organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetamido-N-benz­yl-1,4-imino-1,2,4-tride­­oxy-L-ribitol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and cGlycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk

(Received 28 February 2005; accepted 4 March 2005; online 11 March 2005)

The relative configuration of the stereocentres in a potential hexosaminidase inhibitor, C14H20N2O3, prepared from D-lyxonolactone, has been established using X-ray crystallographic techniques.

Comment

Imino sugars, analogues of carbohydrates with the O atom of the ring replaced by an N atom, are a family of both natural products and synthetic materials which inhibit glycosidases; several such compounds have considerable therapeutic potential (Watson et al., 2001[Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265-295.]; Asano et al., 2000[Asano, N., Nash, R. J, Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645-1680.]; Winchester & Fleet, 2000[Winchester, B. & Fleet, G. W. J. (2000). J. Carbohydr. Chem. 19, 471-483.]). For example, the natural product deoxy­nojirimycin, (1)[link], is an inhibitor of a range of α-glucosidases and its derivatives have been shown to possess antiviral activity (Stütz, 1999[Stütz, A. E. (1999). Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.]); several related pyrrolidines, (2)[link], are also potent inhibitors of α-glucosidases, although structure–activity relationships are not easily predicta­ble (Asano et al., 2005[Asano, N., Ikeda, K., Yu, L., Kato, A., Takebayashi, K., Adachi, I., Kato, I., Ouchi, H., Takahata, H. & Fleet, G. W. J. (2005). Tetrahedron Asymmetry, 16, 223-229.]; Yu et al., 2004[Yu, C.-Y., Asano, N., Ikeda, K., Wang, M.-X., Butters, T. D., Wormald, M. R., Dwek, R. A., Winters, A. L., Nash, R. J. & Fleet, G. W. J. (2004). Chem. Commun. pp. 1936-1937.]; Scofield et al., 1986[Scofield, A. M., Fellows, L. E., Nash, R. J. & Fleet, G. W. J. (1986). Life Sci. 39, 645-651.]). The synthetic N-acetyl­glucosa­mine analogue, (3)[link], is a powerful hexosaminidase inhibitor (Fleet et al., 1986[Fleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett. pp. 1051-1054.]; Boshagen et al., 1987[Boshagen, H., Heiker, F. & Schuller, A. (1987). Carbohydr. Res. 164, 141-148.]); such inhibitors have potential as anticancer agents (Woynarowska et al., 1992[Woynarowska, B., Wilkiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J & Bernacki, R. J. (1992). Anticancer Res. 12, 161-166.]) and for the treatment of other diseases (Liu et al., 2004[Liu, J. J., Numa, M. M. D., Liu, H. T., Huang, S. J., Sears, P., Shikhman, A. R. & Wong, C. H. (2004). J. Org. Chem. 69, 6273-6283.]). By analogy with the glucosidase inhibitors, (2)[link], a synthetic programme towards a series of diastereomeric pyrrolidines, (4)[link], has led to the preparation of the potential hexosaminidase inhibitor, (5)[link]. While the absolute configuration of (5)[link] is established by the use of D-lyxonolactone, (6)[link], as the starting material, ambiguity in the relative configuration of the nitro­gen substituent was removed by X-ray crystallographic analysis.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram, viewed down the b axis. The crystal structure consists of strongly hydrogen-bonded ribbons of mol­ecules along the b axis, held together by a mixture of hydrogen bonding along the a axis and weaker inter­molecular inter­actions. Hydrogen bonds are represented as dotted lines.
[Figure 3]
Figure 3
View of the strong hydrogen-bonding network in one of the ribbons running parallel to the b axis. Hydrogen bonds are represented as dotted lines.

Experimental

The title compound was crystallized by cooling a warm solution in acetonitrile, forming clear block-like crystals.

Crystal data
  • C14H20N2O3

  • Mr = 264.32

  • Monoclinic, P 21

  • a = 6.8912 (3) Å

  • b = 7.3504 (3) Å

  • c = 13.6824 (6) Å

  • β = 90.822 (2)°

  • V = 692.98 (5) Å3

  • Z = 2

  • Dx = 1.267 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1415 reflections

  • θ = 1–27°

  • μ = 0.09 mm−1

  • T = 190 K

  • Block, colourless

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.98, Tmax = 0.99

  • 2636 measured reflections

  • 1681 independent reflections

  • 1499 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 27.5°

  • h = −8 → 8

  • k = −9 → 8

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 0.89

  • 1673 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = [1 − (FoFc)2/36σ2(Fo)]2/[33.1T0(x) + 52.7T1(x) + 30.8T2(x) + 12.9T3(x) + 3.03T4(x)], where x = Fc/Fmax and Ti(x) are Chebychev polynomials (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.])

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H8⋯O19i 0.84 2.14 2.958 (2) 167
O19—H15⋯O6ii 0.93 1.85 2.708 (2) 153
O6—H17⋯O9iii 0.80 1.89 2.685 (2) 168
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z.

All H atoms were observed in a difference electron-density map. The hydr­oxy and amide H atoms were refined freely, whilst the others were refined with slack restraints to optimize the geometry. They were all then made to ride on their parent atoms, with C—H distances of 0.96–1.00 Å and Uiso(H) = 1.2Ueq(parent). In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration is known from the synthesis. Eight low-angle reflections were omitted from the refinement because they appeared to be obscured by the beamstop.

Data collection: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-Acetamido-N-benzyl-1,4-imino-1,2,4-trideoxy-L-ribitol top
Crystal data top
C14H20N2O3F(000) = 284
Mr = 264.32Dx = 1.267 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1415 reflections
a = 6.8912 (3) Åθ = 1–27°
b = 7.3504 (3) ŵ = 0.09 mm1
c = 13.6824 (6) ÅT = 190 K
β = 90.822 (2)°Block, colourless
V = 692.98 (5) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 88
Tmin = 0.98, Tmax = 0.99k = 98
2636 measured reflectionsl = 1717
1681 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086 w = [1-(Fo-Fc)2/36σ2(Fo)]2/ [33.1T0(x) + 52.7T1(x) + 30.8T2(x) + 12.9T3(x) + 3.03T4(x)],
where x = Fc/Fmax and Ti(x) are Chebychev polynomials (Watkin, 1994; Prince, 1982)
S = 0.89(Δ/σ)max = 0.000293
1673 reflectionsΔρmax = 0.23 e Å3
172 parametersΔρmin = 0.20 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4242 (3)0.6215 (3)0.69450 (14)0.0199
N20.4490 (3)0.5333 (2)0.79181 (12)0.0222
C30.5356 (3)0.3527 (3)0.77759 (15)0.0262
C40.6657 (3)0.3880 (3)0.69059 (14)0.0217
C50.5299 (3)0.4963 (3)0.62235 (14)0.0195
O60.40451 (19)0.3757 (2)0.56955 (10)0.0235
N70.7464 (2)0.2265 (3)0.64659 (13)0.0238
C80.9353 (3)0.2105 (3)0.62727 (14)0.0231
O91.0531 (2)0.3314 (3)0.64842 (13)0.0350
C100.9973 (3)0.0385 (4)0.57773 (18)0.0353
C110.2725 (3)0.5279 (3)0.85049 (15)0.0271
C120.2036 (3)0.7160 (3)0.87761 (14)0.0244
C130.0365 (4)0.7877 (4)0.83651 (18)0.0377
C140.0277 (4)0.9605 (4)0.8619 (2)0.0460
C150.0746 (4)1.0630 (4)0.92943 (19)0.0392
C160.2405 (4)0.9911 (4)0.9721 (2)0.0401
C170.3054 (3)0.8199 (4)0.94605 (18)0.0341
C180.5168 (3)0.8102 (3)0.69904 (14)0.0231
O190.4740 (2)0.9199 (2)0.61627 (11)0.0260
H110.28430.63060.67480.0234*
H310.43690.25830.76170.0301*
H320.60810.31570.83550.0296*
H410.77360.46590.71100.0263*
H510.60450.56780.57450.0223*
H1011.11850.00620.60450.0424*
H1021.01910.06360.50970.0433*
H1030.90080.05770.58070.0425*
H1110.16800.46610.81390.0314*
H1120.30030.45850.91000.0306*
H1310.03820.71540.78990.0452*
H1410.14801.01000.83130.0545*
H1510.02891.18400.94800.0462*
H1610.31301.06141.02120.0478*
H1710.42520.76990.97490.0416*
H1810.46720.87270.75810.0277*
H1820.65780.79730.70540.0276*
H80.66800.14540.62890.0246*
H150.52000.86750.55970.0596*
H170.30690.35220.59830.0425*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (9)0.0199 (10)0.0198 (9)0.0007 (8)0.0015 (7)0.0013 (8)
N20.0270 (8)0.0193 (8)0.0203 (8)0.0014 (7)0.0035 (6)0.0004 (7)
C30.0337 (11)0.0211 (11)0.0238 (9)0.0053 (9)0.0015 (8)0.0009 (8)
C40.0189 (9)0.0188 (10)0.0274 (9)0.0003 (8)0.0004 (7)0.0040 (8)
C50.0181 (8)0.0193 (10)0.0211 (9)0.0023 (8)0.0016 (7)0.0021 (8)
O60.0199 (7)0.0264 (8)0.0243 (7)0.0044 (6)0.0020 (5)0.0070 (6)
N70.0172 (8)0.0195 (8)0.0348 (9)0.0011 (7)0.0004 (6)0.0052 (8)
C80.0184 (9)0.0259 (10)0.0249 (9)0.0006 (8)0.0006 (7)0.0016 (9)
O90.0223 (7)0.0384 (10)0.0445 (9)0.0081 (7)0.0049 (6)0.0110 (8)
C100.0229 (10)0.0357 (13)0.0474 (13)0.0049 (10)0.0051 (9)0.0145 (12)
C110.0337 (11)0.0248 (11)0.0230 (9)0.0006 (9)0.0074 (8)0.0002 (9)
C120.0265 (10)0.0269 (10)0.0200 (8)0.0000 (9)0.0072 (7)0.0008 (9)
C130.0404 (13)0.0400 (14)0.0325 (12)0.0081 (12)0.0079 (10)0.0066 (11)
C140.0498 (15)0.0455 (17)0.0424 (14)0.0198 (13)0.0066 (12)0.0015 (13)
C150.0488 (14)0.0281 (13)0.0413 (13)0.0058 (12)0.0158 (11)0.0026 (11)
C160.0353 (12)0.0386 (14)0.0466 (14)0.0049 (12)0.0061 (11)0.0150 (12)
C170.0282 (10)0.0369 (13)0.0372 (12)0.0021 (11)0.0006 (9)0.0113 (11)
C180.0281 (10)0.0176 (10)0.0236 (9)0.0020 (8)0.0012 (7)0.0001 (8)
O190.0322 (8)0.0176 (7)0.0284 (7)0.0028 (6)0.0031 (6)0.0046 (6)
Geometric parameters (Å, º) top
C1—N21.489 (2)C10—H1020.963
C1—C51.540 (3)C10—H1030.972
C1—C181.527 (3)C11—C121.510 (3)
C1—H111.000C11—H1110.983
N2—C31.470 (3)C11—H1120.978
N2—C111.467 (3)C12—C131.379 (3)
C3—C41.523 (3)C12—C171.391 (3)
C3—H310.993C13—C141.391 (4)
C3—H320.970C13—H1310.972
C4—C51.535 (3)C14—C151.378 (4)
C4—N71.446 (3)C14—H1410.993
C4—H410.976C15—C161.382 (4)
C5—O61.427 (2)C15—H1510.979
C5—H510.989C16—C171.384 (4)
O6—H170.803C16—H1610.978
N7—C81.337 (2)C17—H1710.981
N7—H80.838C18—O191.418 (2)
C8—O91.235 (3)C18—H1810.995
C8—C101.500 (3)C18—H1820.979
C10—H1010.965O19—H150.925
N2—C1—C5105.3 (2)H101—C10—H102106.6
N2—C1—C18108.5 (2)C8—C10—H103113.3
C5—C1—C18111.6 (2)H101—C10—H103109.0
N2—C1—H11111.50H102—C10—H103107.3
C5—C1—H11109.3N2—C11—C12112.1 (2)
C18—C1—H11110.6N2—C11—H111109.9
C1—N2—C3108.5 (2)C12—C11—H111108.6
C1—N2—C11114.6 (2)N2—C11—H112108.4
C3—N2—C11112.9 (2)C12—C11—H112109.4
N2—C3—C4101.2 (2)H111—C11—H112108.4
N2—C3—H31112.5C11—C12—C13120.9 (2)
C4—C3—H31110.9C11—C12—C17120.7 (2)
N2—C3—H32110.5C13—C12—C17118.4 (2)
C4—C3—H32112.6C12—C13—C14120.9 (2)
H31—C3—H32109.0C12—C13—H131119.3
C3—C4—C5101.7 (2)C14—C13—H131119.8
C3—C4—N7114.8 (2)C13—C14—C15120.3 (2)
C5—C4—N7114.0 (2)C13—C14—H141119.7
C3—C4—H41109.3C15—C14—H141119.9
C5—C4—H41109.0C14—C15—C16119.1 (2)
N7—C4—H41107.8C14—C15—H151120.5
C1—C5—C4102.1 (2)C16—C15—H151120.4
C1—C5—O6114.0 (2)C15—C16—C17120.5 (2)
C4—C5—O6110.2 (2)C15—C16—H161119.9
C1—C5—H51111.2C17—C16—H161119.6
C4—C5—H51111.1C12—C17—C16120.7 (2)
O6—C5—H51108.2C12—C17—H171118.6
C5—O6—H17113.1C16—C17—H171120.7
C4—N7—C8122.4 (2)C1—C18—O19113.7 (2)
C4—N7—H8117.0C1—C18—H181107.7
C8—N7—H8120.4O19—C18—H181108.5
N7—C8—O9121.9 (2)C1—C18—H182109.2
N7—C8—C10116.6 (2)O19—C18—H182108.7
O9—C8—C10121.5 (2)H181—C18—H182108.9
C8—C10—H101111.5C18—O19—H15111.2
C8—C10—H102108.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H8···O19i0.842.142.958 (2)167
O19—H15···O6ii0.931.852.708 (2)153
O6—H17···O9iii0.801.892.685 (2)168
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAsano, N., Ikeda, K., Yu, L., Kato, A., Takebayashi, K., Adachi, I., Kato, I., Ouchi, H., Takahata, H. & Fleet, G. W. J. (2005). Tetrahedron Asymmetry, 16, 223–229.  Web of Science CrossRef CAS Google Scholar
First citationAsano, N., Nash, R. J, Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.  CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoshagen, H., Heiker, F. & Schuller, A. (1987). Carbohydr. Res. 164, 141–148.  CrossRef CAS PubMed Google Scholar
First citationFleet, G. W. J., Smith, P. W., Nash, R. J., Fellows, L. E., Parekh, R. B. & Rademacher, T. W. (1986). Chem. Lett. pp. 1051–1054.  CrossRef Web of Science Google Scholar
First citationLiu, J. J., Numa, M. M. D., Liu, H. T., Huang, S. J., Sears, P., Shikhman, A. R. & Wong, C. H. (2004). J. Org. Chem. 69, 6273–6283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationScofield, A. M., Fellows, L. E., Nash, R. J. & Fleet, G. W. J. (1986). Life Sci. 39, 645–651.  CrossRef CAS PubMed Google Scholar
First citationStütz, A. E. (1999). Iminosugars as Glycosidase Inhibitors: Nojirimycin and Beyond. Weinheim: Wiley-VCH.  Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWatson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWinchester, B. & Fleet, G. W. J. (2000). J. Carbohydr. Chem. 19, 471–483.  CAS Google Scholar
First citationWoynarowska, B., Wilkiel, H., Sharma, M., Carpenter, N., Fleet, G. W. J & Bernacki, R. J. (1992). Anticancer Res. 12, 161–166.  PubMed CAS Web of Science Google Scholar
First citationYu, C.-Y., Asano, N., Ikeda, K., Wang, M.-X., Butters, T. D., Wormald, M. R., Dwek, R. A., Winters, A. L., Nash, R. J. & Fleet, G. W. J. (2004). Chem. Commun. pp. 1936–1937.  Web of Science CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds