organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-(4-Chloro­phenyl)-10-methyl-8-phenyl-6,8-di­hydro-5H-benzo­[f]­pyrazolo­[3,4-b]­quinoline

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 9 March 2005; accepted 14 March 2005; online 25 March 2005)

Molecules of the title compound, C27H20ClN3, are linked by two independent C—H⋯π(arene) hydrogen bonds into chains of edge-fused rings.

Comment

Pyrazolo­[3,4-b]­quinolines are of interest as possible antiviral and antimalarial agents, and because of their other biological properties, such as parasiticidic, bactericidal, vasodilator and enzyme-inhibitory activity (Quiroga et al., 2001[Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947-6953.]). We have recently focused on the synthesis of fused heterocyclic systems containing the pyrazolo­[3,4-b]­quinoline moiety using multicomponent cyclo­condensation reactions under solvent-free conditions. We describe here the molecular and supramolec­ular structure of the title compound, (I[link]), prepared using a three-component cyclo­condensation involving 5-amino-3-methyl-1-phenyl­pyrazole, 2-tetralone and 4-chloro­benz­alde­hyde under solvent-free microwave irradiation.[link]

[Scheme 1]

Within the pyridine-type ring, the C—N bond lengths (Table 1[link]) are very close to the mean value of 1.337 Å for bonds of this type (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), and there is very strong bond fixation in the five-membered ring. The pyridine ring and the benzene ring containing atom C1 are not coplanar, and their planes make a dihedral angle of 25.5 (2)°. The carbocylic ring containing atoms C5 and C6 accordingly adopts a screw-boat conformation (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]), with total puckering amplitude Q = 0.537 (2) Å, and ring-puckering parameters θ = 70.5 (2)° and φ = 92.5 (2)° (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); the idealized values of the angular parameters for a screw-boat conformer are θ = 67.5° and φ = (60k + 30)°. The dihedral angle between the pyrazole-type ring and aryl ring C81–C86 is 28.1 (2)°, whereas that between the pyridine-type ring and aryl ring C111–C116 is 70.1 (2)°, possibly as a consequence of repulsive interactions between the H atoms bonded to C112 and C116 and those bonded to C101 and C1, respectively.

The mol­ecules of (I[link]) are linked by two independent C—H⋯π(arene) hydrogen bonds into a chain of edge-fused rings. Aryl atom C113 in the mol­ecule at (x, y, z) acts as donor to the phenyl ring C81–C86 in the mol­ecule at (−x, 1 − y, −z), so forming a centrosymmetric ring, centred at (0, ½, 0). In a similar way, atom C115 at (x, y, z) acts as donor to the fused aryl ring, containing C1, in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a second centrosymmetric ring, centred at (½, ½, ½). Propagation by inversion of these two interactions then generates a chain of edge-fused centrosymmetric rings running parallel to the [101] direction (Fig. 2[link]). There are no direction-specific interactions between adjacent chains: C—H⋯N and C—H⋯Cl hydrogen bonds, and aromatic ππ stacking interactions are all absent from the structure of (I[link]).

[Figure 1]
Figure 1
The mol­ecule of compound (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Stereoview of part of the crystal structure of compound (I[link]), showing the formation of a chain of edge-fused rings along [101]. For the sake of clarity, the H atoms not involved in these motifs have been omitted.

Experimental

Equimolar amounts of 5-amino-3-methyl-1-phenyl­pyrazole (173 mg, 1.0 mmol), 2-tetralone (146 mg, 1.0 mmol) and 4-chloro­benz­aldehyde (140.6 mg, 1.0 mmol) were placed in open Pyrex glass vessels and irradiated in a domestic microwave oven for 4 min at 600 W. The reaction mixture was then extracted with ethanol and, after removal of the solvent, the product was recrystallized from ethanol/di­methyl­form­amide to give crystals suitable for single-crystal X-ray diffraction. Pale-green crystals (m.p. 467 K, yield 58%). MS: (30 eV) m/z (%) 279 (100, M+), 264 (27).

Crystal data
  • C27H20ClN3

  • Mr = 421.91

  • Triclinic, [P\overline 1]

  • a = 7.1270 (1) Å

  • b = 12.6300 (4) Å

  • c = 13.2847 (4) Å

  • α = 107.3380 (13)°

  • β = 103.6230 (17)°

  • γ = 101.4230 (18)°

  • V = 1061.98 (5) Å3

  • Z = 2

  • Dx = 1.319 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4871 reflections

  • θ = 3.0–27.6°

  • μ = 0.20 mm−1

  • T = 120 (2) K

  • Plate, pale green

  • 0.53 × 0.20 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.906, Tmax = 0.984

  • 21 625 measured reflections

  • 4871 independent reflections

  • 3853 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 27.6°

  • h = −9 → 9

  • k = −16 → 16

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.110

  • S = 1.08

  • 4871 reflections

  • 281 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.054P)2 + 0.2795P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

C6A—N7 1.3336 (18)
N7—C7A 1.3415 (19)
C7A—N8 1.3730 (17)
N8—N9 1.3791 (17)
N9—C10 1.3190 (19)
C10—C10A 1.436 (2)
C10A—C11 1.4055 (19)
C11—C11A 1.403 (2)
C11A—C6A 1.4324 (19)
C7A—C10A 1.398 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

Cg1 is the centroid of ring C81–C86, and Cg2 is the centroid of ring C1–C4/C4A/C11B.

D—H⋯A D—H H⋯A DA D—H⋯A
C113—H113⋯Cg1i 0.95 2.65 3.5214 (16) 152
C115—H115⋯Cg2ii 0.95 2.90 3.6403 (17) 136
Symmetry codes: (i) -x,1-y,-z; (ii) 1-x,1-y,1-z.

All H atoms were located in difference maps in fully ordered sites; they were then treated as riding atoms, with C—H distances of 0.95 (aromatic), 0.98 (methyl) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the methyl group.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

11-(4-chlorophenyl)-10-methyl-8-phenyl-6,8-dihydro-5H- benzo[f]pyrazolo[3,4-b]quinoline top
Crystal data top
C27H20ClN3Z = 2
Mr = 421.91F(000) = 440
Triclinic, P1Dx = 1.319 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1270 (1) ÅCell parameters from 4871 reflections
b = 12.6300 (4) Åθ = 3.0–27.6°
c = 13.2847 (4) ŵ = 0.20 mm1
α = 107.3380 (13)°T = 120 K
β = 103.6230 (17)°Plate, pale green
γ = 101.4230 (18)°0.53 × 0.20 × 0.08 mm
V = 1061.98 (5) Å3
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
4871 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.906, Tmax = 0.984l = 1717
21625 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.054P)2 + 0.2795P]
where P = (Fo2 + 2Fc2)/3
4871 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.33 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl140.41830 (6)0.13253 (3)0.25576 (3)0.03150 (13)
N70.28893 (18)0.82176 (10)0.27569 (10)0.0221 (3)
N80.04974 (18)0.71127 (11)0.15444 (10)0.0230 (3)
N90.16306 (18)0.59652 (11)0.10792 (10)0.0239 (3)
C10.7802 (2)0.60892 (13)0.36213 (13)0.0230 (3)
C20.9656 (2)0.61188 (14)0.42735 (14)0.0294 (4)
C31.0767 (2)0.70935 (15)0.52083 (15)0.0332 (4)
C41.0043 (2)0.80434 (14)0.54597 (14)0.0294 (4)
C4A0.8184 (2)0.80333 (13)0.48129 (12)0.0226 (3)
C50.7424 (2)0.90812 (13)0.50638 (13)0.0263 (3)
C60.6306 (2)0.91716 (12)0.39763 (13)0.0242 (3)
C6A0.4606 (2)0.80831 (12)0.32939 (12)0.0204 (3)
C7A0.1426 (2)0.72218 (13)0.21502 (12)0.0212 (3)
C100.0445 (2)0.53571 (13)0.13762 (12)0.0216 (3)
C10A0.1534 (2)0.61046 (12)0.20561 (12)0.0198 (3)
C110.3345 (2)0.59779 (12)0.26387 (11)0.0186 (3)
C11A0.4943 (2)0.69932 (12)0.32585 (11)0.0187 (3)
C11B0.6994 (2)0.70225 (13)0.38950 (12)0.0199 (3)
C810.1403 (2)0.79824 (13)0.13851 (12)0.0249 (3)
C820.3462 (2)0.77830 (15)0.11958 (13)0.0289 (4)
C830.4338 (3)0.86323 (17)0.10284 (14)0.0350 (4)
C840.3185 (3)0.96645 (16)0.10570 (14)0.0375 (4)
C850.1139 (3)0.98489 (16)0.12430 (16)0.0425 (5)
C860.0237 (2)0.90067 (15)0.14042 (16)0.0369 (4)
C1010.1276 (2)0.40710 (13)0.09992 (14)0.0281 (3)
C1110.34498 (19)0.48015 (12)0.25989 (12)0.0184 (3)
C1120.3473 (2)0.39855 (13)0.16309 (12)0.0225 (3)
C1130.3674 (2)0.29104 (13)0.16129 (12)0.0238 (3)
C1140.3829 (2)0.26520 (12)0.25674 (12)0.0218 (3)
C1150.3725 (2)0.34275 (13)0.35236 (12)0.0221 (3)
C1160.3542 (2)0.45043 (12)0.35347 (12)0.0198 (3)
H10.70640.54230.29760.028*
H21.01660.54720.40800.035*
H31.20170.71070.56720.040*
H41.08270.87190.60870.035*
H5A0.85720.97880.54990.032*
H5B0.65050.90140.55110.032*
H6A0.57640.98460.41370.029*
H6B0.72520.92910.35540.029*
H820.42620.70770.11810.035*
H830.57500.85010.08920.042*
H840.37961.02430.09490.045*
H850.03411.05570.12610.051*
H860.11700.91340.15270.044*
H10A0.27330.38430.06260.042*
H10B0.10190.38310.16430.042*
H10C0.06220.36960.04810.042*
H1120.33510.41670.09780.027*
H1130.37060.23580.09550.029*
H1150.37770.32270.41620.027*
H1160.34780.50460.41890.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl140.0414 (2)0.0201 (2)0.0309 (2)0.01009 (16)0.00622 (17)0.00961 (16)
N70.0202 (6)0.0235 (6)0.0227 (6)0.0084 (5)0.0051 (5)0.0085 (5)
N80.0184 (6)0.0253 (7)0.0238 (7)0.0079 (5)0.0025 (5)0.0090 (5)
N90.0201 (6)0.0271 (7)0.0226 (7)0.0059 (5)0.0046 (5)0.0083 (6)
C10.0193 (7)0.0253 (8)0.0259 (8)0.0066 (6)0.0080 (6)0.0106 (6)
C20.0217 (8)0.0319 (9)0.0398 (10)0.0126 (6)0.0098 (7)0.0169 (8)
C30.0189 (7)0.0374 (10)0.0402 (10)0.0069 (7)0.0004 (7)0.0181 (8)
C40.0246 (8)0.0291 (8)0.0273 (8)0.0012 (6)0.0002 (6)0.0109 (7)
C4A0.0212 (7)0.0250 (8)0.0222 (7)0.0051 (6)0.0058 (6)0.0112 (6)
C50.0264 (8)0.0243 (8)0.0223 (8)0.0059 (6)0.0023 (6)0.0052 (6)
C60.0239 (7)0.0201 (7)0.0253 (8)0.0065 (6)0.0036 (6)0.0071 (6)
C6A0.0203 (7)0.0231 (7)0.0189 (7)0.0071 (6)0.0063 (6)0.0084 (6)
C7A0.0203 (7)0.0257 (8)0.0198 (7)0.0096 (6)0.0057 (6)0.0099 (6)
C100.0195 (7)0.0269 (8)0.0185 (7)0.0068 (6)0.0055 (6)0.0089 (6)
C10A0.0203 (7)0.0221 (7)0.0180 (7)0.0070 (6)0.0066 (6)0.0078 (6)
C110.0207 (7)0.0226 (7)0.0152 (7)0.0079 (6)0.0074 (5)0.0082 (6)
C11A0.0189 (7)0.0214 (7)0.0172 (7)0.0071 (5)0.0065 (5)0.0077 (6)
C11B0.0183 (7)0.0241 (7)0.0206 (7)0.0070 (6)0.0071 (6)0.0113 (6)
C810.0255 (8)0.0304 (8)0.0184 (7)0.0147 (6)0.0029 (6)0.0072 (6)
C820.0256 (8)0.0468 (10)0.0212 (8)0.0182 (7)0.0094 (6)0.0156 (7)
C830.0301 (9)0.0599 (12)0.0258 (8)0.0292 (8)0.0116 (7)0.0181 (8)
C840.0446 (10)0.0421 (10)0.0257 (9)0.0301 (9)0.0027 (7)0.0074 (8)
C850.0382 (10)0.0297 (9)0.0513 (12)0.0155 (8)0.0027 (8)0.0126 (9)
C860.0247 (8)0.0295 (9)0.0507 (11)0.0116 (7)0.0004 (7)0.0135 (8)
C1010.0221 (8)0.0267 (8)0.0304 (9)0.0029 (6)0.0034 (6)0.0096 (7)
C1110.0155 (6)0.0193 (7)0.0191 (7)0.0045 (5)0.0038 (5)0.0069 (6)
C1120.0259 (7)0.0248 (8)0.0174 (7)0.0080 (6)0.0055 (6)0.0088 (6)
C1130.0282 (8)0.0215 (8)0.0182 (7)0.0075 (6)0.0062 (6)0.0033 (6)
C1140.0217 (7)0.0175 (7)0.0235 (8)0.0047 (6)0.0035 (6)0.0071 (6)
C1150.0232 (7)0.0231 (8)0.0196 (7)0.0044 (6)0.0050 (6)0.0101 (6)
C1160.0183 (7)0.0228 (7)0.0159 (7)0.0047 (6)0.0045 (5)0.0053 (6)
Geometric parameters (Å, º) top
C1—C21.386 (2)C81—C861.382 (2)
C1—C11B1.402 (2)C81—C821.386 (2)
C1—H10.95C82—C831.390 (2)
C2—C31.387 (2)C82—H820.95
C2—H20.95C83—C841.381 (3)
C3—C41.380 (2)C83—H830.95
C3—H30.95C84—C851.379 (3)
C4—C4A1.394 (2)C84—H840.95
C4—H40.95C85—C861.390 (2)
C4A—C11B1.411 (2)C85—H850.95
C4A—C51.504 (2)C86—H860.95
C5—C61.525 (2)C10—C1011.495 (2)
C5—H5A0.99C101—H10A0.98
C5—H5B0.99C101—H10B0.98
C6—C6A1.503 (2)C101—H10C0.98
C6—H6A0.99C11—C1111.4883 (19)
C6—H6B0.99C11A—C11B1.4937 (19)
C6A—N71.3336 (18)C111—C1161.393 (2)
N7—C7A1.3415 (19)C111—C1121.394 (2)
C7A—N81.3730 (17)C112—C1131.387 (2)
N8—N91.3791 (17)C112—H1120.95
N9—C101.3190 (19)C113—C1141.386 (2)
C10—C10A1.436 (2)C113—H1130.95
C10A—C111.4055 (19)C114—C1151.382 (2)
C11—C11A1.403 (2)C114—Cl141.7399 (14)
C11A—C6A1.4324 (19)C115—C1161.388 (2)
C7A—C10A1.398 (2)C115—H1150.95
N8—C811.4225 (18)C116—H1160.95
C2—C1—C11B121.33 (15)C83—C84—H84120.3
C2—C1—H1119.3C84—C85—C86120.47 (18)
C11B—C1—H1119.3C84—C85—H85119.8
C1—C2—C3119.97 (15)C86—C85—H85119.8
C1—C2—H2120.0C81—C86—C85119.52 (16)
C3—C2—H2120.0C81—C86—H86120.2
C4—C3—C2119.51 (14)C85—C86—H86120.2
C4—C3—H3120.2C10—N9—N8107.06 (12)
C2—C3—H3120.2N9—C10—C10A110.55 (13)
C3—C4—C4A121.42 (15)N9—C10—C101119.21 (13)
C3—C4—H4119.3C10A—C10—C101130.24 (13)
C4A—C4—H4119.3C10—C101—H10A109.5
C4—C4A—C11B119.43 (14)C10—C101—H10B109.5
C4—C4A—C5121.47 (14)H10A—C101—H10B109.5
C11B—C4A—C5119.10 (13)C10—C101—H10C109.5
C4A—C5—C6109.32 (13)H10A—C101—H10C109.5
C4A—C5—H5A109.8H10B—C101—H10C109.5
C6—C5—H5A109.8C7A—C10A—C11118.41 (13)
C4A—C5—H5B109.8C7A—C10A—C10104.91 (12)
C6—C5—H5B109.8C11—C10A—C10136.58 (13)
H5A—C5—H5B108.3C11A—C11—C10A117.00 (13)
C6A—C6—C5110.02 (12)C11A—C11—C111123.84 (12)
C6A—C6—H6A109.7C10A—C11—C111119.12 (12)
C5—C6—H6A109.7C11—C11A—C6A118.51 (12)
C6A—C6—H6B109.7C11—C11A—C11B124.46 (13)
C5—C6—H6B109.7C6A—C11A—C11B117.03 (12)
H6A—C6—H6B108.2C1—C11B—C4A118.14 (13)
N7—C6A—C11A125.12 (13)C1—C11B—C11A122.97 (13)
N7—C6A—C6116.43 (12)C4A—C11B—C11A118.89 (13)
C11A—C6A—C6118.45 (12)C116—C111—C112119.07 (13)
C6A—N7—C7A114.21 (12)C116—C111—C11120.28 (12)
N7—C7A—N8126.25 (13)C112—C111—C11120.65 (12)
N7—C7A—C10A126.71 (13)C113—C112—C111120.52 (13)
N8—C7A—C10A106.98 (12)C113—C112—H112119.7
C7A—N8—N9110.50 (11)C111—C112—H112119.7
C7A—N8—C81129.74 (13)C114—C113—C112119.14 (14)
N9—N8—C81119.72 (12)C114—C113—H113120.4
C86—C81—C82120.67 (14)C112—C113—H113120.4
C86—C81—N8119.98 (14)C115—C114—C113121.44 (13)
C82—C81—N8119.34 (14)C115—C114—Cl14119.59 (11)
C81—C82—C83118.94 (16)C113—C114—Cl14118.97 (12)
C81—C82—H82120.5C114—C115—C116118.87 (14)
C83—C82—H82120.5C114—C115—H115120.6
C84—C83—C82120.90 (16)C116—C115—H115120.6
C84—C83—H83119.5C115—C116—C111120.88 (13)
C82—C83—H83119.5C115—C116—H116119.6
C85—C84—C83119.49 (16)C111—C116—H116119.6
C85—C84—H84120.3
C11B—C1—C2—C31.1 (2)C101—C10—C10A—C7A178.83 (15)
C1—C2—C3—C42.2 (3)N9—C10—C10A—C11176.65 (16)
C2—C3—C4—C4A2.0 (3)C101—C10—C10A—C112.7 (3)
C3—C4—C4A—C11B1.4 (2)C7A—C10A—C11—C11A1.42 (19)
C3—C4—C4A—C5177.96 (15)C10—C10A—C11—C11A177.13 (16)
C4—C4A—C5—C6143.03 (15)C7A—C10A—C11—C111176.61 (13)
C11B—C4A—C5—C636.33 (19)C10—C10A—C11—C1110.9 (2)
C4A—C5—C6—C6A57.48 (16)C10A—C11—C11A—C6A2.45 (19)
C5—C6—C6A—N7140.28 (13)C111—C11—C11A—C6A175.48 (13)
C5—C6—C6A—C11A40.26 (18)C10A—C11—C11A—C11B177.73 (13)
C11A—C6A—N7—C7A0.1 (2)C111—C11—C11A—C11B4.4 (2)
C6—C6A—N7—C7A179.29 (13)N7—C6A—C11A—C111.8 (2)
C6A—N7—C7A—N8178.03 (14)C6—C6A—C11A—C11178.82 (13)
C6A—N7—C7A—C10A1.3 (2)N7—C6A—C11A—C11B178.38 (13)
N7—C7A—N8—N9176.39 (14)C6—C6A—C11A—C11B1.02 (19)
C10A—C7A—N8—N90.84 (16)C2—C1—C11B—C4A4.4 (2)
N7—C7A—N8—C811.4 (2)C2—C1—C11B—C11A175.73 (14)
C10A—C7A—N8—C81178.62 (14)C4—C4A—C11B—C14.5 (2)
C7A—N8—C81—C8630.1 (2)C5—C4A—C11B—C1174.84 (13)
N9—N8—C81—C86152.28 (15)C4—C4A—C11B—C11A175.61 (13)
C7A—N8—C81—C82150.81 (15)C5—C4A—C11B—C11A5.0 (2)
N9—N8—C81—C8226.8 (2)C11—C11A—C11B—C125.6 (2)
C86—C81—C82—C830.2 (2)C6A—C11A—C11B—C1154.57 (14)
N8—C81—C82—C83179.27 (14)C11—C11A—C11B—C4A154.55 (14)
C81—C82—C83—C840.5 (2)C6A—C11A—C11B—C4A25.28 (19)
C82—C83—C84—C850.7 (3)C11A—C11—C111—C11668.91 (18)
C83—C84—C85—C860.2 (3)C10A—C11—C111—C116108.97 (15)
C82—C81—C86—C850.7 (3)C11A—C11—C111—C112110.59 (16)
N8—C81—C86—C85179.73 (16)C10A—C11—C111—C11271.52 (18)
C84—C85—C86—C810.5 (3)C116—C111—C112—C1132.8 (2)
C7A—N8—N9—C100.49 (16)C11—C111—C112—C113176.71 (13)
C81—N8—N9—C10178.53 (13)C111—C112—C113—C1140.7 (2)
N8—N9—C10—C10A0.05 (16)C112—C113—C114—C1152.0 (2)
N8—N9—C10—C101179.41 (13)C112—C113—C114—Cl14177.44 (11)
N7—C7A—C10A—C110.6 (2)C113—C114—C115—C1162.6 (2)
N8—C7A—C10A—C11177.78 (12)Cl14—C114—C115—C116176.87 (10)
N7—C7A—C10A—C10176.39 (14)C114—C115—C116—C1110.4 (2)
N8—C7A—C10A—C100.82 (15)C112—C111—C116—C1152.2 (2)
N9—C10—C10A—C7A0.55 (16)C11—C111—C116—C115177.29 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C113—H113···Cg1i0.952.653.5214 (16)152
C115—H115···Cg2ii0.952.903.6403 (17)136
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and HS thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQuiroga, J., Mejía, D., Insuasty, B., Abonia, R., Nogueras, M., Sánchez, A., Cobo, J. & Low, J. N. (2001). Tetrahedron, 57, 6947–6953.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds