the solid and the mixture was stirred at room temperature for 2 h under an argon atmosphere. Addition of light petroleum ether to the solution resulted in precipitation of a yellow solid. Recrystallization of the crude product from di­chloro­methane and hexane gave the yellow product, (2[link]), with an overall yield of 70%. Full spectroscopic and physical characterization will be reported elsewhere.

Crystal data
  • [Pd(C2H3O2)(C18H15P)(C12H11N2O)]·CH2Cl2

  • Mr = 711.90

  • Triclinic, [P\overline 1]

  • a = 10.3125 (2) Å

  • b = 10.9019 (2) Å

  • c = 16.4409 (5) Å

  • α = 71.7446 (9)°

  • β = 75.0748 (9)°

  • γ = 62.0330 (10)°

  • V = 1536.81 (6) Å3

  • Z = 2

  • Dx = 1.538 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 20892 reflections

  • θ = 5–28°

  • μ = 0.87 mm−1

  • T = 150 K

  • Plate, pale yellow

  • 0.24 × 0.20 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.81, Tmax = 0.96

  • 20892 measured reflections

  • 6983 independent reflections

  • 4899 reflections with I > 3σ(I)

  • Rint = 0.053

  • θmax = 27.5°

  • h = −13 → 13

  • k = −14 → 14

  • l = −21 → 21

Refinement
  • Refinement on F

  • R = 0.036

  • wR = 0.040

  • S = 1.10

  • 4899 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Weighting scheme: see text

  • (Δ/σ)max = 0.001

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—C1 1.995 (3)
Pd1—N2 2.079 (3)
Pd1—O2 2.075 (2)
Pd1—P1 2.2425 (9)
C1—Pd1—N2 87.95 (12)
C1—Pd1—O2 175.71 (11)
N2—Pd1—O2 87.79 (10)
C1—Pd1—P1 92.34 (9)
N2—Pd1—P1 175.51 (9)
O2—Pd1—P1 91.87 (7)
Pd1—C1—C2 133.7 (2)
Pd1—C1—N1 118.6 (2)
Pd1—P1—C15 112.13 (11)
Pd1—P1—C21 114.12 (11)
Pd1—P1—C27 116.38 (11)
C33⋯O3 3.129 (5)
O1⋯Cl1i 3.030 (3)
Symmetry code: (i) -x,-y,1-z.

The weighting scheme was w = [1 − {||Fo| − |Fc||/6σ(Fo)}2]2/[0.391T0(x) + 0.126 T1(x) + 0.171T2(x)], using a second-order Chebychev polymial, with x = Fc/Fmax (Watkin, 1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 104. New York: Springer-Verlag.]).

All H atoms were placed in geometrically calculated positions after each refinement cycle, with X—H = 1.0 Å; Uiso(H) values were set equal to 1.2Ueq of the connected atom.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Acetato[1-(oxazolin-2-ylmethyl-κN)indol-2-yl](triphenylphosphine)palladium(II) dichloromethane solvate top
Crystal data top
[Pd(C2H3O2)(C18H15P)(C12H11N2O)]·CH2Cl2Z = 2
Mr = 711.90F(000) = 724
Triclinic, P1Dx = 1.538 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3125 (2) ÅCell parameters from 20892 reflections
b = 10.9019 (2) Åθ = 5–28°
c = 16.4409 (5) ŵ = 0.87 mm1
α = 71.7446 (9)°T = 150 K
β = 75.0748 (9)°Plate, pale yellow
γ = 62.033 (1)°0.24 × 0.20 × 0.05 mm
V = 1536.81 (6) Å3
Data collection top
Nonius Kappa CCD
diffractometer
4899 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.6°, θmin = 5.2°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.81, Tmax = 0.96k = 1414
20892 measured reflectionsl = 2121
6983 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters not refined
wR(F2) = 0.040 Method, part 1: Chebychev polynomial (Watkin, 1994; Prince, 1982) [weight] = 1/[0.391T0(x) + 0.126T1(x) + 0.171T2(x)]
where Ti are the Chebychev polynomials of degree i and x = F /Fmax. Method, part 2: Robust weight modifier (Prince, 1982) W = [weight][1-{ΔF/6σ(F)}2]2
S = 1.10(Δ/σ)max = 0.001
4899 reflectionsΔρmax = 0.61 e Å3
379 parametersΔρmin = 0.49 e Å3
0 restraints
Special details top

Refinement. The hydrogen atoms were all positioned geometrically. The preferred orientation of the methyl group C14, H141—H143 was identified by examination of a difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.33058 (3)0.19723 (3)0.322879 (17)0.0218
C10.2342 (4)0.1180 (3)0.2752 (2)0.0223
C20.1370 (4)0.1760 (3)0.2159 (2)0.0234
C30.0852 (3)0.0736 (3)0.2181 (2)0.0228
C40.0132 (4)0.0723 (4)0.1735 (2)0.0251
C50.0378 (4)0.0495 (4)0.1920 (2)0.0294
C60.0355 (4)0.1703 (4)0.2542 (2)0.0296
C70.1332 (4)0.1723 (3)0.2992 (2)0.0255
C80.1566 (4)0.0500 (3)0.2809 (2)0.0233
N10.2458 (3)0.0206 (3)0.31444 (18)0.0239
C90.3262 (4)0.1165 (4)0.3867 (2)0.0280
C100.2899 (4)0.0404 (3)0.4567 (2)0.0248
O10.2683 (3)0.1101 (3)0.53787 (16)0.0316
C110.2468 (4)0.0168 (4)0.5928 (2)0.0335
C120.2467 (5)0.1200 (4)0.5291 (2)0.0325
N20.2804 (3)0.0839 (3)0.44470 (17)0.0243
O20.4286 (3)0.2698 (2)0.38144 (15)0.0256
C130.3541 (4)0.3952 (4)0.3952 (2)0.0248
O30.2237 (3)0.4733 (3)0.38191 (17)0.0311
C140.4362 (4)0.4490 (4)0.4298 (2)0.0323
P10.40209 (9)0.30494 (9)0.19079 (5)0.0215
C150.4937 (4)0.4111 (4)0.1951 (2)0.0250
C160.6338 (4)0.3408 (4)0.2225 (2)0.0298
C170.7046 (4)0.4179 (4)0.2287 (2)0.0339
C180.6360 (5)0.5655 (5)0.2083 (3)0.0380
C190.4966 (4)0.6367 (4)0.1822 (3)0.0369
C200.4257 (4)0.5597 (4)0.1753 (2)0.0300
C210.2502 (3)0.4336 (3)0.1293 (2)0.0219
C220.1210 (4)0.5185 (4)0.1743 (2)0.0255
C230.0027 (4)0.6216 (4)0.1305 (2)0.0288
C240.0113 (4)0.6374 (4)0.0428 (2)0.0323
C250.1387 (4)0.5521 (4)0.0020 (2)0.0313
C260.2593 (4)0.4506 (4)0.0409 (2)0.0260
C270.5345 (4)0.1887 (3)0.1198 (2)0.0252
C280.5335 (4)0.0582 (4)0.1262 (3)0.0336
C290.6280 (5)0.0262 (4)0.0678 (3)0.0411
C300.7252 (5)0.0170 (4)0.0044 (3)0.0404
C310.7299 (4)0.1444 (4)0.0008 (2)0.0382
C320.6348 (4)0.2300 (4)0.0560 (2)0.0316
C330.0756 (5)0.4430 (5)0.4306 (3)0.0447
Cl10.11210 (12)0.29973 (13)0.43171 (7)0.0474
Cl20.18805 (15)0.60378 (14)0.36412 (8)0.0545
H210.10710.27360.17740.0284*
H410.06510.15780.12890.0296*
H510.10820.05100.16070.0387*
H610.01670.25670.26630.0384*
H710.18520.25870.34330.0308*
H910.43500.15300.36640.0335*
H920.29800.19840.41000.0335*
H1110.32950.06130.62860.0370*
H1120.15030.00340.63150.0370*
H1210.32450.14310.53790.0396*
H1220.14770.20230.53470.0396*
H1410.53910.37380.43690.0418*
H1420.38310.47170.48700.0418*
H1430.44040.53690.38830.0418*
H1610.68320.23430.23750.0354*
H1710.80500.36710.24800.0419*
H1810.68750.62110.21250.0523*
H1910.44710.74320.16830.0470*
H2010.32520.61120.15610.0371*
H2210.11350.50530.23810.0311*
H2310.08890.68430.16250.0346*
H2410.07460.71070.01160.0378*
H2510.14410.56340.06530.0387*
H2610.35190.39020.00830.0323*
H2810.46500.02520.17270.0399*
H2910.62530.11850.07190.0482*
H3010.79190.04330.03770.0422*
H3110.80210.17450.04560.0384*
H3210.63800.32230.05120.0337*
H3310.09620.45610.49090.0610*
H3320.03100.42040.40780.0610*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02423 (13)0.02180 (12)0.02126 (12)0.01224 (9)0.00276 (9)0.00357 (9)
C10.0235 (15)0.0210 (15)0.0233 (16)0.0120 (13)0.0014 (12)0.0057 (12)
C20.0240 (16)0.0242 (15)0.0227 (16)0.0118 (13)0.0008 (12)0.0055 (12)
C30.0199 (15)0.0246 (16)0.0243 (16)0.0109 (13)0.0003 (12)0.0062 (13)
C40.0241 (16)0.0282 (17)0.0218 (16)0.0105 (14)0.0012 (12)0.0065 (13)
C50.0307 (18)0.038 (2)0.0275 (17)0.0210 (16)0.0022 (14)0.0096 (15)
C60.0359 (19)0.0287 (17)0.0314 (18)0.0196 (15)0.0006 (15)0.0107 (14)
C70.0277 (17)0.0218 (15)0.0274 (17)0.0112 (13)0.0020 (13)0.0061 (13)
C80.0224 (15)0.0255 (16)0.0239 (16)0.0108 (13)0.0014 (12)0.0107 (13)
N10.0297 (14)0.0208 (13)0.0250 (14)0.0119 (12)0.0081 (11)0.0045 (11)
C90.0328 (18)0.0230 (16)0.0279 (17)0.0113 (14)0.0084 (14)0.0025 (13)
C100.0248 (16)0.0246 (16)0.0245 (16)0.0103 (13)0.0085 (13)0.0008 (13)
O10.0437 (15)0.0287 (13)0.0233 (12)0.0180 (11)0.0094 (11)0.0013 (10)
C110.039 (2)0.0294 (18)0.0241 (17)0.0106 (16)0.0025 (15)0.0033 (14)
C120.049 (2)0.0320 (18)0.0179 (16)0.0193 (17)0.0019 (15)0.0060 (14)
N20.0322 (15)0.0258 (14)0.0182 (13)0.0155 (12)0.0034 (11)0.0041 (11)
O20.0293 (12)0.0247 (12)0.0265 (12)0.0135 (10)0.0058 (10)0.0053 (9)
C130.0260 (16)0.0320 (17)0.0190 (15)0.0180 (14)0.0003 (12)0.0018 (13)
O30.0248 (12)0.0332 (13)0.0380 (14)0.0123 (10)0.0052 (10)0.0108 (11)
C140.0303 (18)0.0359 (19)0.038 (2)0.0173 (16)0.0028 (15)0.0143 (16)
P10.0213 (4)0.0207 (4)0.0222 (4)0.0100 (3)0.0020 (3)0.0032 (3)
C150.0237 (16)0.0292 (17)0.0242 (16)0.0150 (14)0.0014 (13)0.0041 (13)
C160.0248 (16)0.0369 (19)0.0268 (17)0.0158 (15)0.0020 (13)0.0028 (14)
C170.0276 (17)0.050 (2)0.0269 (18)0.0215 (17)0.0003 (14)0.0077 (16)
C180.040 (2)0.056 (2)0.035 (2)0.035 (2)0.0009 (16)0.0137 (18)
C190.040 (2)0.035 (2)0.043 (2)0.0220 (17)0.0043 (17)0.0082 (17)
C200.0289 (17)0.0276 (17)0.0361 (19)0.0155 (15)0.0046 (15)0.0047 (14)
C210.0237 (15)0.0203 (15)0.0243 (16)0.0137 (13)0.0027 (12)0.0016 (12)
C220.0249 (16)0.0261 (16)0.0268 (17)0.0134 (14)0.0013 (13)0.0051 (13)
C230.0222 (16)0.0260 (17)0.0383 (19)0.0096 (14)0.0037 (14)0.0086 (14)
C240.0306 (18)0.0266 (17)0.037 (2)0.0111 (15)0.0159 (15)0.0032 (15)
C250.0380 (19)0.0354 (19)0.0234 (17)0.0189 (16)0.0049 (14)0.0041 (14)
C260.0277 (17)0.0310 (17)0.0222 (16)0.0166 (14)0.0025 (13)0.0036 (13)
C270.0207 (15)0.0235 (16)0.0256 (16)0.0069 (13)0.0022 (13)0.0029 (13)
C280.0325 (19)0.0288 (18)0.038 (2)0.0136 (15)0.0037 (15)0.0118 (15)
C290.044 (2)0.032 (2)0.045 (2)0.0137 (17)0.0037 (18)0.0166 (17)
C300.038 (2)0.034 (2)0.033 (2)0.0029 (17)0.0012 (16)0.0103 (16)
C310.0303 (19)0.037 (2)0.0290 (19)0.0072 (16)0.0063 (15)0.0030 (15)
C320.0279 (17)0.0283 (17)0.0280 (18)0.0071 (14)0.0012 (14)0.0025 (14)
C330.042 (2)0.070 (3)0.041 (2)0.037 (2)0.0043 (18)0.023 (2)
Cl10.0473 (6)0.0585 (7)0.0493 (6)0.0301 (5)0.0011 (5)0.0222 (5)
Cl20.0662 (7)0.0648 (7)0.0454 (6)0.0420 (6)0.0041 (5)0.0152 (5)
Geometric parameters (Å, º) top
Pd1—C11.995 (3)P1—C211.819 (3)
Pd1—N22.079 (3)P1—C271.820 (3)
Pd1—O22.075 (2)C15—C161.399 (5)
Pd1—P12.2425 (9)C15—C201.395 (5)
C1—C21.371 (5)C16—C171.384 (5)
C1—N11.406 (4)C16—H1611.000
C2—C31.434 (4)C17—C181.386 (6)
C2—H211.000C17—H1711.000
C3—C41.404 (4)C18—C191.384 (6)
C3—C81.419 (5)C18—H1811.000
C4—C51.394 (5)C19—C201.389 (5)
C4—H411.000C19—H1911.000
C5—C61.404 (5)C20—H2011.000
C5—H511.000C21—C221.394 (5)
C6—C71.383 (5)C21—C261.390 (5)
C6—H611.000C22—C231.389 (5)
C7—C81.394 (4)C22—H2211.000
C7—H711.000C23—C241.381 (5)
C8—N11.378 (4)C23—H2311.000
N1—C91.452 (4)C24—C251.385 (5)
C9—C101.496 (5)C24—H2411.000
C9—H911.000C25—C261.393 (5)
C9—H921.000C25—H2511.000
C10—O11.334 (4)C26—H2611.000
C10—N21.266 (4)C27—C281.399 (5)
O1—C111.470 (4)C27—C321.399 (5)
C11—C121.530 (5)C28—C291.396 (5)
C11—H1111.000C28—H2811.000
C11—H1121.000C29—C301.383 (6)
C12—N21.471 (4)C29—H2911.000
C12—H1211.000C30—C311.387 (6)
C12—H1221.000C30—H3011.000
O2—C131.277 (4)C31—C321.385 (5)
C13—O31.241 (4)C31—H3111.000
C13—C141.519 (5)C32—H3211.000
C14—H1411.000C33—Cl11.764 (4)
C14—H1421.000C33—Cl21.777 (5)
C14—H1431.000C33—H3311.000
P1—C151.830 (3)C33—H3321.000
C33···O33.129 (5)O1···Cl1i3.030 (3)
C1—Pd1—N287.95 (12)H142—C14—H143109.476
C1—Pd1—O2175.71 (11)Pd1—P1—C15112.13 (11)
N2—Pd1—O287.79 (10)Pd1—P1—C21114.12 (11)
C1—Pd1—P192.34 (9)C15—P1—C21103.34 (15)
N2—Pd1—P1175.51 (9)Pd1—P1—C27116.38 (11)
O2—Pd1—P191.87 (7)C15—P1—C27103.71 (15)
Pd1—C1—C2133.7 (2)C21—P1—C27105.85 (15)
Pd1—C1—N1118.6 (2)P1—C15—C16118.9 (3)
C2—C1—N1107.0 (3)P1—C15—C20122.0 (3)
C1—C2—C3108.8 (3)C16—C15—C20119.1 (3)
C1—C2—H21125.577C15—C16—C17120.4 (3)
C3—C2—H21125.578C15—C16—H161119.792
C2—C3—C4134.6 (3)C17—C16—H161119.792
C2—C3—C8106.8 (3)C16—C17—C18119.9 (3)
C4—C3—C8118.6 (3)C16—C17—H171120.058
C3—C4—C5119.3 (3)C18—C17—H171120.059
C3—C4—H41120.343C17—C18—C19120.4 (3)
C5—C4—H41120.343C17—C18—H181119.787
C4—C5—C6120.6 (3)C19—C18—H181119.787
C4—C5—H51119.718C18—C19—C20119.9 (4)
C6—C5—H51119.718C18—C19—H191120.075
C5—C6—C7121.5 (3)C20—C19—H191120.074
C5—C6—H61119.253C15—C20—C19120.4 (3)
C7—C6—H61119.253C15—C20—H201119.822
C6—C7—C8117.8 (3)C19—C20—H201119.822
C6—C7—H71121.113P1—C21—C22117.2 (2)
C8—C7—H71121.113P1—C21—C26122.8 (3)
C3—C8—C7122.2 (3)C22—C21—C26119.9 (3)
C3—C8—N1106.8 (3)C21—C22—C23119.9 (3)
C7—C8—N1130.9 (3)C21—C22—H221120.034
C1—N1—C8110.5 (3)C23—C22—H221120.034
C1—N1—C9126.0 (3)C22—C23—C24120.1 (3)
C8—N1—C9123.1 (3)C22—C23—H231119.940
N1—C9—C10110.4 (3)C24—C23—H231119.940
N1—C9—H91109.228C23—C24—C25120.1 (3)
C10—C9—H91109.228C23—C24—H241119.926
N1—C9—H92109.228C25—C24—H241119.926
C10—C9—H92109.228C24—C25—C26120.3 (3)
H91—C9—H92109.466C24—C25—H251119.869
C9—C10—O1117.3 (3)C26—C25—H251119.870
C9—C10—N2125.0 (3)C21—C26—C25119.6 (3)
O1—C10—N2117.7 (3)C21—C26—H261120.196
C10—O1—C11105.9 (3)C25—C26—H261120.196
O1—C11—C12104.5 (3)P1—C27—C28120.2 (3)
O1—C11—H111110.695P1—C27—C32121.1 (3)
C12—C11—H111110.695C28—C27—C32118.7 (3)
O1—C11—H112110.695C27—C28—C29120.1 (3)
C12—C11—H112110.695C27—C28—H281119.935
H111—C11—H112109.467C29—C28—H281119.935
C11—C12—N2102.7 (3)C28—C29—C30120.4 (4)
C11—C12—H121111.133C28—C29—H291119.799
N2—C12—H121111.133C30—C29—H291119.799
C11—C12—H122111.133C29—C30—C31119.8 (3)
N2—C12—H122111.133C29—C30—H301120.102
H121—C12—H122109.467C31—C30—H301120.102
Pd1—N2—C10121.8 (2)C30—C31—C32120.2 (3)
Pd1—N2—C12128.9 (2)C30—C31—H311119.897
C10—N2—C12108.9 (3)C32—C31—H311119.897
Pd1—O2—C13117.5 (2)C27—C32—C31120.7 (3)
O2—C13—O3125.0 (3)C27—C32—H321119.634
O2—C13—C14115.4 (3)C31—C32—H321119.634
O3—C13—C14119.5 (3)Cl1—C33—Cl2111.3 (2)
C13—C14—H141109.467Cl1—C33—H331109.024
C13—C14—H142109.467Cl2—C33—H331109.024
H141—C14—H142109.476Cl1—C33—H332109.024
C13—C14—H143109.466Cl2—C33—H332109.024
H141—C14—H143109.476H331—C33—H332109.467
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank EPSRC for funding for crystallographic equipment (No. GR/N64885).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalavoine, G., Clinet, J. C., Zerbib, P. & Boubekeur, K. (1990). J. Organomet. Chem. 389, 259–275.  CSD CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBölm, C., Wenz, K. & Raabe, G. (2002). J. Organomet. Chem. 662, 23–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationDenmark, S. E., Stavenger, R. A., Faucher, A.-M. & Edwards, J. P. (1997). J. Org. Chem. 62, 3375–3389.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationGorunova, O. N., Keuseman, K. J., Goebel, B. M., Kataeva, N. A., Churakov, A. V., Kuz'mina, L. G., Dunina, V. V. & Smoliakova, I. P. (2004). J. Organomet. Chem. 689, 2382–2394.  Web of Science CSD CrossRef CAS Google Scholar
First citationKirsch, S. F., Overman, L. E. & Watson, M. P. (2004). J. Org. Chem. 69, 8101–8104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNonoyama, M. & Nakajima, K. (1998). Polyhedron, 18, 533–543.  CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 104. New York: Springer-Verlag.  Google Scholar
First citationRichards, C. J. & Stark, M. A. (1997). Tetrahedron Lett. 38, 5881–5884.  CrossRef Web of Science Google Scholar
First citationSmoliakova, I. P., Keuseman, K. J., Haagenson, D. C., Wellmann, D. M., Colligan, P. B., Kataeva, N. A., Churakov, A. V., Kuz'mina, L. G. & Dunina, V. V. (2000). J. Organomet. Chem. 603, 86–97.  Web of Science CSD CrossRef CAS Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds