organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Amino-N,N-di­benzyl-1,6-di­de­oxy-β-L-fructo­furan­ose

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: christopher.harding@seh.ox.ac.uk

(Received 4 March 2005; accepted 8 March 2005; online 18 March 2005)

The title compound, C20H25NO4, the product formed in the Amadori rearrangement of L-rhamnose with di­benzyl­amine, is shown by X-ray crystallographic analysis to be a rare example of an Amadori product crystallizing in a furan­ose form.

Comment

The Amadori rearrangement, an old and complex reaction (Amadori, 1925[Amadori, M. (1925). Atti Accad. Naz. Lincei, 2, 337-345.]; Hodge, 1955[Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169-205.]), is the initial step in the non-enzymatic conjugation of free amines in peptides with reducing carbohydrates to form glycation products; such materials constitute a complex and heterogeneous group of compounds which accumulate in plasma and tissues in diabetes and renal failure (Lapolla et al., 2005[Lapolla, A., Traldi, P. & Fedele, D. (2005). Clin. Biochem. 38, 103-115.]; Smit & Lutgers, 2004[Smit, A. J. & Lutgers, H. L. (2004). Curr. Med. Chem. 11, 2767-2784.]). Non-enzymatic glycation has also been implicated in processes of ageing and in neurodegenerative amyl­oid pathologies, including Alzheimer's disease (Horvat & Jakas, 2004[Horvat, S. & Jakas, A. (2004). J. Pept. Sci. 10, 119-137.]). Amadori ketoses are also the starting materials for the Maillard reaction (O'Brien et al., 1998[O'Brien, J. O., Nursten, H. E., Crabbe, M. J. C. & Ames, J. M. (1998). The Maillard Reaction In Foods and Medicine. Cambridge: Royal Society of Chemistry.]), the classic browning reaction of food chemistry (Martins & Van Boekel, 2005[Martins, S. I. F. S. & Van Boekel, M. A. J. S. (2005). Food Chem. 90, 257-269.]; Kwak & Lim, 2004[Kwak, E. J. & Lim, S. I. (2004). Amino Acids, 27, 85-90.]).[link]

[Scheme 1]

L-Rhamnose, (1[link]), on treatment with di­benzyl­amine in acetic acid, undergoes the Amadori rearrangement to give the ketose­amine (2[link]) (Funcke, 1978[Funcke, W. (1978). Justus Liebigs Ann. Chem. 12, 2009-2104.]); although the solution NMR of (2[link]) is complex and indicates a mixture of forms, the formation of crystals allowed the secure identification of the β-anomer (3[link]). There is one other example of a crystal structure of a furan­ose Amadori product (Fernández-Bolaños et al., 2003[Fernández-Bolaños, J. G., Ulgar, V., Maya, I., Fuentes, J., Diánez, M. J., Estrada, M. D., López-Castro, A. & Pérez-Garrido, S. (2003). Tetrahedron Asymmetry, 14, 1009-1018.]).

[Figure 1]
Figure 1
The molecular structure of (3), with displacement ellipsoids drawn at the 50% probability level. Also shown is an intramolecular hydrogen bond (dotted line), forming a five-membered ring with atom C9 displaced from its mean plane.
[Figure 2]
Figure 2
Packing diagram for the title compound, viewed down the b axis. The crystal structure is made up of columns of strongly hydrogen-bonded (dotted lines) mol­ecules which run along the b axis.
[Figure 3]
Figure 3
A view of the hydrogen-bonding (dotted lines) network in each column. Hydro­gen bonds involving atom O7 form a central chain up the column, with hydrogen bonds to the furan­ose ring O atom from hydroxyl groups on different mol­ecules adding support to the structure.

Experimental

Crystals of the title compound were first obtained using evaporation techniques from a methanol–water mixture. They were then recrystallized from a diethyl ether/petrol solvent mixture. This yielded thin needle-like colourless crystals.

Crystal data
  • C20H25NO4

  • Mr = 343.42

  • Monoclinic, P21

  • a = 10.8823 (2) Å

  • b = 5.4690 (1) Å

  • c = 15.3816 (2) Å

  • β = 103.8824 (11)°

  • V = 888.70 (3) Å3

  • Z = 2

  • Dx = 1.283 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2070 reflections

  • θ = 1–27°

  • μ = 0.09 mm−1

  • T = 190 K

  • Block cut from needle, colourless

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.98, Tmax = 0.99

  • 3627 measured reflections

  • 2237 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.013

  • θmax = 27.5°

  • h = −13 → 14

  • k = −7 → 6

  • l = −19 → 19

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.078

  • S = 0.99

  • 2229 reflections

  • 226 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.09P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O25—H5⋯N10 0.94 2.06 2.6725 (19) 121
O7—H17⋯O7i 0.95 2.15 3.080 (2) 166
O8—H24⋯O5ii 0.98 2.02 2.883 (2) 147
Symmetry codes: (i) [-x,{\script{1\over 2}}+y,1-z]; (ii) x,1+y,z.

All H atoms were observed in a difference electron-density map. The hydroxyl H atoms were refined freely, whilst the others were refined with slack restraints to optimize the geometry (C—H = 1.0 Å). All were then made to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent). In the absence of significant anomalous scattering effects, Friedel pairs were merged; the absolute configuration is known from the synthesis. Several low-angle reflections were omitted from the refinement because they appeared to be obscured by the beam stop.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEP (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEP; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

1-Amino-N,N-dibenzyl-1,6-dideoxy-β-L-fructofuranose top
Crystal data top
C20H25NO4F(000) = 368
Mr = 343.42Dx = 1.283 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2070 reflections
a = 10.8823 (2) Åθ = 1–27°
b = 5.4690 (1) ŵ = 0.09 mm1
c = 15.3816 (2) ÅT = 190 K
β = 103.8824 (11)°Block cut from needle, colourless
V = 888.70 (3) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(DENZO/SCALEP; Otwinowski & Minor, 1997)
h = 1314
Tmin = 0.98, Tmax = 0.99k = 76
3627 measured reflectionsl = 1919
2237 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(F2) + (0.03P)2 + 0.09P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.99(Δ/σ)max = 0.000163
2229 reflectionsΔρmax = 0.18 e Å3
226 parametersΔρmin = 0.21 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24341 (16)0.8449 (4)0.31483 (11)0.0213
C20.12615 (16)0.9649 (4)0.33411 (11)0.0236
C30.15036 (16)0.9307 (4)0.43567 (11)0.0242
C40.21898 (18)0.6849 (4)0.45156 (11)0.0281
O50.25760 (12)0.6297 (3)0.36919 (7)0.0248
C60.3337 (2)0.6780 (6)0.52978 (12)0.0466
O70.03752 (11)0.9209 (3)0.46816 (8)0.0346
O80.10507 (12)1.2076 (3)0.30281 (9)0.0303
C90.23408 (15)0.7756 (4)0.21732 (10)0.0237
N100.36084 (13)0.7409 (3)0.20179 (9)0.0216
C110.41506 (16)0.5005 (4)0.23173 (11)0.0225
C120.55810 (16)0.4956 (4)0.24789 (10)0.0217
C130.63127 (17)0.6773 (4)0.29832 (12)0.0303
C140.76282 (18)0.6647 (5)0.31904 (13)0.0350
C150.82190 (18)0.4696 (5)0.28901 (13)0.0348
C160.75082 (19)0.2890 (5)0.23788 (13)0.0351
C170.61897 (18)0.3026 (4)0.21695 (12)0.0287
C180.36926 (16)0.8006 (4)0.10956 (10)0.0237
C190.29227 (16)0.6416 (4)0.03600 (10)0.0228
C200.16543 (17)0.6949 (5)0.00240 (11)0.0305
C210.09348 (19)0.5435 (5)0.06740 (12)0.0380
C220.1456 (2)0.3377 (5)0.09546 (13)0.0405
C230.2722 (2)0.2853 (5)0.06025 (12)0.0382
C240.34477 (19)0.4358 (4)0.00519 (12)0.0299
O250.34520 (11)1.0063 (3)0.34463 (7)0.0254
H210.05040.86720.30540.0288*
H310.20681.06240.46610.0296*
H410.15880.55720.45660.0364*
H610.37510.51830.53000.0556*
H620.30260.69780.58440.0566*
H630.39370.81240.52290.0561*
H910.19150.91170.18000.0282*
H920.18160.63170.20280.0294*
H1110.37630.37120.18850.0267*
H1120.39120.46590.28820.0267*
H1310.58980.81620.31980.0376*
H1410.81420.79410.35580.0424*
H1510.91310.46030.30330.0431*
H1610.79260.15200.21460.0455*
H1710.57110.17220.18150.0353*
H1810.34000.97160.09940.0278*
H1820.46030.79580.10850.0274*
H2010.12810.83980.01760.0366*
H2110.00530.58260.09590.0449*
H2210.09390.22800.14090.0483*
H2310.30930.13980.08100.0465*
H2410.43670.39800.02970.0368*
H50.39920.98940.30570.0365*
H170.02791.08530.48620.0386*
H240.18151.30540.32280.0377*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (8)0.0200 (10)0.0225 (8)0.0015 (8)0.0060 (6)0.0017 (8)
C20.0215 (8)0.0222 (11)0.0277 (9)0.0022 (8)0.0073 (7)0.0009 (8)
C30.0231 (8)0.0249 (11)0.0272 (9)0.0015 (9)0.0115 (7)0.0040 (9)
C40.0382 (10)0.0255 (11)0.0262 (9)0.0022 (10)0.0186 (8)0.0017 (9)
O50.0348 (7)0.0195 (8)0.0234 (6)0.0046 (6)0.0134 (5)0.0005 (6)
C60.0588 (13)0.0569 (17)0.0237 (9)0.0256 (15)0.0090 (9)0.0037 (11)
O70.0309 (7)0.0400 (10)0.0398 (7)0.0031 (7)0.0219 (6)0.0066 (7)
O80.0276 (7)0.0260 (8)0.0378 (7)0.0059 (7)0.0089 (5)0.0043 (7)
C90.0204 (8)0.0289 (11)0.0217 (8)0.0012 (9)0.0045 (6)0.0011 (9)
N100.0210 (7)0.0270 (10)0.0181 (6)0.0027 (7)0.0070 (5)0.0017 (7)
C110.0240 (9)0.0212 (11)0.0229 (8)0.0007 (8)0.0072 (6)0.0004 (8)
C120.0252 (9)0.0215 (10)0.0193 (8)0.0033 (9)0.0070 (6)0.0019 (8)
C130.0276 (9)0.0281 (12)0.0336 (9)0.0041 (10)0.0042 (7)0.0045 (10)
C140.0250 (9)0.0351 (13)0.0417 (11)0.0008 (10)0.0015 (8)0.0018 (11)
C150.0236 (9)0.0386 (14)0.0443 (11)0.0089 (10)0.0119 (8)0.0143 (11)
C160.0375 (11)0.0339 (13)0.0386 (10)0.0103 (11)0.0186 (9)0.0039 (11)
C170.0355 (10)0.0242 (11)0.0278 (9)0.0055 (9)0.0101 (7)0.0014 (9)
C180.0266 (9)0.0249 (11)0.0213 (8)0.0022 (9)0.0088 (7)0.0011 (8)
C190.0283 (9)0.0232 (11)0.0186 (8)0.0009 (9)0.0089 (7)0.0024 (8)
C200.0285 (9)0.0390 (13)0.0258 (8)0.0022 (10)0.0099 (7)0.0009 (10)
C210.0312 (10)0.0544 (17)0.0275 (10)0.0103 (11)0.0054 (8)0.0000 (11)
C220.0497 (13)0.0462 (16)0.0245 (9)0.0176 (13)0.0065 (8)0.0026 (10)
C230.0595 (13)0.0305 (13)0.0267 (9)0.0037 (12)0.0149 (9)0.0036 (10)
C240.0360 (10)0.0308 (12)0.0239 (9)0.0003 (10)0.0088 (7)0.0006 (9)
O250.0211 (6)0.0288 (8)0.0274 (6)0.0033 (6)0.0080 (5)0.0040 (6)
Geometric parameters (Å, º) top
C1—C21.526 (3)C12—C131.388 (3)
C1—O51.430 (2)C12—C171.389 (3)
C1—C91.527 (2)C13—C141.392 (3)
C1—O251.405 (2)C13—H1310.980
C2—C31.532 (2)C14—C151.382 (3)
C2—O81.412 (3)C14—H1410.990
C2—H210.993C15—C161.379 (3)
C3—C41.529 (3)C15—H1510.965
C3—O71.433 (2)C16—C171.395 (3)
C3—H310.989C16—H1610.987
C4—O51.4589 (19)C17—H1710.970
C4—C61.512 (3)C18—C191.511 (3)
C4—H410.973C18—H1810.988
C6—H610.982C18—H1820.995
C6—H620.984C19—C201.396 (2)
C6—H631.005C19—C241.395 (3)
O7—H170.954C20—C211.387 (3)
O8—H240.975C20—H2010.974
C9—N101.468 (2)C21—C221.375 (4)
C9—H910.985C21—H2110.978
C9—H920.966C22—C231.384 (3)
N10—C111.469 (3)C22—H2210.988
N10—C181.480 (2)C23—C241.391 (3)
C11—C121.516 (2)C23—H2310.980
C11—H1110.993C24—H2411.003
C11—H1120.983O25—H50.939
C2—C1—O5102.6 (1)C12—C11—H112109.3
C2—C1—C9115.9 (1)H111—C11—H112107.2
O5—C1—C9110.0 (2)C11—C12—C13120.5 (2)
C2—C1—O25107.3 (2)C11—C12—C17120.8 (2)
O5—C1—O25111.1 (1)C13—C12—C17118.6 (2)
C9—C1—O25109.8 (1)C12—C13—C14120.9 (2)
C1—C2—C3101.5 (1)C12—C13—H131119.6
C1—C2—O8114.4 (2)C14—C13—H131119.5
C3—C2—O8115.9 (2)C13—C14—C15119.8 (2)
C1—C2—H21109.0C13—C14—H141120.3
C3—C2—H21108.1C15—C14—H141119.9
O8—C2—H21107.7C14—C15—C16120.1 (2)
C2—C3—C4103.2 (2)C14—C15—H151120.0
C2—C3—O7114.1 (1)C16—C15—H151119.8
C4—C3—O7109.8 (2)C15—C16—C17119.9 (2)
C2—C3—H31109.3C15—C16—H161120.5
C4—C3—H31109.9C17—C16—H161119.6
O7—C3—H31110.4C16—C17—C12120.7 (2)
C3—C4—O5105.9 (2)C16—C17—H171118.3
C3—C4—C6115.3 (2)C12—C17—H171121.0
O5—C4—C6109.3 (2)N10—C18—C19116.1 (2)
C3—C4—H41109.4N10—C18—H181105.6
O5—C4—H41105.1C19—C18—H181109.0
C6—C4—H41111.2N10—C18—H182107.5
C4—O5—C1108.9 (1)C19—C18—H182110.4
C4—C6—H61108.3H181—C18—H182107.9
C4—C6—H62106.8C18—C19—C20120.7 (2)
H61—C6—H62110.2C18—C19—C24121.3 (2)
C4—C6—H63109.4C20—C19—C24118.0 (2)
H61—C6—H63110.0C19—C20—C21120.7 (2)
H62—C6—H63112.0C19—C20—H201118.8
C3—O7—H17103.2C21—C20—H201120.5
C2—O8—H24110.6C20—C21—C22120.7 (2)
C1—C9—N10110.4 (1)C20—C21—H211121.1
C1—C9—H91107.2C22—C21—H211118.2
N10—C9—H91109.3C21—C22—C23119.6 (2)
C1—C9—H92109.0C21—C22—H221120.7
N10—C9—H92112.6C23—C22—H221119.7
H91—C9—H92108.2C22—C23—C24120.0 (2)
C9—N10—C11112.8 (2)C22—C23—H231119.3
C9—N10—C18113.9 (1)C24—C23—H231120.6
C11—N10—C18112.7 (2)C19—C24—C23121.0 (2)
N10—C11—C12112.7 (2)C19—C24—H241119.5
N10—C11—H111110.7C23—C24—H241119.5
C12—C11—H111110.6C1—O25—H5107.2
N10—C11—H112106.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O25—H5···N100.942.062.6725 (19)121
O7—H17···O7i0.952.153.080 (2)166
O8—H24···O5ii0.982.022.883 (2)147
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1, z.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmadori, M. (1925). Atti Accad. Naz. Lincei, 2, 337–345.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFernández-Bolaños, J. G., Ulgar, V., Maya, I., Fuentes, J., Diánez, M. J., Estrada, M. D., López-Castro, A. & Pérez-Garrido, S. (2003). Tetrahedron Asymmetry, 14, 1009–1018.  Google Scholar
First citationFuncke, W. (1978). Justus Liebigs Ann. Chem. 12, 2009–2104.  Google Scholar
First citationHodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169–205.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHorvat, S. & Jakas, A. (2004). J. Pept. Sci. 10, 119–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKwak, E. J. & Lim, S. I. (2004). Amino Acids, 27, 85–90.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLapolla, A., Traldi, P. & Fedele, D. (2005). Clin. Biochem. 38, 103–115.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartins, S. I. F. S. & Van Boekel, M. A. J. S. (2005). Food Chem. 90, 257–269.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationO'Brien, J. O., Nursten, H. E., Crabbe, M. J. C. & Ames, J. M. (1998). The Maillard Reaction In Foods and Medicine. Cambridge: Royal Society of Chemistry.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSmit, A. J. & Lutgers, H. L. (2004). Curr. Med. Chem. 11, 2767–2784.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds