organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6,8a-Tri­methyl-3a,6,7,8a-tetra­hydro­benzo­[b]­furo­[3,2-d]­furan-2,4(3H,5H)-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore - 570 006, India, and cSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 9 March 2005; accepted 14 March 2005; online 18 March 2005)

The structure of the title compound, C13H16O4, comprises a non-planar chiral mol­ecule where the cyclo­hexene double bond is distinctly shorter [1.335 (2) Å] than the neighbouring C—C single bonds (>1.4 Å).

Comment

The title compound, (I[link]), a per­hydro­furobenzo­furan, exhibits hypoglycemic properties. A search of the Cambridge Structural Database (Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for related structures reveals that there are 38 compounds containing a six-membered carbocyclic ring with two linked five-membered furo rings, as in (I[link]). However, in all 38 mol­ecules the C6 ring is benzene; none are cyclo­hexane, -ene or -yne variants. The structure of (I[link]) comprises a non-planar chiral mol­ecule where the C5=C10 double bond is distinctly shorter [1.335 (2) Å] than the neighbouring C—C single bonds (>1.4 Å). The two torsion angles that highlight the non-planarity of the mol­ecule are O1—C1—C4—C3 [−127.2 (1)°] and O2—C1—C4—C5 [104.0 (1)°].[link]

[Scheme 1]
[Figure 1]
Figure 1
The molecular configuration and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.

Experimental

The title compound was prepared according to the literature procedure of Nagarajan et al. (1988[Nagarajan, K., Talwalker, P. K., Goud, A. N., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). Indian J. Chem. Sect. B, 27, 1113-1123.]). Crystals were grown from ethanol.

Crystal data
  • C13H16O4

  • Mr = 236.26

  • Orthorhombic, P212121

  • a = 9.4853 (3) Å

  • b = 10.2904 (2) Å

  • c = 12.2872 (4) Å

  • V = 1199.32 (6) Å3

  • Z = 4

  • Dx = 1.309 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1560 reflections

  • θ = 2.9–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Prism, colourless

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.962

  • 8608 measured reflections

  • 2343 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.021

  • θmax = 26.0°

  • h = −11 → 10

  • k = −12 → 12

  • l = −14 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.04

  • 2343 reflections

  • 158 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0353P)2 + 0.2043P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.045 (6)

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.98 (CH3), 0.99 (CH2) and 1.00 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom. In the absence of significant anomalous scattering effects, the 763 Friedel pairs were merged.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

