organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-3,5-di­nitro­benzoic acid–di­methyl sulfoxide (1/1)

CROSSMARK_Color_square_no_text.svg

aPfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: avt21@cam.ac.uk

(Received 15 March 2005; accepted 18 March 2005; online 25 March 2005)

The title complex, C8H6N2O6·C2H6OS, was predicted to illustrate an intermolecular hydrogen-bond motif between the carboxyl­ic acid and the sulfoxide funtionalities, based upon a previously published structure of an analogous complex. The predicted hydrogen-bond motif was observed, thereby indicating a certain robustness of this intermolecular interaction for crystal engineering purposes.

Comment

The asymmetric unit of the title crystal structure, (I[link]), consists of one mol­ecule each of 4-methyl-3,5-di­nitro­benzoic acid and di­methyl sulfoxide (DMSO) (Fig. 1[link]).[link]

[Scheme 1]

The crystallization was performed to evaluate the robustness of an intermolecular hydrogen bond involving an O—H⋯O=S contact between a carboxyl­ic acid and a sulfoxide. This interaction was recently observed in the crystal structure of an analogous complex involving 3,5-di­nitro­benzoic acid and DMSO (Abthorpe et al., 2005[Abthorpe, M., Trask, A. V. & Jones, W. (2005) Acta Cryst. E61, o609-o611.]). This interaction also is found in 29 of a possible 37 instances in the Cambridge Structural Database (CSD Version 5.25 Update 3; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), when searching for structures which contain both a carboxyl group and a DMSO mol­ecule among all organic structures for which three-dimensional coordinates have been determined. The hydrogen-bond interaction in the crystal structure is presented in Fig. 2[link].

The title complex packs in a monoclinic unit cell in the space group P21/c. Crystal packing results in alternating sheets of acid and DMSO mol­ecules stacking along [010]. (Figs. 3[link] and 4[link]).

The experiment reported here represents a successful demonstration of the methodological approach of crystal engin­eering: observation of a particular heteromolecular hydrogen-bonding interaction, evaluation of the abundance of the interaction in the CSD, and application of this information to the design of a novel crystalline molecular complex. The demonstrated robustness of this hydrogen-bond motif indicates a potential utility for future crystal engineering experiment design.

[Figure 1]
Figure 1
The asymmetric unit (XP; Sheldrick, 1993[Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.]) of (I[link]), showing displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
Part of the crystal packing (DIAMOND; Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]), showing intermolecular hydrogen-bond interactions as dashed lines.
[Figure 3]
Figure 3
The crystal packing (DIAMOND; Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]), viewed along [100], showing sheets stacking along [010].
[Figure 4]
Figure 4
The crystal packing (DIAMOND; Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.]), viewed along [001], showing sheets stacking along [010].

Experimental

All starting components were obtained from Sigma Aldrich Ltd. 4-Methyl-3,5-di­nitro­benzoic acid (64 mg) was dissolved in excess DMSO with gentle heating. The resulting solution was allowed to cool and evaporate slowly over a period of one week. From the solids that precipitated, a single crystal was harvested for subsequent XRD analysis.

Crystal data
  • C8H6N2O6·C2H6OS

  • Mr = 304.28

  • Monoclinic, P21/c

  • a = 6.9483 (2) Å

  • b = 22.4844 (5) Å

  • c = 8.2364 (2) Å

  • β = 92.765 (1)°

  • V = 1285.26 (6) Å3

  • Z = 4

  • Dx = 1.572 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7863 reflections

  • θ = 1.0–27.5°

  • μ = 0.29 mm−1

  • T = 180 (2) K

  • Plate, colourless

  • 0.35 × 0.32 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thin-slice ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.901, Tmax = 0.976

  • 9790 measured reflections

  • 2930 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.043

  • θmax = 27.5°

  • h = −9 → 9

  • k = −29 → 29

  • l = −7 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.06

  • 2930 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0398P)2 + 0.6419P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

All H atoms bonded to carbon were positioned geometrically and refined using a riding model, with Uiso = 1.5Ueq for methyl H atoms and Uiso(H) = 1.2Ueq(carrier atom) for all other H atoms. The C—H distances of the methyl groups were fixed at 0.98 Å; all other C—H distances were fixed at 0.95 Å. The O—H H atom was located in a difference Fourier map and refined isotropically.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: XP (Sheldrick, 1993[Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.])(software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: Collect (Nonius B.V. 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SIR92 (Altomare et al. 1994); program(s) used to refine structure: SHELXL97 (Sheldrick 1997); software used to prepare material for publication: SHELXL97.

3,5-dinitro-4-methylbenzoic acid dimethyl sulfoxide top
Crystal data top
C8H6N2O6·C2H6OSF(000) = 632
Mr = 304.28Dx = 1.572 Mg m3
Monoclinic, P21/cMelting point: not measured K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.9483 (2) ÅCell parameters from 7863 reflections
b = 22.4844 (5) Åθ = 1.0–27.5°
c = 8.2364 (2) ŵ = 0.29 mm1
β = 92.765 (1)°T = 180 K
V = 1285.26 (6) Å3Plate, colourless
Z = 40.35 × 0.32 × 0.10 mm
Data collection top
Nonius Kappa CCD
diffractometer
2263 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Thin–slice ω and φ scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
Sortav (Blessing 1995)
h = 99
Tmin = 0.901, Tmax = 0.976k = 2929
9790 measured reflectionsl = 710
2930 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.6419P]
where P = (Fo2 + 2Fc2)/3
2930 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.33 e Å3
Special details top

Experimental. The –COOH hydrogen atom was located and its position was refined satisfactorily.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6815 (2)0.08681 (6)1.20349 (17)0.0350 (3)
H10.664 (3)0.1248 (8)1.257 (3)0.042*
O20.6761 (3)0.13533 (6)0.96732 (18)0.0454 (4)
O30.9171 (2)0.11314 (7)1.22899 (18)0.0390 (4)
O40.8000 (2)0.17390 (6)1.0462 (2)0.0426 (4)
O50.7981 (3)0.01287 (8)0.4786 (2)0.0610 (5)
O60.6390 (2)0.06916 (8)0.4873 (2)0.0501 (4)
N10.8439 (2)0.12389 (7)1.0941 (2)0.0278 (4)
N20.7299 (3)0.02850 (8)0.5517 (2)0.0334 (4)
C10.7264 (2)0.03097 (8)0.9698 (2)0.0213 (4)
C20.7674 (2)0.01946 (8)1.0625 (2)0.0214 (4)
H20.77160.01741.17780.026*
C30.8021 (2)0.07289 (8)0.9847 (2)0.0221 (4)
C40.7989 (3)0.07983 (8)0.8157 (2)0.0238 (4)
C50.7521 (2)0.02758 (8)0.7310 (2)0.0237 (4)
C60.7207 (2)0.02672 (8)0.8024 (2)0.0241 (4)
H60.69540.06090.73710.029*
C70.6912 (3)0.09025 (8)1.0459 (2)0.0239 (4)
C80.8514 (3)0.13656 (9)0.7308 (3)0.0340 (5)
H8A0.90310.12700.62530.051*
H8B0.94880.15810.79760.051*
H8C0.73630.16140.71420.051*
S10.32344 (7)0.17405 (2)0.45368 (6)0.02639 (14)
O70.3552 (2)0.18195 (6)0.63648 (16)0.0319 (3)
C90.5251 (3)0.20847 (10)0.3685 (3)0.0368 (5)
H9A0.64070.18460.39340.055*
H9B0.54290.24840.41470.055*
H9C0.50290.21150.25040.055*
C100.1463 (3)0.22803 (9)0.3945 (3)0.0350 (5)
H10A0.02340.21760.44080.052*
H10B0.13000.22900.27570.052*
H10C0.18780.26730.43440.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0579 (9)0.0267 (7)0.0208 (7)0.0060 (7)0.0045 (6)0.0032 (6)
O20.0836 (12)0.0235 (8)0.0293 (9)0.0053 (7)0.0061 (8)0.0017 (6)
O30.0488 (9)0.0370 (8)0.0305 (9)0.0036 (7)0.0061 (7)0.0084 (7)
O40.0565 (10)0.0216 (7)0.0497 (10)0.0047 (7)0.0024 (8)0.0023 (7)
O50.1171 (16)0.0419 (10)0.0243 (9)0.0021 (10)0.0078 (9)0.0072 (7)
O60.0561 (10)0.0609 (11)0.0323 (9)0.0060 (8)0.0078 (7)0.0193 (8)
N10.0285 (8)0.0258 (9)0.0294 (9)0.0013 (7)0.0036 (7)0.0045 (7)
N20.0421 (10)0.0379 (10)0.0201 (9)0.0112 (8)0.0003 (7)0.0032 (8)
C10.0195 (8)0.0243 (9)0.0201 (9)0.0030 (7)0.0013 (7)0.0022 (7)
C20.0194 (8)0.0275 (9)0.0174 (9)0.0024 (7)0.0012 (6)0.0004 (7)
C30.0194 (8)0.0223 (9)0.0245 (10)0.0010 (7)0.0009 (7)0.0034 (7)
C40.0213 (9)0.0254 (10)0.0248 (10)0.0016 (7)0.0004 (7)0.0019 (7)
C50.0245 (9)0.0305 (10)0.0160 (9)0.0002 (7)0.0004 (7)0.0016 (7)
C60.0249 (9)0.0245 (10)0.0227 (10)0.0012 (7)0.0005 (7)0.0018 (7)
C70.0262 (9)0.0247 (9)0.0210 (10)0.0021 (7)0.0026 (7)0.0017 (8)
C80.0390 (11)0.0287 (10)0.0341 (12)0.0042 (9)0.0005 (9)0.0083 (9)
S10.0386 (3)0.0196 (2)0.0209 (3)0.00201 (19)0.00083 (19)0.00087 (18)
O70.0510 (9)0.0263 (7)0.0185 (7)0.0026 (6)0.0034 (6)0.0016 (5)
C90.0389 (12)0.0421 (13)0.0297 (12)0.0006 (9)0.0054 (9)0.0085 (9)
C100.0364 (11)0.0317 (11)0.0363 (12)0.0017 (9)0.0025 (9)0.0039 (9)
Geometric parameters (Å, º) top
O1—C71.305 (2)C4—C81.508 (3)
O1—H10.972 (16)C5—C61.377 (3)
O2—C71.204 (2)C6—H60.9500
O3—N11.224 (2)C8—H8A0.9800
O4—N11.225 (2)C8—H8B0.9800
O5—N21.217 (2)C8—H8C0.9800
O6—N21.218 (2)S1—O71.5215 (14)
N1—C31.479 (2)S1—C91.775 (2)
N2—C51.478 (2)S1—C101.780 (2)
C1—C61.380 (2)C9—H9A0.9800
C1—C21.389 (2)C9—H9B0.9800
C1—C71.498 (2)C9—H9C0.9800
C2—C31.388 (2)C10—H10A0.9800
C2—H20.9500C10—H10B0.9800
C3—C41.399 (3)C10—H10C0.9800
C4—C51.397 (3)
C7—O1—H1114.4 (14)O2—C7—O1125.24 (17)
O3—N1—O4124.04 (17)O2—C7—C1122.39 (17)
O3—N1—C3117.46 (16)O1—C7—C1112.37 (16)
O4—N1—C3118.48 (16)C4—C8—H8A109.5
O5—N2—O6124.34 (19)C4—C8—H8B109.5
O5—N2—C5117.38 (17)H8A—C8—H8B109.5
O6—N2—C5118.22 (18)C4—C8—H8C109.5
C6—C1—C2119.19 (17)H8A—C8—H8C109.5
C6—C1—C7118.82 (16)H8B—C8—H8C109.5
C2—C1—C7121.99 (16)O7—S1—C9105.10 (9)
C3—C2—C1119.23 (17)O7—S1—C10104.89 (9)
C3—C2—H2120.4C9—S1—C1098.23 (10)
C1—C2—H2120.4S1—C9—H9A109.5
C2—C3—C4124.11 (17)S1—C9—H9B109.5
C2—C3—N1115.04 (16)H9A—C9—H9B109.5
C4—C3—N1120.86 (16)S1—C9—H9C109.5
C5—C4—C3113.27 (16)H9A—C9—H9C109.5
C5—C4—C8122.37 (17)H9B—C9—H9C109.5
C3—C4—C8124.27 (17)S1—C10—H10A109.5
C6—C5—C4124.78 (17)S1—C10—H10B109.5
C6—C5—N2115.35 (16)H10A—C10—H10B109.5
C4—C5—N2119.86 (16)S1—C10—H10C109.5
C5—C6—C1119.36 (17)H10A—C10—H10C109.5
C5—C6—H6120.3H10B—C10—H10C109.5
C1—C6—H6120.3
C6—C1—C2—C30.2 (2)C3—C4—C5—N2175.91 (16)
C7—C1—C2—C3178.84 (15)C8—C4—C5—N27.4 (3)
C1—C2—C3—C40.0 (3)O5—N2—C5—C642.7 (2)
C1—C2—C3—N1179.89 (15)O6—N2—C5—C6134.65 (19)
O3—N1—C3—C227.8 (2)O5—N2—C5—C4138.3 (2)
O4—N1—C3—C2150.75 (16)O6—N2—C5—C444.4 (2)
O3—N1—C3—C4152.29 (17)C4—C5—C6—C13.0 (3)
O4—N1—C3—C429.2 (2)N2—C5—C6—C1175.97 (16)
C2—C3—C4—C51.5 (3)C2—C1—C6—C51.2 (3)
N1—C3—C4—C5178.39 (15)C7—C1—C6—C5179.72 (16)
C2—C3—C4—C8175.10 (17)C6—C1—C7—O27.2 (3)
N1—C3—C4—C85.0 (3)C2—C1—C7—O2171.82 (18)
C3—C4—C5—C63.1 (3)C6—C1—C7—O1173.54 (16)
C8—C4—C5—C6173.63 (18)C2—C1—C7—O17.4 (2)
 

Acknowledgements

We are grateful for funding from the Pfizer Institute for Pharmaceutical Materials Science (AVT and WJ). We thank Dr J. E. Davies for the data collection and structure determination.

References

First citationAbthorpe, M., Trask, A. V. & Jones, W. (2005) Acta Cryst. E61, o609–o611.  CrossRef IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1993). XP. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds