organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Chloro­ethyl)­morpholinium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 22 February 2005; accepted 25 February 2005; online 4 March 2005)

The structure of the title compound, C6H13ClNO+·Cl, comprises a cation with the morpholine ring in the chair conformation, and a single hydrogen-bonding association between the morpholinium NH group and the Cl anion.

Comment

The title compound, (I[link]), is used as an intermediate for the synthesis of the antispasmodic drug pinaverium bromide, and is also used as an intermediate for the synthesis of biologically active heterocycles (Baronnet et al., 1974[Baronnet, R., Foussard, B. O., Bretaudeau, J. & Hubert, F. (1974). Eur. J. Med. Chem. 9, 182-187.]). A search of the Cambridge Structural Database (Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals that there are 90 known structures that contain the morpholinium cation. Of these there are 24 that have an N-ethyl chain, or longer, including the structure of 4-(2-fluoro­ethyl)­morpholinium chloride (Briggs et al., 2004[Briggs, C. R. S., Allen, M. J., O'Hagan, D., Tozer, D. J., Slawin, A. M. Z., Goeta, A. E. & Howard, J. A. K. (2004). Org. Biomol. Chem. 2, 732-740.]). This compound crystallizes in monoclinic space group P21/n, with the morpholine ring in the chair conformation and a single hydrogen-bonding association between the morpholinium NH group and the Cl anion (N⋯Cl = 3.036 Å).[link]

[Scheme 1]

The structure of the title compound comprises a cation with the morpholine ring also in the chair conformation (Fig. 1[link]), and a single hydrogen-bonding association similarly between the morpholinium NH group and the Cl anion (Table 1[link]). Three torsion angles that define the conformation of the chloro­ethyl chain are C2—C3—N4—C7 [−177.50 (12)°], C3—N4—C7—C8 [162.71 (13)°] and N4—C7—C8—Cl1 [86.66 (15)°]. The equivalent angles in the fluoro analogue are 178.46, −78.85 and −173.68°, respectively.

[Figure 1]
Figure 1
The molecular configuration and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.

Experimental

An equimolar mixture of morpholine (0.87 g, 10 mmol), an­hydro­us K2CO3 (1.38 g, 10 mmol) and 1-bromo-2-chloro­ethane (1.43 g, 10 mmol) was stirred at room temperature in di­methyl­form­amide (10 ml) for 6 h. The collected product was subsequently converted to the hydro­chloride salt using iso­propyl alcohol and HCl (80:20). Crystals of compound (I[link]) were grown from methanol.

Crystal data
  • C6H13ClNO+·Cl

  • Mr = 186.07

  • Triclinic, [P\overline 1]

  • a = 6.9876 (3) Å

  • b = 8.1549 (4) Å

  • c = 8.6495 (3) Å

  • α = 63.530 (2)°

  • β = 85.004 (3)°

  • γ = 85.179 (2)°

  • V = 438.97 (3) Å3

  • Z = 2

  • Dx = 1.408 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1914 reflections

  • θ = 2.9–27.5°

  • μ = 0.68 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.28 × 0.24 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.833, Tmax = 0.961

  • 7581 measured reflections

  • 1716 independent reflections

  • 1494 reflections with I > 2σ(I)

  • Rint = 0.032

  • θmax = 26.0°

  • h = −8 → 8

  • k = −10 → 9

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.078

  • S = 0.94

  • 1716 reflections

  • 94 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2143P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl2 0.883 (19) 2.16 (2) 3.0435 (14) 178 (2)

The H atom attached to the N atom was located in a difference Fourier synthesis and its positional parameters were refined. Other H atoms were included in the refinement at calculated positions, in the riding-model approximation, with a C—H distance of 0.99 Å. The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

4-(2-Chloroethyl)morpholinium chloride top
Crystal data top
C6H13ClNO+·ClZ = 2
Mr = 186.07F(000) = 196
Triclinic, P1Dx = 1.408 Mg m3
Hall symbol: -P 1Melting point: 458 K
a = 6.9876 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1549 (4) ÅCell parameters from 1914 reflections
c = 8.6495 (3) Åθ = 2.9–27.5°
α = 63.530 (2)°µ = 0.68 mm1
β = 85.004 (3)°T = 120 K
γ = 85.179 (2)°Plate, colourless
V = 438.97 (3) Å30.28 × 0.24 × 0.06 mm
Data collection top
Nonius KappaCCD
diffractometer
1716 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1494 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.032
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.8°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 109
Tmin = 0.833, Tmax = 0.961l = 1010
7581 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2143P]
where P = (Fo2 + 2Fc2)/3
1716 reflections(Δ/σ)max < 0.001
94 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.28 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31450 (17)0.10081 (15)0.17258 (14)0.0211 (3)
C20.2513 (2)0.0634 (2)0.0296 (2)0.0206 (4)
H210.30050.05970.07970.026*
H220.10900.07120.03190.026*
C30.3210 (2)0.2316 (2)0.0350 (2)0.0171 (3)
H310.27550.34370.06520.021*
H320.46340.22690.02870.021*
N40.24469 (19)0.23719 (18)0.20020 (17)0.0133 (3)
H40.118 (3)0.243 (2)0.203 (2)0.017*
C50.3049 (2)0.0621 (2)0.3499 (2)0.0159 (3)
H510.44670.05290.35460.020*
H520.24790.06110.45920.020*
C60.2391 (2)0.0999 (2)0.3312 (2)0.0193 (4)
H610.09680.09460.33460.024*
H620.28200.21510.42950.024*
C70.3033 (2)0.4064 (2)0.2071 (2)0.0176 (3)
H710.44060.38990.23370.022*
H720.29060.51160.09170.022*
C80.1861 (3)0.4513 (2)0.3400 (2)0.0222 (4)
H810.18320.58550.30100.028*
H820.05220.41680.34600.028*
Cl10.27566 (7)0.33778 (6)0.55327 (6)0.02923 (15)
Cl20.19260 (5)0.24738 (5)0.21272 (5)0.02018 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0271 (7)0.0174 (6)0.0196 (6)0.0017 (5)0.0038 (5)0.0097 (5)
C20.0225 (9)0.0226 (9)0.0188 (8)0.0015 (7)0.0008 (7)0.0110 (7)
C30.0183 (8)0.0189 (8)0.0115 (7)0.0003 (6)0.0018 (6)0.0048 (6)
N40.0105 (6)0.0147 (7)0.0139 (6)0.0015 (5)0.0008 (5)0.0054 (5)
C50.0188 (8)0.0135 (8)0.0130 (8)0.0014 (6)0.0011 (6)0.0036 (6)
C60.0227 (9)0.0157 (8)0.0179 (8)0.0043 (7)0.0039 (7)0.0063 (7)
C70.0195 (8)0.0124 (8)0.0185 (8)0.0042 (6)0.0010 (6)0.0042 (7)
C80.0217 (9)0.0188 (9)0.0291 (9)0.0020 (7)0.0040 (7)0.0133 (8)
Cl10.0381 (3)0.0306 (3)0.0224 (2)0.0013 (2)0.00025 (19)0.0151 (2)
Cl20.0122 (2)0.0228 (2)0.0189 (2)0.00099 (16)0.00073 (15)0.00332 (18)
Geometric parameters (Å, º) top
N4—C51.496 (2)C6—C51.513 (2)
N4—C71.4995 (19)C6—H610.99
N4—C31.4994 (19)C6—H620.99
N4—H40.883 (19)C5—H510.99
C2—C31.515 (2)C5—H520.99
C3—H310.99C7—C81.512 (2)
C3—H320.99C7—H710.99
C2—O11.427 (2)C7—H720.99
C2—H210.99C8—Cl11.7980 (18)
C2—H220.99C8—H810.99
O1—C61.4289 (19)C8—H820.99
C5—N4—C7114.05 (12)O1—C6—H62109.4
C5—N4—C3109.14 (12)C5—C6—H62109.4
C7—N4—C3110.77 (12)H61—C6—H62108.0
C5—N4—H4107.2 (12)N4—C5—C6110.00 (13)
C7—N4—H4106.9 (11)N4—C5—H51109.7
C3—N4—H4108.6 (11)C6—C5—H51109.7
N4—C3—C2109.09 (13)N4—C5—H52109.7
N4—C3—H31109.9C6—C5—H52109.7
C2—C3—H31109.9H51—C5—H52108.2
N4—C3—H32109.9N4—C7—C8113.63 (13)
C2—C3—H32109.9N4—C7—H71108.8
H31—C3—H32108.3C8—C7—H71108.8
O1—C2—C3111.28 (13)N4—C7—H72108.8
O1—C2—H21109.4C8—C7—H72108.8
C3—C2—H21109.4H71—C7—H72107.7
O1—C2—H22109.4C7—C8—Cl1114.08 (12)
C3—C2—H22109.4C7—C8—H81108.7
H21—C2—H22108.0Cl1—C8—H81108.7
C2—O1—C6109.92 (12)C7—C8—H82108.7
O1—C6—C5111.36 (13)Cl1—C8—H82108.7
O1—C6—H61109.4H81—C8—H82107.6
C5—C6—H61109.4
C5—N4—C3—C256.13 (16)C3—N4—C5—C655.60 (16)
C7—N4—C3—C2177.50 (12)O1—C6—C5—N457.83 (17)
N4—C3—C2—O159.50 (17)C5—N4—C7—C873.70 (17)
C3—C2—O1—C660.97 (17)C3—N4—C7—C8162.71 (13)
C2—O1—C6—C559.89 (17)N4—C7—C8—Cl186.66 (15)
C7—N4—C5—C6179.93 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl20.883 (19)2.16 (2)3.0435 (14)178 (2)
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England) and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBaronnet, R., Foussard, B. O., Bretaudeau, J. & Hubert, F. (1974). Eur. J. Med. Chem. 9, 182–187.  Google Scholar
First citationBriggs, C. R. S., Allen, M. J., O'Hagan, D., Tozer, D. J., Slawin, A. M. Z., Goeta, A. E. & Howard, J. A. K. (2004). Org. Biomol. Chem. 2, 732–740.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds