organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dieth­yl 2-amino­thia­zole-4,5-di­carboxyl­ate hemihydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and bKey Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 21 February 2005; accepted 25 February 2005; online 4 March 2005)

The structure of the title compound, C9H12N2O4S·0.5H2O, comprises two thia­zole mol­ecules and one water mol­ecule in the asymmetric unit. The two thia­zoles associate via N—H⋯N hydrogen-bonding inter­actions to form R22(8) graph-set dimers, while the other NH groups and water mol­ecules construct a hydrogen-bonding network that involves three of the four eth­yl ester carbon­yl O atoms.

Comment

The title compound (I)[link] was prepared as part of an ongoing investigation into the synthesis and structural properties of 2-amino­thia­zole derivatives.

[Scheme 1]

As a part of that study, we have been examining the hydrogen-bonding networks of 2-amino­thia­zoles with ethyl ester substituents at the 5-position. The addition of two hydrogen-bond acceptors to the existing hydrogen-bond acceptors in 2-amino­thia­zole has led to some inter­esting packing arrangements. For the three previous structures that contain a primary 2-amino group, viz. eth­yl 2-amino-4-phen­yl-1,3-thia­zole-5-carboxyl­ate (Lynch & McClenaghan, 2000[Lynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.]), eth­yl 2-amino-4-tert-but­yl-1,3-thia­zole-5-carboxyl­ate (Lynch & McClenaghan, 2004[Lynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o592-o594.]) and eth­yl 2-amino-4-isoprop­yl-1,3-thia­zole-5-carboxyl­ate (Kennedy et al., 2004[Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1188-o1190.]), all mol­ecules pack with one NH group inter­acting with an adjacent thia­zole N atom, to form an R22(8) graph-set (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) dimer, while the other NH group associates with the eth­yl ester carbon­yl O atom. In the other four known thia­zoles with ethyl ester substituents at the 5-position and substituted 2-amino N atoms, two have tertiary amino groups, viz. eth­yl 2-(5-ethoxy­carbon­yl-2-(pyrrol-1­yl)thia­zol-4­yl-2-imino­ethano­ate (Brickute et al., 2002[Brickute, D., Slok, F. A., Romming, C. & Sackus, A. (2002). J. Chem. Soc. Perkin Trans. 1, 652-656.]) and eth­yl 4-phen­yl-2-(pyrrol­yl)-1,3-thia­zole-5-carboxyl­ate (Lynch & McClenaghan, 2002b[Lynch, D. E. & McClenaghan, I. (2002b). Acta Cryst. E58, o745-o746.]), and the other two both contain competing carbon­yl O atoms with which the single NH groups associate, viz. eth­yl 2-[N-(t-butoxy­carbon­yl)-L-alanylamino]-4-meth­yl-1,3-thia­zole-5-carboxyl­ate (Singh et al., 2000[Singh, U. P., Thomas, M., Seshadri, T. P. & Bhattacharya, S. (2000). Acta Cryst. C56, 1482-1483.]) and eth­yl 4-tert-but­yl-2-(3-phenyl­ureido)-1,3-thia­zole-5-carboxyl­ate (Lynch & McClen­aghan, 2002a[Lynch, D. E. & McClenaghan, I. (2002a). Acta Cryst. E58, o733-o734.]). All five structures containing at least one NH group show that an amino group prefers to inter­act with a carbon­yl O atom, whether from the ester group or from another group in the mol­ecule. With this in mind we decided to examine a 2-amino­thia­zole analogue with two ethyl ester substituents to see which substituted position would be preferred by the NH groups in the hydrogen-bonding network.

The asymmetric unit of (I)[link] comprises two thia­zole mol­ecules; these are connected in a three-dimensional hydrogen-bonding network. The addition of the second eth­yl ester and thus the increase in hydrogen-bond acceptor atoms leads to the incorporation of a water mol­ecule to satisfy the hydrogen-bonding requirements of the packing network (Desiraju, 1991[Desiraju, G. R. (1991). J. Chem. Soc. Chem. Commun. pp. 426-428.]). Similarly to the three previous structures where the 2-amino group was unsubstituted, the two thia­zole mol­ecules in (I)[link] associate via N—H⋯N inter­actions and form R22(8) graph-set dimers (Fig. 1[link]). The hydrogen-bonding geometry is listed in Table 1[link]. The second NH group on each thia­zole mol­ecule individually associates with different hydrogen-bond acceptor sites; on mol­ecule A, the second NH group hydrogen-bonds to the water O atom, while the second NH group on mol­ecule B hydrogen-bonds to the 5-substituted ester carbon­yl O atom, on an adjacent mol­ecule A. In turn, the water H atoms are donors to the 4-substituted ester carbon­yl O atom on an adjacent mol­ecule A and the equivalent 5-substituted O atom to mol­ecule B; thus three of the four ester carbon­yl O atoms are involved in the hydrogen-bonding network (Fig. 2[link]). Separation distances of O41B (the remaining carbon­yl O atom) of 3.208 (2) Å to C52A(−[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z) and 3.365 (2) Å to C43B(−[{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z) indicate C—H⋯O inter­actions.

[Figure 1]
Figure 1
The structure of the asymmetric unit of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 2]
Figure 2
Partial packing diagram for (I)[link]. Hydrogen-bonding inter­actions are shown as dotted lines. H atoms not involved in the hydrogen-bonding network have been omitted for clarity. [Symmetry codes: (i) −x, −y, −z; (ii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (iii) x + [{1\over 2}], −y − [{1\over 2}], z − [{1\over 2}].]

Experimental

The title compound was obtained from Key Organics Ltd and crystals were grown from an ethanol solution.

Crystal data
  • C9H12N2O4S·0.5H2O

  • Mr = 253.28

  • Monoclinic, P 21 /n

  • a = 16.7835 (4) Å

  • b = 8.4580 (2) Å

  • c = 18.0373 (5) Å

  • β = 111.653 (1)°

  • V = 2379.8 (1) Å3

  • Z = 8

  • Dx = 1.414 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5676 reflections

  • θ = 2.9–27.5°

  • μ = 0.28 mm−1

  • T = 120 (2) K

  • Prism, colourless

  • 0.18 × 0.15 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.952, Tmax = 0.981

  • 28267 measured reflections

  • 5447 independent reflections

  • 4260 reflections with I > 2σ(I)

  • Rint = 0.051

  • θmax = 27.5°

  • h = −21 → 21

  • k = −10 → 10

  • l = −23 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.09

  • 5447 reflections

  • 309 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0594P)2 + 0.8191P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.66 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0145 (11)

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N21A—H21A⋯N3B 0.88 2.13 2.979 (2) 161
N21A—H22A⋯O1Wi 0.88 1.97 2.805 (2) 158
N21B—H21B⋯N3A 0.88 2.16 3.005 (2) 160
N21B—H22B⋯O51Aii 0.88 2.05 2.890 (2) 160
O1W—H1W⋯O41A 0.83 (3) 2.02 (3) 2.853 (2) 175 (2)
O1W—H2W⋯O51Biii 0.84 (3) 1.97 (3) 2.808 (2) 175 (2)
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

All H atoms, except the two water H atoms, were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.98 (CH3 H atoms) and 0.99 Å (CH2 H atoms) and an N—H distance of 0.88 Å. The two water H atoms were located in Fourier syntheses and positional parameters were refined. The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON97 (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 367-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Diethyl 2-aminothiazole-4,5-dicarboxylate hemihydrate top
Crystal data top
C9H12N2O4S·0.5H2OF(000) = 1064
Mr = 253.28Dx = 1.414 Mg m3
Monoclinic, P21/nMelting point = 377–378 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 16.7835 (4) ÅCell parameters from 5676 reflections
b = 8.4580 (2) Åθ = 2.9–27.5°
c = 18.0373 (5) ŵ = 0.28 mm1
β = 111.653 (1)°T = 120 K
V = 2379.80 (10) Å3Prism, colourless
Z = 80.18 × 0.15 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
5447 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode4260 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.952, Tmax = 0.981l = 2321
28267 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.8191P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
5447 reflectionsΔρmax = 0.56 e Å3
309 parametersΔρmin = 0.66 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0145 (11)
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.847918.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.00585 (3)0.19269 (5)0.04174 (3)0.01969 (14)
C2A0.00612 (11)0.0765 (2)0.12202 (11)0.0200 (4)
N21A0.06484 (10)0.0536 (2)0.13670 (10)0.0251 (4)
H21A0.06350.00530.17740.031*
H22A0.11330.09730.10580.031*
N3A0.08201 (9)0.01515 (19)0.16560 (9)0.0202 (3)
C4A0.14150 (11)0.0590 (2)0.13455 (11)0.0185 (4)
C41A0.23107 (11)0.0028 (2)0.17509 (11)0.0187 (4)
O41A0.26555 (8)0.09470 (17)0.14581 (8)0.0274 (3)
O42A0.26563 (8)0.05404 (16)0.24851 (8)0.0242 (3)
C42A0.35207 (12)0.0022 (2)0.29540 (12)0.0261 (4)
H41A0.39210.02560.26860.033*
H42A0.35210.11860.30150.033*
C43A0.37871 (14)0.0766 (3)0.37519 (12)0.0341 (5)
H43A0.38020.19140.36840.043*
H44A0.43580.03930.40910.043*
H45A0.33750.05080.40030.043*
C5A0.11454 (11)0.1528 (2)0.06849 (11)0.0189 (4)
C51A0.16686 (12)0.2219 (2)0.02763 (11)0.0201 (4)
O51A0.24464 (8)0.21272 (17)0.05187 (8)0.0262 (3)
O52A0.11926 (8)0.29819 (16)0.03851 (8)0.0236 (3)
C52A0.16613 (13)0.3716 (3)0.08358 (13)0.0312 (5)
H51A0.19170.28950.10710.039*
H52A0.21270.43960.04830.039*
C53A0.10264 (14)0.4683 (3)0.14800 (13)0.0350 (5)
H53A0.05790.39910.18330.044*
H54A0.13190.52230.17890.044*
H55A0.07660.54690.12400.044*
S1B0.05291 (3)0.21687 (6)0.43465 (3)0.02324 (14)
C2B0.04552 (12)0.1559 (2)0.34028 (11)0.0234 (4)
N21B0.11009 (10)0.1726 (2)0.31459 (10)0.0310 (4)
H21B0.10410.14080.26640.039*
H22B0.15870.21540.34590.039*
N3B0.02927 (9)0.09242 (19)0.29602 (9)0.0220 (4)
C4B0.08278 (11)0.0887 (2)0.33755 (11)0.0196 (4)
C5B0.05159 (11)0.1509 (2)0.41288 (11)0.0204 (4)
C41B0.16709 (11)0.0072 (2)0.29871 (11)0.0213 (4)
O41B0.19714 (9)0.08482 (18)0.33210 (9)0.0331 (4)
O42B0.20234 (8)0.04339 (17)0.22165 (8)0.0266 (3)
C42B0.28320 (12)0.0370 (3)0.17790 (12)0.0312 (5)
H41B0.27260.15010.17070.039*
H42B0.32210.02980.20780.039*
C43B0.32269 (13)0.0421 (3)0.09868 (12)0.0300 (5)
H43B0.28530.02850.06830.037*
H44B0.37880.00550.06920.037*
H45B0.32990.15500.10650.037*
C51B0.09509 (12)0.1756 (2)0.46898 (11)0.0208 (4)
O51B0.17060 (8)0.15335 (17)0.45389 (8)0.0265 (3)
O52B0.04057 (8)0.23094 (17)0.53874 (8)0.0249 (3)
C52B0.07804 (13)0.2693 (3)0.59773 (12)0.0283 (5)
H51B0.12330.35040.57640.035*
H52B0.10390.17380.61140.035*
C53B0.00694 (14)0.3311 (3)0.67031 (13)0.0339 (5)
H53B0.03980.25370.68790.042*
H54B0.01450.43100.65720.042*
H55B0.02870.34900.71310.042*
O1W0.19277 (9)0.21340 (19)0.01321 (9)0.0293 (3)
H1W0.2123 (15)0.173 (3)0.0322 (16)0.037*
H2W0.2337 (16)0.258 (3)0.0215 (15)0.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0172 (2)0.0240 (3)0.0185 (2)0.00079 (18)0.00726 (18)0.00329 (18)
C2A0.0211 (9)0.0218 (10)0.0183 (9)0.0003 (7)0.0087 (7)0.0005 (7)
N21A0.0179 (8)0.0353 (10)0.0243 (9)0.0045 (7)0.0103 (7)0.0095 (7)
N3A0.0186 (7)0.0252 (9)0.0187 (8)0.0014 (6)0.0089 (6)0.0010 (6)
C4A0.0188 (8)0.0207 (10)0.0179 (9)0.0014 (7)0.0090 (7)0.0029 (7)
C41A0.0181 (8)0.0223 (10)0.0174 (9)0.0022 (7)0.0083 (7)0.0018 (7)
O41A0.0239 (7)0.0358 (8)0.0219 (7)0.0064 (6)0.0079 (6)0.0050 (6)
O42A0.0199 (6)0.0314 (8)0.0193 (7)0.0054 (6)0.0049 (5)0.0042 (6)
C42A0.0203 (9)0.0299 (11)0.0237 (10)0.0042 (8)0.0030 (8)0.0006 (8)
C43A0.0345 (11)0.0324 (12)0.0253 (11)0.0083 (9)0.0008 (9)0.0029 (9)
C5A0.0170 (8)0.0232 (10)0.0173 (9)0.0013 (7)0.0074 (7)0.0015 (7)
C51A0.0212 (9)0.0213 (10)0.0183 (9)0.0024 (7)0.0079 (7)0.0017 (7)
O51A0.0181 (7)0.0358 (8)0.0237 (7)0.0039 (6)0.0067 (6)0.0023 (6)
O52A0.0205 (6)0.0314 (8)0.0212 (7)0.0002 (6)0.0103 (5)0.0070 (6)
C52A0.0294 (10)0.0373 (12)0.0337 (12)0.0032 (9)0.0196 (9)0.0148 (10)
C53A0.0362 (12)0.0425 (14)0.0319 (12)0.0077 (10)0.0190 (10)0.0130 (10)
S1B0.0187 (2)0.0320 (3)0.0195 (2)0.00271 (19)0.00761 (19)0.00632 (19)
C2B0.0214 (9)0.0281 (11)0.0211 (10)0.0017 (8)0.0084 (8)0.0026 (8)
N21B0.0208 (8)0.0507 (12)0.0245 (9)0.0112 (8)0.0120 (7)0.0125 (8)
N3B0.0194 (8)0.0279 (9)0.0203 (8)0.0029 (6)0.0092 (6)0.0036 (7)
C4B0.0195 (9)0.0211 (10)0.0211 (9)0.0007 (7)0.0111 (7)0.0001 (7)
C5B0.0193 (9)0.0240 (10)0.0197 (9)0.0009 (7)0.0092 (7)0.0008 (8)
C41B0.0204 (9)0.0247 (10)0.0207 (10)0.0008 (8)0.0100 (8)0.0036 (8)
O41B0.0336 (8)0.0369 (9)0.0288 (8)0.0103 (7)0.0117 (6)0.0024 (7)
O42B0.0217 (7)0.0352 (8)0.0214 (7)0.0082 (6)0.0060 (6)0.0005 (6)
C42B0.0227 (10)0.0418 (13)0.0264 (11)0.0117 (9)0.0058 (8)0.0028 (9)
C43B0.0268 (10)0.0293 (11)0.0293 (11)0.0032 (8)0.0052 (9)0.0019 (9)
C51B0.0226 (9)0.0199 (10)0.0206 (9)0.0026 (7)0.0089 (8)0.0002 (7)
O51B0.0218 (7)0.0342 (8)0.0271 (8)0.0002 (6)0.0132 (6)0.0048 (6)
O52B0.0219 (7)0.0367 (8)0.0183 (7)0.0014 (6)0.0099 (6)0.0055 (6)
C52B0.0285 (10)0.0392 (12)0.0224 (10)0.0019 (9)0.0155 (9)0.0050 (9)
C53B0.0367 (12)0.0424 (13)0.0243 (11)0.0056 (10)0.0133 (9)0.0072 (10)
O1W0.0224 (7)0.0430 (10)0.0219 (7)0.0070 (6)0.0075 (6)0.0025 (7)
Geometric parameters (Å, º) top
S1A—C5A1.7392 (18)S1B—C5B1.7418 (18)
S1A—C2A1.7485 (19)C2B—N3B1.327 (2)
C2A—N21A1.326 (2)C2B—N21B1.334 (2)
C2A—N3A1.331 (2)N21B—H21B0.88
N21A—H21A0.88N21B—H22B0.88
N21A—H22A0.88N3B—C4B1.366 (2)
N3A—C4A1.364 (2)C4B—C5B1.368 (3)
C4A—C5A1.363 (3)C4B—C41B1.496 (3)
C4A—C41A1.502 (2)C5B—C51B1.465 (3)
C41A—O41A1.201 (2)C41B—O41B1.203 (2)
C41A—O42A1.325 (2)C41B—O42B1.330 (2)
O42A—C42A1.463 (2)O42B—C42B1.462 (2)
C42A—C43A1.497 (3)C42B—C43B1.493 (3)
C42A—H41A0.99C42B—H41B0.99
C42A—H42A0.99C42B—H42B0.99
C43A—H43A0.98C43B—H43B0.98
C43A—H44A0.98C43B—H44B0.98
C43A—H45A0.98C43B—H45B0.98
C5A—C51A1.460 (2)C51B—O51B1.209 (2)
C51A—O51A1.217 (2)C51B—O52B1.338 (2)
C51A—O52A1.332 (2)O52B—C52B1.458 (2)
O52A—C52A1.462 (2)C52B—C53B1.503 (3)
C52A—C53A1.497 (3)C52B—H51B0.99
C52A—H51A0.99C52B—H52B0.99
C52A—H52A0.99C53B—H53B0.98
C53A—H53A0.98C53B—H54B0.98
C53A—H54A0.98C53B—H55B0.98
C53A—H55A0.98O1W—H1W0.83 (3)
S1B—C2B1.739 (2)O1W—H2W0.84 (3)
C5A—S1A—C2A88.82 (9)N3B—C2B—N21B122.89 (17)
N21A—C2A—N3A124.00 (17)N3B—C2B—S1B114.77 (14)
N21A—C2A—S1A121.29 (14)N21B—C2B—S1B122.34 (14)
N3A—C2A—S1A114.70 (13)C2B—N21B—H21B120.0
C2A—N21A—H21A120.0C2B—N21B—H22B120.0
C2A—N21A—H22A120.0H21B—N21B—H22B120.0
H21A—N21A—H22A120.0C2B—N3B—C4B110.29 (16)
C2A—N3A—C4A109.72 (15)N3B—C4B—C5B116.59 (16)
N3A—C4A—C5A117.41 (16)N3B—C4B—C41B116.98 (16)
N3A—C4A—C41A117.27 (16)C5B—C4B—C41B126.28 (16)
C5A—C4A—C41A125.31 (16)C4B—C5B—C51B129.44 (17)
O41A—C41A—O42A124.75 (16)C4B—C5B—S1B109.36 (13)
O41A—C41A—C4A124.68 (16)C51B—C5B—S1B121.04 (14)
O42A—C41A—C4A110.53 (15)O41B—C41B—O42B124.43 (17)
C41A—O42A—C42A115.77 (14)O41B—C41B—C4B124.24 (17)
O42A—C42A—C43A106.94 (15)O42B—C41B—C4B111.25 (16)
O42A—C42A—H41A110.3C41B—O42B—C42B115.04 (15)
C43A—C42A—H41A110.3O42B—C42B—C43B107.72 (16)
O42A—C42A—H42A110.3O42B—C42B—H41B110.2
C43A—C42A—H42A110.3C43B—C42B—H41B110.2
H41A—C42A—H42A108.6O42B—C42B—H42B110.2
C42A—C43A—H43A109.5C43B—C42B—H42B110.2
C42A—C43A—H44A109.5H41B—C42B—H42B108.5
H43A—C43A—H44A109.5C42B—C43B—H43B109.5
C42A—C43A—H45A109.5C42B—C43B—H44B109.5
H43A—C43A—H45A109.5H43B—C43B—H44B109.5
H44A—C43A—H45A109.5C42B—C43B—H45B109.5
C4A—C5A—C51A127.36 (16)H43B—C43B—H45B109.5
C4A—C5A—S1A109.35 (13)H44B—C43B—H45B109.5
C51A—C5A—S1A123.15 (14)O51B—C51B—O52B124.24 (17)
O51A—C51A—O52A124.18 (17)O51B—C51B—C5B124.79 (17)
O51A—C51A—C5A123.96 (17)O52B—C51B—C5B110.94 (15)
O52A—C51A—C5A111.85 (15)C51B—O52B—C52B115.76 (14)
C51A—O52A—C52A115.84 (14)O52B—C52B—C53B107.19 (16)
O52A—C52A—C53A106.78 (16)O52B—C52B—H51B110.3
O52A—C52A—H51A110.4C53B—C52B—H51B110.3
C53A—C52A—H51A110.4O52B—C52B—H52B110.3
O52A—C52A—H52A110.4C53B—C52B—H52B110.3
C53A—C52A—H52A110.4H51B—C52B—H52B108.5
H51A—C52A—H52A108.6C52B—C53B—H53B109.5
C52A—C53A—H53A109.5C52B—C53B—H54B109.5
C52A—C53A—H54A109.5H53B—C53B—H54B109.5
H53A—C53A—H54A109.5C52B—C53B—H55B109.5
C52A—C53A—H55A109.5H53B—C53B—H55B109.5
H53A—C53A—H55A109.5H54B—C53B—H55B109.5
H54A—C53A—H55A109.5H1W—O1W—H2W108 (2)
C2B—S1B—C5B88.98 (9)
C5A—S1A—C2A—N21A179.15 (17)C5B—S1B—C2B—N3B0.39 (16)
C5A—S1A—C2A—N3A0.81 (15)C5B—S1B—C2B—N21B179.86 (19)
N21A—C2A—N3A—C4A179.23 (18)N21B—C2B—N3B—C4B179.31 (19)
S1A—C2A—N3A—C4A0.7 (2)S1B—C2B—N3B—C4B0.9 (2)
C2A—N3A—C4A—C5A0.2 (2)C2B—N3B—C4B—C5B1.2 (2)
C2A—N3A—C4A—C41A178.60 (16)C2B—N3B—C4B—C41B174.65 (17)
N3A—C4A—C41A—O41A113.2 (2)N3B—C4B—C5B—C51B174.50 (18)
C5A—C4A—C41A—O41A65.5 (3)C41B—C4B—C5B—C51B10.1 (3)
N3A—C4A—C41A—O42A64.7 (2)N3B—C4B—C5B—S1B0.9 (2)
C5A—C4A—C41A—O42A116.6 (2)C41B—C4B—C5B—S1B174.51 (15)
O41A—C41A—O42A—C42A0.1 (3)C2B—S1B—C5B—C4B0.28 (15)
C4A—C41A—O42A—C42A177.84 (15)C2B—S1B—C5B—C51B175.58 (17)
C41A—O42A—C42A—C43A179.64 (17)N3B—C4B—C41B—O41B134.5 (2)
N3A—C4A—C5A—C51A176.18 (17)C5B—C4B—C41B—O41B40.9 (3)
C41A—C4A—C5A—C51A5.1 (3)N3B—C4B—C41B—O42B42.3 (2)
N3A—C4A—C5A—S1A0.4 (2)C5B—C4B—C41B—O42B142.28 (19)
C41A—C4A—C5A—S1A179.09 (15)O41B—C41B—O42B—C42B0.4 (3)
C2A—S1A—C5A—C4A0.64 (14)C4B—C41B—O42B—C42B177.24 (16)
C2A—S1A—C5A—C51A176.64 (16)C41B—O42B—C42B—C43B167.86 (17)
C4A—C5A—C51A—O51A5.6 (3)C4B—C5B—C51B—O51B5.6 (3)
S1A—C5A—C51A—O51A169.63 (15)S1B—C5B—C51B—O51B169.30 (16)
C4A—C5A—C51A—O52A175.46 (18)C4B—C5B—C51B—O52B176.23 (19)
S1A—C5A—C51A—O52A9.3 (2)S1B—C5B—C51B—O52B8.8 (2)
O51A—C51A—O52A—C52A1.0 (3)O51B—C51B—O52B—C52B1.8 (3)
C5A—C51A—O52A—C52A179.96 (16)C5B—C51B—O52B—C52B176.36 (16)
C51A—O52A—C52A—C53A172.28 (17)C51B—O52B—C52B—C53B179.11 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21A—H21A···N3B0.882.132.979 (2)161
N21A—H22A···O1Wi0.881.972.805 (2)158
N21B—H21B···N3A0.882.163.005 (2)160
N21B—H22B···O51Aii0.882.052.890 (2)160
O1W—H1W···O41A0.83 (3)2.02 (3)2.853 (2)175 (2)
O1W—H2W···O51Biii0.84 (3)1.97 (3)2.808 (2)175 (2)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y1/2, z1/2.
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

First citationBrickute, D., Slok, F. A., Romming, C. & Sackus, A. (2002). J. Chem. Soc. Perkin Trans. 1, 652–656.  CrossRef Google Scholar
First citationDesiraju, G. R. (1991). J. Chem. Soc. Chem. Commun. pp. 426–428.  CrossRef Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1188–o1190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2000). Acta Cryst. C56, e586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002a). Acta Cryst. E58, o733–o734.  CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2002b). Acta Cryst. E58, o745–o746.  CrossRef IUCr Journals Google Scholar
First citationLynch, D. E. & McClenaghan, I. (2004). Acta Cryst. C60, o592–o594.  CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSingh, U. P., Thomas, M., Seshadri, T. P. & Bhattacharya, S. (2000). Acta Cryst. C56, 1482–1483.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 367–13.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds