Comment
The title compound, (I
), was prepared under Vilsmeyer conditions in which chlorination of C5 occurs in addition to the expected formylation, giving a versatile intermediate for the synthesis of fused pyrazolo heterocycles via cyclocondensation reactions (Paul et al., 2001
).![[link]](../../../../../../logos/arrows/e_arr.gif)
The aldehydic fragment is almost coplanar with the adjacent pyrazole ring, but the two ring planes are inclined at 71.3 (2)° (Table 1
). Within the pyrazolecarbaldehyde portion of the molecule, the bonds N1—C5 and C4—C41 are both short for their types (Allen et al., 1987
), while bonds C4—C5 and C41—O4 are both long for their types, suggesting some contribution to the overall molecular–electronic structure from the charge-separated form (Ia)
(see scheme
).
The molecules of (I
) are linked into sheets by a combination of one C—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond (Table 2
); each of these hydrogen bonds generates a characteristic simple substructure and the sheet formation is most readily analysed in terms of these two substructures. In the first substructure, aryl atom C12 in the molecule at (x, y, z) acts as hydrogen-bond donor to aldehydic atom O4 in the molecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(16) ring (Bernstein et al., 1995
) centred at (
,
,
) (Fig. 2
). In the second substructure, aryl atom C15 in the molecule at (x, y, z) acts as hydrogen-bond donor to the ring C11–C16 in the molecule at (2 − x,
+ y,
− z), so forming a chain running parallel to the [010] direction and generated by the 21 screw axis along (1, y,
) (Fig. 3
). Each R22(16) dimer thus acts as a double donor and a double acceptor of C—H⋯π(arene) hydrogen bonds, such that the dimer centred at (
,
,
) acts as donor to the dimers centred at (
, 1, 1) and (−
, 0, 0) and as acceptor from the dimers centred at (
, 0, 1) and (−
, 1, 0). In this manner, a sheet parallel to (10
) is formed (Fig. 4
); taking the R22(16) dimers as the nodes of the resulting net, this is then of (6,3)-type. However, there are no direction-specific interactions between adjacent sheets.
| Figure 1 The molecule of compound (I ), showing the atom-labelling scheme. For the sake of clarity, only one set of methyl H atoms is shown; displacement ellipsoids are drawn at the 30% probability level. |
| Figure 2 Part of the crystal structure of compound (I ), showing the formation of an R22(16) ring centred at ( , , ). For the sake of clarity, H atoms not involved in this motif have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z). |
| Figure 3 Part of the crystal structure of compound (I ), showing the formation of a hydrogen-bonded chain along [010]. For the sake of clarity, H atoms not involved in this motif have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 − x, + y, − z), (x, 1 + y, z) and (1 − x, − + y, − z), respectively. |
| Figure 4 Stereoview of part of the crystal structure of compound (I ), showing the formation of a (10 ) sheet. For the sake of clarity, H atoms not involved in these motifs have been omitted. |
Experimental
For the preparation of (I
), phosphoryl chloride (0.35 mol, 32 ml) was added dropwise to ice-cold dimethylformamide (0.16 mol, 12 ml). To this mixture was added 3-methyl-1-phenyl-5-pyrazolone (0.05 mol) and the reaction mixture was then heated under reflux for 1 h. After cooling, the reaction mixture was poured into ice-cold water (300 ml). The solid which precipitated was collected by filtration, washed with water, dried and recrystallized from ethanol to give pale-yellow crystals (m.p. 417 K) suitable for single-crystal X-ray diffraction (yield 90%). MS (70 eV) m/z (%): 221 (38), 222/220 (31/94, M+), 77 (100), 51 (98).
Data collection
Bruker–Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003 ) Tmin = 0.866, Tmax = 0.966 10 853 measured reflections 2291 independent reflections 1995 reflections with I > 2σ(I) Rint = 0.031 θmax = 27.5° h = −8 → 8 k = −8 → 8 l = −28 → 29
|
Refinement
Refinement on F2 R[F2 > 2σ(F2)] = 0.033 wR(F2) = 0.085 S = 1.02 2289 reflections 137 parameters H-atom parameters constrained w = 1/[σ2(Fo2) + (0.037P)2 + 0.5856P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.002 Δρmax = 0.31 e Å−3 Δρmin = −0.25 e Å−3 Extinction correction: SHELXL97 Extinction coefficient: 0.011 (2)
|
N1—N2 | 1.3759 (16) | N2—C3 | 1.3276 (18) | C3—C4 | 1.423 (2) | C4—C5 | 1.3892 (18) | C5—N1 | 1.3394 (18) | N1—C11 | 1.4372 (17) | C4—C41 | 1.4471 (19) | C41—O4 | 1.2239 (17) | C5—Cl5 | 1.7009 (14) | | N2—N1—C11—C12 | 109.18 (15) | C3—C4—C41—O4 | 0.0 (2) | | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | C12—H12⋯O4i | 0.95 | 2.51 | 3.371 (2) | 151 | C15—H15⋯Cgii | 0.95 | 2.72 | 3.498 (2) | 140 | Symmetry codes: (i) 1-x,1-y,1-z; (ii) . | |
Two very low angle reflections (
02) and (01 ) were omitted from the final refinement because of partial attenuation and/or extinction.All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and aldehyde H atoms or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The methyl group was modelled using six H-atom sites, all with occupancy 0.5.
Data collection: COLLECT (Hooft, 1999
); cell refinement: DENZO (Otwinowski & Minor, 1997
) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003
) and SHELXS97 (Sheldrick, 1997
); program(s) used to refine structure: OSCAIL and SHELXL97; molecular graphics: PLATON (Spek, 2003
); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999
).
Supporting information
Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
5-Chloro-3-methyl-1-phenyl-1
H-pyrazole-4-carbaldehyde
top Crystal data top C11H9ClN2O | F(000) = 456 |
Mr = 220.65 | Dx = 1.468 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2291 reflections |
a = 6.5683 (2) Å | θ = 3.1–27.5° |
b = 6.7921 (2) Å | µ = 0.35 mm−1 |
c = 22.4418 (6) Å | T = 120 K |
β = 94.206 (2)° | Lath, colourless |
V = 998.49 (5) Å3 | 0.42 × 0.24 × 0.10 mm |
Z = 4 | |
Data collection top Bruker–Nonius 95mm CCD camera on κ goniostat diffractometer | 2291 independent reflections |
Radiation source: Bruker–Nonius FR91 rotating anode | 1995 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
φ and ω scans | h = −8→8 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −8→8 |
Tmin = 0.866, Tmax = 0.966 | l = −28→29 |
10853 measured reflections | |
Refinement top Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.037P)2 + 0.5856P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
2289 reflections | Δρmax = 0.31 e Å−3 |
137 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.011 (2) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Cl5 | 0.76255 (6) | 0.36211 (5) | 0.624349 (15) | 0.02455 (13) | |
O4 | 0.74674 (16) | 0.36571 (16) | 0.42194 (4) | 0.0228 (2) | |
N1 | 0.76095 (17) | 0.73981 (17) | 0.59171 (5) | 0.0162 (3) | |
N2 | 0.75951 (18) | 0.86419 (18) | 0.54330 (5) | 0.0187 (3) | |
C3 | 0.7526 (2) | 0.7469 (2) | 0.49587 (6) | 0.0174 (3) | |
C4 | 0.7505 (2) | 0.5448 (2) | 0.51250 (6) | 0.0154 (3) | |
C5 | 0.7562 (2) | 0.5510 (2) | 0.57448 (6) | 0.0157 (3) | |
C11 | 0.7702 (2) | 0.8177 (2) | 0.65140 (6) | 0.0165 (3) | |
C12 | 0.5997 (2) | 0.8051 (2) | 0.68381 (6) | 0.0221 (3) | |
C13 | 0.6118 (2) | 0.8772 (2) | 0.74201 (7) | 0.0258 (3) | |
C14 | 0.7905 (2) | 0.9625 (2) | 0.76634 (6) | 0.0228 (3) | |
C15 | 0.9595 (2) | 0.9760 (2) | 0.73277 (6) | 0.0207 (3) | |
C16 | 0.9504 (2) | 0.9021 (2) | 0.67492 (6) | 0.0179 (3) | |
C31 | 0.7486 (3) | 0.8339 (2) | 0.43451 (6) | 0.0253 (3) | |
C41 | 0.7478 (2) | 0.3679 (2) | 0.47649 (6) | 0.0180 (3) | |
H12 | 0.4767 | 0.7485 | 0.6667 | 0.026* | |
H13 | 0.4968 | 0.8678 | 0.7652 | 0.031* | |
H14 | 0.7976 | 1.0119 | 0.8060 | 0.027* | |
H15 | 1.0815 | 1.0359 | 0.7494 | 0.025* | |
H16 | 1.0659 | 0.9094 | 0.6519 | 0.022* | |
H31A | 0.7515 | 0.9778 | 0.4374 | 0.038* | 0.50 |
H31B | 0.6237 | 0.7925 | 0.4113 | 0.038* | 0.50 |
H31C | 0.8679 | 0.7882 | 0.4146 | 0.038* | 0.50 |
H31D | 0.7439 | 0.7279 | 0.4048 | 0.038* | 0.50 |
H31E | 0.8717 | 0.9132 | 0.4309 | 0.038* | 0.50 |
H31F | 0.6275 | 0.9174 | 0.4276 | 0.038* | 0.50 |
H41 | 0.7467 | 0.2449 | 0.4966 | 0.022* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl5 | 0.0400 (2) | 0.0170 (2) | 0.01678 (19) | 0.00039 (15) | 0.00269 (14) | 0.00238 (13) |
O4 | 0.0258 (5) | 0.0266 (6) | 0.0159 (5) | −0.0007 (4) | 0.0003 (4) | −0.0060 (4) |
N1 | 0.0203 (6) | 0.0159 (6) | 0.0124 (5) | −0.0006 (5) | 0.0009 (4) | 0.0001 (4) |
N2 | 0.0256 (6) | 0.0164 (6) | 0.0144 (5) | −0.0007 (5) | 0.0022 (4) | 0.0018 (4) |
C3 | 0.0183 (7) | 0.0189 (7) | 0.0150 (6) | −0.0007 (6) | 0.0018 (5) | −0.0009 (5) |
C4 | 0.0140 (6) | 0.0166 (7) | 0.0156 (6) | −0.0009 (5) | 0.0006 (5) | −0.0010 (5) |
C5 | 0.0157 (6) | 0.0158 (7) | 0.0156 (6) | −0.0010 (5) | 0.0008 (5) | 0.0003 (5) |
C11 | 0.0236 (7) | 0.0138 (7) | 0.0122 (6) | 0.0010 (5) | 0.0005 (5) | −0.0007 (5) |
C12 | 0.0214 (7) | 0.0251 (8) | 0.0197 (7) | −0.0021 (6) | 0.0020 (5) | −0.0049 (6) |
C13 | 0.0263 (8) | 0.0305 (9) | 0.0216 (7) | 0.0002 (7) | 0.0081 (6) | −0.0053 (6) |
C14 | 0.0324 (8) | 0.0206 (8) | 0.0153 (6) | 0.0025 (6) | 0.0013 (6) | −0.0048 (6) |
C15 | 0.0262 (7) | 0.0165 (7) | 0.0185 (7) | −0.0022 (6) | −0.0040 (5) | −0.0002 (5) |
C16 | 0.0221 (7) | 0.0153 (7) | 0.0165 (6) | −0.0008 (6) | 0.0018 (5) | 0.0022 (5) |
C31 | 0.0374 (9) | 0.0237 (8) | 0.0149 (7) | −0.0008 (7) | 0.0023 (6) | 0.0009 (6) |
C41 | 0.0166 (7) | 0.0182 (7) | 0.0192 (7) | −0.0006 (6) | 0.0006 (5) | −0.0018 (5) |
Geometric parameters (Å, º) top N1—N2 | 1.3759 (16) | C13—H13 | 0.95 |
N2—C3 | 1.3276 (18) | C14—C15 | 1.389 (2) |
C3—C4 | 1.423 (2) | C14—H14 | 0.95 |
C4—C5 | 1.3892 (18) | C15—C16 | 1.3889 (19) |
C5—N1 | 1.3394 (18) | C15—H15 | 0.95 |
N1—C11 | 1.4372 (17) | C16—H16 | 0.95 |
C4—C41 | 1.4471 (19) | C3—C31 | 1.4969 (19) |
C41—O4 | 1.2239 (17) | C31—H31A | 0.98 |
C5—Cl5 | 1.7009 (14) | C31—H31B | 0.98 |
C11—C12 | 1.382 (2) | C31—H31C | 0.98 |
C11—C16 | 1.385 (2) | C31—H31D | 0.98 |
C12—C13 | 1.392 (2) | C31—H31E | 0.98 |
C12—H12 | 0.95 | C31—H31F | 0.98 |
C13—C14 | 1.385 (2) | C41—H41 | 0.95 |
| | | |
C5—N1—N2 | 111.17 (11) | C3—C31—H31C | 109.5 |
C5—N1—C11 | 128.32 (11) | H31A—C31—H31C | 109.5 |
N2—N1—C11 | 120.50 (11) | H31B—C31—H31C | 109.5 |
C12—C11—C16 | 121.87 (13) | C3—C31—H31D | 109.5 |
C12—C11—N1 | 119.16 (12) | H31A—C31—H31D | 141.1 |
C16—C11—N1 | 118.97 (12) | H31B—C31—H31D | 56.3 |
C11—C12—C13 | 118.65 (14) | H31C—C31—H31D | 56.3 |
C11—C12—H12 | 120.7 | C3—C31—H31E | 109.5 |
C13—C12—H12 | 120.7 | H31A—C31—H31E | 56.3 |
C14—C13—C12 | 120.37 (14) | H31B—C31—H31E | 141.1 |
C14—C13—H13 | 119.8 | H31C—C31—H31E | 56.3 |
C12—C13—H13 | 119.8 | H31D—C31—H31E | 109.5 |
C13—C14—C15 | 120.11 (13) | C3—C31—H31F | 109.5 |
C13—C14—H14 | 119.9 | H31A—C31—H31F | 56.3 |
C15—C14—H14 | 119.9 | H31B—C31—H31F | 56.3 |
C16—C15—C14 | 120.11 (13) | H31C—C31—H31F | 141.1 |
C16—C15—H15 | 119.9 | H31D—C31—H31F | 109.5 |
C14—C15—H15 | 119.9 | H31E—C31—H31F | 109.5 |
C11—C16—C15 | 118.88 (13) | C5—C4—C3 | 103.49 (12) |
C11—C16—H16 | 120.6 | C5—C4—C41 | 125.64 (13) |
C15—C16—H16 | 120.6 | C3—C4—C41 | 130.86 (12) |
C3—N2—N1 | 105.22 (11) | O4—C41—C4 | 124.60 (13) |
N2—C3—C4 | 111.66 (12) | O4—C41—H41 | 117.7 |
N2—C3—C31 | 119.86 (13) | C4—C41—H41 | 117.7 |
C4—C3—C31 | 128.48 (12) | N1—C5—C4 | 108.45 (12) |
C3—C31—H31A | 109.5 | N1—C5—Cl5 | 122.23 (10) |
C3—C31—H31B | 109.5 | C4—C5—Cl5 | 129.31 (11) |
H31A—C31—H31B | 109.5 | | |
| | | |
C5—N1—C11—C12 | −72.01 (19) | N1—N2—C3—C31 | 179.84 (12) |
N2—N1—C11—C12 | 109.18 (15) | N2—C3—C4—C5 | 0.17 (16) |
C5—N1—C11—C16 | 107.61 (17) | C31—C3—C4—C5 | 180.00 (14) |
N2—N1—C11—C16 | −71.21 (17) | N2—C3—C4—C41 | −178.57 (13) |
C16—C11—C12—C13 | −1.0 (2) | C31—C3—C4—C41 | 1.3 (2) |
N1—C11—C12—C13 | 178.63 (13) | C5—C4—C41—O4 | −178.50 (13) |
C11—C12—C13—C14 | 1.1 (2) | C3—C4—C41—O4 | 0.0 (2) |
C12—C13—C14—C15 | −0.3 (2) | N2—N1—C5—C4 | −0.25 (15) |
C13—C14—C15—C16 | −0.7 (2) | C11—N1—C5—C4 | −179.15 (13) |
C12—C11—C16—C15 | 0.1 (2) | N2—N1—C5—Cl5 | 178.44 (9) |
N1—C11—C16—C15 | −179.54 (12) | C11—N1—C5—Cl5 | −0.5 (2) |
C14—C15—C16—C11 | 0.8 (2) | C3—C4—C5—N1 | 0.05 (15) |
C5—N1—N2—C3 | 0.35 (15) | C41—C4—C5—N1 | 178.88 (12) |
C11—N1—N2—C3 | 179.35 (12) | C3—C4—C5—Cl5 | −178.52 (11) |
N1—N2—C3—C4 | −0.31 (15) | C41—C4—C5—Cl5 | 0.3 (2) |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12···O4i | 0.95 | 2.51 | 3.371 (2) | 151 |
C15—H15···Cgii | 0.95 | 2.72 | 3.498 (2) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, y+1/2, −z+3/2. |
Acknowledgements
X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and HS thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Paul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827–3829. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890