6,6,8a-Trimethyl-3a,6,7,8a-tetrahydrobenzo[b]furo[3,2-d]furan-2,4(3H,5H)-dione top
Crystal data top
C13H16O4Dx = 1.309 Mg m3
Mr = 236.26Melting point: 434 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1560 reflections
a = 9.4853 (3) Åθ = 2.9–27.5°
b = 10.2904 (2) ŵ = 0.10 mm1
c = 12.2872 (4) ÅT = 120 K
V = 1199.32 (6) Å3Prism, colourless
Z = 40.50 × 0.40 × 0.40 mm
F(000) = 504
Data collection top
Nonius KappaCCD
diffractometer
2343 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2235 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.021
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 2.9°
φ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.953, Tmax = 0.962l = 1415
8608 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.2043P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2343 reflectionsΔρmax = 0.20 e Å3
158 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (6)
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.884134.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.16781 (9)0.17367 (8)0.01057 (7)0.0201 (2)
O20.10135 (9)0.36301 (8)0.07462 (7)0.0225 (2)
O30.03946 (10)0.44551 (10)0.23535 (9)0.0360 (3)
O40.46337 (9)0.08915 (8)0.27867 (7)0.0235 (2)
C10.21985 (13)0.29930 (11)0.02444 (10)0.0184 (3)
C20.12818 (14)0.39484 (12)0.18079 (11)0.0228 (3)
C30.27705 (13)0.36048 (12)0.20951 (10)0.0216 (3)
H310.28070.31290.27950.027*
H320.33580.43970.21550.027*
C40.32810 (12)0.27457 (11)0.11621 (10)0.0172 (3)
H40.42660.29590.09340.021*
C50.30737 (12)0.13117 (11)0.13465 (10)0.0162 (2)
C60.37348 (12)0.04866 (12)0.21468 (10)0.0167 (3)
C70.32064 (13)0.09032 (12)0.21643 (10)0.0184 (3)
H710.23750.09520.26490.023*
H720.39500.14630.24800.023*
C80.27957 (13)0.14482 (11)0.10420 (10)0.0175 (3)
C90.17135 (13)0.05357 (11)0.04923 (10)0.0180 (3)
H910.16270.07580.02890.022*
H920.07780.06480.08360.022*
C100.21803 (12)0.08331 (11)0.06087 (9)0.0163 (3)
C110.21468 (14)0.27965 (12)0.11981 (12)0.0252 (3)
H1110.18990.31620.04870.032*
H1120.12970.27250.16470.032*
H1130.28300.33660.15600.032*
C120.41107 (14)0.15744 (12)0.03283 (11)0.0255 (3)
H1210.38470.19380.03800.032*
H1220.47920.21500.06840.032*
H1230.45350.07150.02240.032*
C130.26637 (16)0.37458 (13)0.07371 (11)0.0273 (3)
H1310.18760.38210.12490.034*
H1320.34490.32930.10900.034*
H1330.29700.46150.05140.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0239 (5)0.0165 (4)0.0198 (5)0.0007 (3)0.0071 (4)0.0029 (3)
O20.0182 (4)0.0236 (4)0.0258 (5)0.0048 (4)0.0010 (4)0.0006 (4)
O30.0276 (5)0.0399 (6)0.0405 (6)0.0016 (5)0.0124 (5)0.0100 (5)
O40.0222 (5)0.0247 (5)0.0235 (5)0.0021 (4)0.0091 (4)0.0003 (4)
C10.0190 (6)0.0159 (5)0.0203 (6)0.0016 (5)0.0010 (5)0.0002 (5)
C20.0232 (7)0.0187 (6)0.0264 (7)0.0034 (5)0.0041 (5)0.0013 (5)
C30.0253 (6)0.0178 (6)0.0217 (6)0.0012 (5)0.0001 (5)0.0029 (5)
C40.0165 (6)0.0164 (6)0.0186 (6)0.0005 (4)0.0003 (5)0.0018 (5)
C50.0151 (6)0.0167 (5)0.0167 (5)0.0007 (4)0.0008 (5)0.0001 (4)
C60.0144 (6)0.0203 (6)0.0154 (6)0.0006 (4)0.0009 (5)0.0008 (5)
C70.0166 (6)0.0204 (6)0.0183 (6)0.0008 (5)0.0040 (5)0.0044 (5)
C80.0171 (6)0.0159 (5)0.0195 (6)0.0003 (5)0.0037 (5)0.0015 (5)
C90.0191 (6)0.0180 (6)0.0169 (6)0.0001 (5)0.0037 (5)0.0005 (5)
C100.0144 (5)0.0186 (6)0.0158 (6)0.0030 (5)0.0006 (5)0.0026 (4)
C110.0247 (6)0.0182 (6)0.0327 (7)0.0016 (5)0.0080 (6)0.0033 (5)
C120.0237 (7)0.0222 (6)0.0306 (7)0.0038 (5)0.0035 (5)0.0025 (5)
C130.0358 (7)0.0242 (7)0.0220 (6)0.0015 (5)0.0007 (6)0.0057 (5)
Geometric parameters (Å, º) top
O1—C101.3646 (14)C7—H710.99
O1—C11.4492 (14)C7—H720.99
O2—C21.3689 (16)C8—C121.5303 (17)
O2—C11.4399 (15)C8—C111.5300 (16)
O3—C21.1956 (16)C8—C91.5464 (16)
O4—C61.2324 (15)C9—C101.4835 (17)
C1—C131.4997 (17)C9—H910.99
C1—C41.5461 (17)C9—H920.99
C2—C31.4978 (18)C11—H1110.98
C3—C41.5265 (16)C11—H1120.98
C3—H310.99C11—H1130.98
C3—H320.99C12—H1210.98
C4—C51.5059 (16)C12—H1220.98
C4—H41.00C12—H1230.98
C5—C101.3351 (17)C13—H1310.98
C5—C61.4426 (16)C13—H1320.98
C6—C71.5156 (16)C13—H1330.98
C7—C81.5388 (17)
C10—O1—C1107.34 (9)H71—C7—H72107.6
C2—O2—C1111.83 (10)C12—C8—C11108.83 (10)
O2—C1—O1105.50 (9)C12—C8—C7109.77 (10)
O2—C1—C13109.81 (10)C11—C8—C7108.66 (10)
O1—C1—C13108.80 (10)C12—C8—C9110.02 (10)
O2—C1—C4106.33 (9)C11—C8—C9109.78 (10)
O1—C1—C4107.21 (9)C7—C8—C9109.76 (9)
C13—C1—C4118.43 (11)C10—C9—C8109.65 (10)
O3—C2—O2120.52 (12)C10—C9—H91109.7
O3—C2—C3129.37 (12)C8—C9—H91109.7
O2—C2—C3110.08 (11)C10—C9—H92109.7
C2—C3—C4105.00 (10)C8—C9—H92109.7
C2—C3—H31110.7H91—C9—H92108.2
C4—C3—H31110.7C5—C10—O1114.02 (10)
C2—C3—H32110.7C5—C10—C9127.24 (11)
C4—C3—H32110.7O1—C10—C9118.74 (10)
H31—C3—H32108.8C8—C11—H111109.5
C5—C4—C3114.40 (10)C8—C11—H112109.5
C5—C4—C1100.62 (9)H111—C11—H112109.5
C3—C4—C1103.99 (9)C8—C11—H113109.5
C5—C4—H4112.3H111—C11—H113109.5
C3—C4—H4112.3H112—C11—H113109.5
C1—C4—H4112.3C8—C12—H121109.5
C10—C5—C6121.44 (11)C8—C12—H122109.5
C10—C5—C4110.01 (10)H121—C12—H122109.5
C6—C5—C4128.51 (11)C8—C12—H123109.5
O4—C6—C5122.45 (11)H121—C12—H123109.5
O4—C6—C7122.60 (11)H122—C12—H123109.5
C5—C6—C7114.92 (10)C1—C13—H131109.5
C6—C7—C8114.51 (10)C1—C13—H132109.5
C6—C7—H71108.6H131—C13—H132109.5
C8—C7—H71108.6C1—C13—H133109.5
C6—C7—H72108.6H131—C13—H133109.5
C8—C7—H72108.6H132—C13—H133109.5
C2—O2—C1—O1120.97 (10)C1—C4—C5—C6176.76 (11)
C2—O2—C1—C13121.94 (11)C10—C5—C6—O4174.96 (11)
C2—O2—C1—C47.32 (12)C4—C5—C6—O42.42 (19)
C10—O1—C1—O2104.33 (10)C10—C5—C6—C76.91 (16)
C10—O1—C1—C13137.90 (10)C4—C5—C6—C7175.71 (11)
C10—O1—C1—C48.71 (12)O4—C6—C7—C8147.51 (11)
C1—O2—C2—O3178.12 (11)C5—C6—C7—C834.36 (14)
C1—O2—C2—C33.55 (14)C6—C7—C8—C1266.75 (13)
O3—C2—C3—C4168.91 (13)C6—C7—C8—C11174.33 (10)
O2—C2—C3—C412.95 (13)C6—C7—C8—C954.28 (13)
C2—C3—C4—C592.39 (12)C12—C8—C9—C1075.43 (12)
C2—C3—C4—C116.37 (12)C11—C8—C9—C10164.83 (10)
O2—C1—C4—C5103.98 (10)C7—C8—C9—C1045.45 (13)
O1—C1—C4—C58.49 (11)C6—C5—C10—O1178.35 (10)
C13—C1—C4—C5131.95 (11)C4—C5—C10—O10.53 (14)
O2—C1—C4—C314.69 (11)C6—C5—C10—C91.03 (19)
O1—C1—C4—C3127.17 (10)C4—C5—C10—C9178.85 (11)
C13—C1—C4—C3109.37 (12)C1—O1—C10—C55.33 (13)
C3—C4—C5—C10116.43 (11)C1—O1—C10—C9175.23 (10)
C1—C4—C5—C105.63 (13)C8—C9—C10—C521.53 (17)
C3—C4—C5—C665.96 (16)C8—C9—C10—O1157.83 (10)
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England) and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury, England (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationNagarajan, K., Talwalker, P. K., Goud, A. N., Shah, R. K., Shenoy, S. J. & Desai, N. D. (1988). Indian J. Chem. Sect. B, 27, 1113–1123.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds