organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Carbamoyl­methyl)­cyclo­hexane­carboxyl­ic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, UK
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 22 February 2005; accepted 25 February 2005; online 11 March 2005)

Molecules of the title compound, C9H15NO3, form a two-dimensional hydrogen-bonded network, via O—H⋯O and N—H⋯O interactions, which runs parallel to the bc plane. In this structure, neither the carboxyl­ic acid groups nor the carbamoyl groups are involved in dimer formations.

Comment

The title compound, (I[link]), is used as an intermediate in the synthesis of biologically active heterocycles (LaRoche & Helmers, 2004[LaRoche, S. M. & Helmers, S. L. (2004). JAMA, 291, 605-614.]). A search of the Cambridge Structural Database (Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals that there are 11 structures of 1,1-disubstituted cyclo­hexane with a carboxyl­ic acid group as one of the substituents. Of these, only three contain 1-cyclo­hexane­carboxyl­ic acid itself. The remaining structures each contain an amino group (as the second substituent), with further attached groups on the amino N atom. There are no structures similar to 1-(carbamoyl­methyl)­cyclo­hexane.[link]

[Scheme 1]

Molecules of the title compound (Fig. 1[link]) form a two-dimensional hydrogen-bonded network, via O—H⋯O and N—H⋯O interactions, which runs parallel to the bc plane. Hydro­gen-bonding associations are listed in Table 1[link]. The carboxyl­ic OH group hydrogen bonds to the carbamoyl O atom of an adjacent mol­ecule while the amino group of that mol­ecule, in return, hydrogen bonds with the carbamoyl O atom of the first mol­ecule. These two associations form a hydrogen-bonded ring motif [R22(11) graph set (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.])] that, when repeated, propagates the hydrogen-bonding network in the b-axis direction. An N—H⋯O association between the second amino H atom and an adjacent carboxyl carbonyl O atom in the c-axis direction generates the two-dimensional network. Interestingly, in this structure, neither the carboxyl­ic acid groups nor the carbamoyl groups are involved in R22(8) graph-set dimer formations, with like groups or with each other.

[Figure 1]
Figure 1
The molecular configuration and atom-numbering scheme for (I[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.

Experimental

Cyclo­hexanone (1.04 g, 10 mmol) was treated with ethyl cyano­acetate (1.06 g, 10 mmol) in the presence of NaOH (5 ml, 10% aqueous solution). The resultant compound was further treated with NaCN (0.49 g, 10 mmol) in ethanol (5 ml), and hydro­lysed to obtain the title compound. Crystals were grown from methanol.

Crystal data
  • C9H15NO3

  • Mr = 185.22

  • Monoclinic, P21/c

  • a = 13.4973 (5) Å

  • b = 8.0905 (2) Å

  • c = 8.8358 (3) Å

  • β = 102.627 (2)°

  • V = 941.53 (5) Å3

  • Z = 4

  • Dx = 1.307 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2268 reflections

  • θ = 2.9–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Prism, colourless

  • 0.65 × 0.30 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.990

  • 10959 measured reflections

  • 1842 independent reflections

  • 1627 reflections with I > 2σ(I)

  • Rint = 0.030

  • θmax = 26.0°

  • h = −16 → 16

  • k = −9 → 9

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 1842 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0503P)2 + 0.4339P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.048 (6)

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.963 (18) 1.640 (19) 2.5829 (13) 165 (2)
N1—H1⋯O1ii 0.88 2.21 3.0680 (15) 164
N1—H2⋯O2iii 0.88 2.12 2.9635 (15) 162
Symmetry codes: (i) [-x,y-{\script{1\over 2}},{\script{1\over 2}}-z]; (ii) [-x,{\script{1\over 2}}+y,{\script{1\over 2}}-z]; (iii) [x,{\script{1\over 2}}-y,z-{\script{1\over 2}}].

The carboxyl H atom was located in a difference Fourier synthesis and its positional parameters were refined. Other H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.99 Å and N—H distances of 0.88 Å. The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

1-(Carbamoylmethyl)cyclohexanecarboxylic acid top
Crystal data top
C9H15NO3F(000) = 400
Mr = 185.22Dx = 1.307 Mg m3
Monoclinic, P21/cMelting point: 437 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.4973 (5) ÅCell parameters from 2268 reflections
b = 8.0905 (2) Åθ = 2.9–27.5°
c = 8.8358 (3) ŵ = 0.10 mm1
β = 102.627 (2)°T = 120 K
V = 941.53 (5) Å3Prism, colourless
Z = 40.65 × 0.30 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1842 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1627 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.030
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.5°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.939, Tmax = 0.990l = 1010
10959 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.4339P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1842 reflectionsΔρmax = 0.20 e Å3
122 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01177 (7)0.16623 (11)0.19598 (11)0.0192 (3)
O20.18173 (7)0.03683 (12)0.38790 (11)0.0214 (3)
O30.11848 (8)0.18613 (12)0.17583 (11)0.0224 (3)
H30.0775 (13)0.237 (2)0.239 (2)0.028*
N10.07782 (9)0.40190 (14)0.12383 (13)0.0202 (3)
H10.04200.46290.17480.025*
H20.11910.44930.07240.025*
C10.22107 (9)0.04376 (16)0.14274 (15)0.0157 (3)
C20.27157 (10)0.06508 (17)0.03825 (16)0.0207 (3)
H210.22170.14710.01570.026*
H220.29210.00500.04150.026*
C30.36471 (11)0.1557 (2)0.1304 (2)0.0310 (4)
H310.39660.22010.05850.039*
H320.34340.23400.20330.039*
C40.44223 (11)0.0342 (2)0.2213 (2)0.0354 (4)
H410.49990.09630.28440.044*
H420.46880.03680.14800.044*
C50.39417 (11)0.0735 (2)0.32693 (18)0.0271 (4)
H510.44430.15610.37890.034*
H520.37510.00370.40810.034*
C60.29991 (10)0.16275 (17)0.23608 (16)0.0199 (3)
H610.32070.24290.16420.025*
H620.26830.22550.30940.025*
C70.13317 (10)0.14047 (17)0.03674 (15)0.0169 (3)
H710.16220.21660.02980.021*
H720.08890.06110.03200.021*
C80.06951 (9)0.23871 (17)0.12452 (14)0.0159 (3)
C90.17348 (10)0.06333 (16)0.25029 (15)0.0161 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0178 (5)0.0183 (5)0.0229 (5)0.0012 (4)0.0078 (4)0.0003 (4)
O20.0227 (5)0.0249 (5)0.0166 (5)0.0010 (4)0.0041 (4)0.0012 (4)
O30.0279 (6)0.0187 (5)0.0218 (5)0.0066 (4)0.0077 (4)0.0022 (4)
N10.0241 (6)0.0163 (6)0.0219 (6)0.0026 (5)0.0088 (5)0.0015 (5)
C10.0153 (6)0.0155 (6)0.0161 (7)0.0014 (5)0.0031 (5)0.0009 (5)
C20.0200 (7)0.0217 (7)0.0216 (7)0.0030 (5)0.0069 (6)0.0030 (6)
C30.0230 (8)0.0316 (9)0.0376 (9)0.0101 (6)0.0051 (7)0.0063 (7)
C40.0167 (7)0.0444 (10)0.0433 (10)0.0075 (7)0.0024 (7)0.0053 (8)
C50.0166 (7)0.0317 (8)0.0302 (8)0.0026 (6)0.0009 (6)0.0044 (6)
C60.0174 (7)0.0201 (7)0.0224 (7)0.0027 (5)0.0046 (6)0.0025 (5)
C70.0184 (7)0.0176 (7)0.0151 (6)0.0011 (5)0.0042 (5)0.0013 (5)
C80.0151 (6)0.0181 (7)0.0126 (6)0.0015 (5)0.0009 (5)0.0010 (5)
C90.0145 (6)0.0145 (6)0.0187 (7)0.0038 (5)0.0022 (5)0.0003 (5)
Geometric parameters (Å, º) top
O1—C81.2510 (16)C3—C41.529 (2)
O2—C91.2156 (16)C3—H310.99
O3—C91.3257 (16)C3—H320.99
O3—H30.963 (18)C4—C51.522 (2)
N1—C81.3252 (18)C4—H410.99
N1—H10.88C4—H420.99
N1—H20.88C5—C61.529 (2)
C1—C91.5274 (18)C5—H510.99
C1—C61.5348 (18)C5—H520.99
C1—C21.5387 (18)C6—H610.99
C1—C71.5528 (17)C6—H620.99
C2—C31.528 (2)C7—C81.5043 (18)
C2—H210.99C7—H710.99
C2—H220.99C7—H720.99
C9—O3—H3111.3 (10)C3—C4—H42109.5
C8—N1—H1120.0H41—C4—H42108.1
C8—N1—H2120.0C4—C5—C6111.46 (12)
H1—N1—H2120.0C4—C5—H51109.3
C9—C1—C6110.97 (11)C6—C5—H51109.3
C9—C1—C2110.51 (10)C4—C5—H52109.3
C6—C1—C2109.59 (10)C6—C5—H52109.3
C9—C1—C7106.94 (10)H51—C5—H52108.0
C6—C1—C7110.90 (10)C5—C6—C1112.67 (11)
C2—C1—C7107.86 (10)C5—C6—H61109.1
C3—C2—C1112.06 (11)C1—C6—H61109.1
C3—C2—H21109.2C5—C6—H62109.1
C1—C2—H21109.2C1—C6—H62109.1
C3—C2—H22109.2H61—C6—H62107.8
C1—C2—H22109.2C8—C7—C1113.73 (10)
H21—C2—H22107.9C8—C7—H71108.8
C2—C3—C4111.14 (13)C1—C7—H71108.8
C2—C3—H31109.4C8—C7—H72108.8
C4—C3—H31109.4C1—C7—H72108.8
C2—C3—H32109.4H71—C7—H72107.7
C4—C3—H32109.4O1—C8—N1122.14 (12)
H31—C3—H32108.0O1—C8—C7120.10 (12)
C5—C4—C3110.83 (12)N1—C8—C7117.75 (12)
C5—C4—H41109.5O2—C9—O3123.19 (12)
C3—C4—H41109.5O2—C9—C1124.28 (12)
C5—C4—H42109.5O3—C9—C1112.48 (11)
C9—C1—C2—C367.91 (14)C6—C1—C7—C866.21 (14)
C6—C1—C2—C354.69 (15)C2—C1—C7—C8173.78 (11)
C7—C1—C2—C3175.52 (12)C1—C7—C8—O170.50 (15)
C1—C2—C3—C456.56 (17)C1—C7—C8—N1108.96 (13)
C2—C3—C4—C556.00 (18)C6—C1—C9—O213.30 (17)
C3—C4—C5—C655.11 (18)C2—C1—C9—O2135.09 (13)
C4—C5—C6—C155.11 (16)C7—C1—C9—O2107.76 (14)
C9—C1—C6—C568.36 (14)C6—C1—C9—O3169.07 (11)
C2—C1—C6—C553.96 (15)C2—C1—C9—O347.28 (14)
C7—C1—C6—C5172.93 (11)C7—C1—C9—O369.87 (13)
C9—C1—C7—C854.90 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.963 (18)1.640 (19)2.5829 (13)165 (2)
N1—H1···O1ii0.882.213.0680 (15)164
N1—H2···O2iii0.882.122.9635 (15)162
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England) and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLaRoche, S. M. & Helmers, S. L. (2004). JAMA, 291, 605–614.  CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds