organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-methyl-1-phenyl-1H-pyrazole-4-carb­aldehyde: sheets built from C—H⋯O and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 11 March 2005; accepted 14 March 2005; online 25 March 2005)

Molecules of the title compound, C11H9ClN2O, are linked into sheets by a combination of one C—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond.

Comment

The title compound, (I[link]), was prepared under Vilsmeyer conditions in which chlorination of C5 occurs in addition to the expected formyl­ation, giving a versatile intermediate for the synthesis of fused pyrazolo heterocycles via cyclo­condensation reactions (Paul et al., 2001[Paul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827-3829.]).[link]

[Scheme 1]

The aldehydic fragment is almost coplanar with the adjacent pyrazole ring, but the two ring planes are inclined at 71.3 (2)° (Table 1[link]). Within the pyrazole­carb­aldehyde portion of the mol­ecule, the bonds N1—C5 and C4—C41 are both short for their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), while bonds C4—C5 and C41—O4 are both long for their types, suggesting some contribution to the overall molecular–electronic structure from the charge-separated form (Ia)[link] (see scheme[link]).

The mol­ecules of (I[link]) are linked into sheets by a combination of one C—H⋯O hydrogen bond and one C—H⋯π(arene) hydrogen bond (Table 2[link]); each of these hydrogen bonds generates a characteristic simple substructure and the sheet formation is most readily analysed in terms of these two substructures. In the first substructure, aryl atom C12 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to aldehydic atom O4 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(16) ring (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) centred at ([1\over2], [1\over2], [1\over2]) (Fig. 2[link]). In the second substructure, aryl atom C15 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to the ring C11–C16 in the mol­ecule at (2 − x, [1\over2] + y, [3\over2] − z), so forming a chain running parallel to the [010] direction and generated by the 21 screw axis along (1, y, [3\over4]) (Fig. 3[link]). Each R22(16) dimer thus acts as a double donor and a double acceptor of C—H⋯π(arene) hydrogen bonds, such that the dimer centred at ([1\over2], [1\over2], [1\over2]) acts as donor to the dimers centred at ([3\over2], 1, 1) and (−[1\over2], 0, 0) and as acceptor from the dimers centred at ([3\over2], 0, 1) and (−[1\over2], 1, 0). In this manner, a sheet parallel to (10[\overline 2]) is formed (Fig. 4[link]); taking the R22(16) dimers as the nodes of the resulting net, this is then of (6,3)-type. However, there are no direction-specific interactions between adjacent sheets.

[Figure 1]
Figure 1
The mol­ecule of compound (I[link]), showing the atom-labelling scheme. For the sake of clarity, only one set of methyl H atoms is shown; displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of compound (I[link]), showing the formation of an R22(16) ring centred at ([1\over2], [1\over2], [1\over2]). For the sake of clarity, H atoms not involved in this motif have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 3]
Figure 3
Part of the crystal structure of compound (I[link]), showing the formation of a hydrogen-bonded chain along [010]. For the sake of clarity, H atoms not involved in this motif have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 − x, [1\over2] + y, [1\over2] − z), (x, 1 + y, z) and (1 − x, −[1\over2] + y, [1\over2] − z), respectively.
[Figure 4]
Figure 4
Stereoview of part of the crystal structure of compound (I[link]), showing the formation of a (10[\overline 2]) sheet. For the sake of clarity, H atoms not involved in these motifs have been omitted.

Experimental

For the preparation of (I[link]), phospho­ryl chloride (0.35 mol, 32 ml) was added dropwise to ice-cold di­methyl­form­amide (0.16 mol, 12 ml). To this mixture was added 3-methyl-1-phenyl-5-pyrazolone (0.05 mol) and the reaction mixture was then heated under reflux for 1 h. After cooling, the reaction mixture was poured into ice-cold water (300 ml). The solid which precipitated was collected by filtration, washed with water, dried and recrystallized from ethanol to give pale-yellow crystals (m.p. 417 K) suitable for single-crystal X-ray diffraction (yield 90%). MS (70 eV) m/z (%): 221 (38), 222/220 (31/94, M+), 77 (100), 51 (98).

Crystal data
  • C11H9ClN2O

  • Mr = 220.65

  • Monoclinic, P21/c

  • a = 6.5683 (2) Å

  • b = 6.7921 (2) Å

  • c = 22.4418 (6) Å

  • β = 94.206 (2)°

  • V = 998.49 (5) Å3

  • Z = 4

  • Dx = 1.468 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2291 reflections

  • θ = 3.1–27.5°

  • μ = 0.35 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.42 × 0.24 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.866, Tmax = 0.966

  • 10 853 measured reflections

  • 2291 independent reflections

  • 1995 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 27.5°

  • h = −8 → 8

  • k = −8 → 8

  • l = −28 → 29

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.02

  • 2289 reflections

  • 137 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.037P)2 + 0.5856P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.011 (2)

Table 1
Selected geometric parameters (Å, °)

N1—N2 1.3759 (16)
N2—C3 1.3276 (18)
C3—C4 1.423 (2)
C4—C5 1.3892 (18)
C5—N1 1.3394 (18)
N1—C11 1.4372 (17)
C4—C41 1.4471 (19)
C41—O4 1.2239 (17)
C5—Cl5 1.7009 (14)
N2—N1—C11—C12 109.18 (15)
C3—C4—C41—O4 0.0 (2)

Table 2
Hydrogen-bonding geometry (Å, °)

Cg is the centroid of ring C11–C16.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O4i 0.95 2.51 3.371 (2) 151
C15—H15⋯Cgii 0.95 2.72 3.498 (2) 140
Symmetry codes: (i) 1-x,1-y,1-z; (ii) [2-x,{\script{1\over 2}}+y,{\script{3\over 2}}-z].

Two very low angle reflections ([\overline 2]02) and (01 ) were omitted from the final refinement because of partial attenuation and/or extinction.All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic and aldehyde H atoms or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The methyl group was modelled using six H-atom sites, all with occupancy 0.5.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

5-Chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C11H9ClN2OF(000) = 456
Mr = 220.65Dx = 1.468 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2291 reflections
a = 6.5683 (2) Åθ = 3.1–27.5°
b = 6.7921 (2) ŵ = 0.35 mm1
c = 22.4418 (6) ÅT = 120 K
β = 94.206 (2)°Lath, colourless
V = 998.49 (5) Å30.42 × 0.24 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
2291 independent reflections
Radiation source: Bruker–Nonius FR91 rotating anode1995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.866, Tmax = 0.966l = 2829
10853 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.037P)2 + 0.5856P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2289 reflectionsΔρmax = 0.31 e Å3
137 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl50.76255 (6)0.36211 (5)0.624349 (15)0.02455 (13)
O40.74674 (16)0.36571 (16)0.42194 (4)0.0228 (2)
N10.76095 (17)0.73981 (17)0.59171 (5)0.0162 (3)
N20.75951 (18)0.86419 (18)0.54330 (5)0.0187 (3)
C30.7526 (2)0.7469 (2)0.49587 (6)0.0174 (3)
C40.7505 (2)0.5448 (2)0.51250 (6)0.0154 (3)
C50.7562 (2)0.5510 (2)0.57448 (6)0.0157 (3)
C110.7702 (2)0.8177 (2)0.65140 (6)0.0165 (3)
C120.5997 (2)0.8051 (2)0.68381 (6)0.0221 (3)
C130.6118 (2)0.8772 (2)0.74201 (7)0.0258 (3)
C140.7905 (2)0.9625 (2)0.76634 (6)0.0228 (3)
C150.9595 (2)0.9760 (2)0.73277 (6)0.0207 (3)
C160.9504 (2)0.9021 (2)0.67492 (6)0.0179 (3)
C310.7486 (3)0.8339 (2)0.43451 (6)0.0253 (3)
C410.7478 (2)0.3679 (2)0.47649 (6)0.0180 (3)
H120.47670.74850.66670.026*
H130.49680.86780.76520.031*
H140.79761.01190.80600.027*
H151.08151.03590.74940.025*
H161.06590.90940.65190.022*
H31A0.75150.97780.43740.038*0.50
H31B0.62370.79250.41130.038*0.50
H31C0.86790.78820.41460.038*0.50
H31D0.74390.72790.40480.038*0.50
H31E0.87170.91320.43090.038*0.50
H31F0.62750.91740.42760.038*0.50
H410.74670.24490.49660.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl50.0400 (2)0.0170 (2)0.01678 (19)0.00039 (15)0.00269 (14)0.00238 (13)
O40.0258 (5)0.0266 (6)0.0159 (5)0.0007 (4)0.0003 (4)0.0060 (4)
N10.0203 (6)0.0159 (6)0.0124 (5)0.0006 (5)0.0009 (4)0.0001 (4)
N20.0256 (6)0.0164 (6)0.0144 (5)0.0007 (5)0.0022 (4)0.0018 (4)
C30.0183 (7)0.0189 (7)0.0150 (6)0.0007 (6)0.0018 (5)0.0009 (5)
C40.0140 (6)0.0166 (7)0.0156 (6)0.0009 (5)0.0006 (5)0.0010 (5)
C50.0157 (6)0.0158 (7)0.0156 (6)0.0010 (5)0.0008 (5)0.0003 (5)
C110.0236 (7)0.0138 (7)0.0122 (6)0.0010 (5)0.0005 (5)0.0007 (5)
C120.0214 (7)0.0251 (8)0.0197 (7)0.0021 (6)0.0020 (5)0.0049 (6)
C130.0263 (8)0.0305 (9)0.0216 (7)0.0002 (7)0.0081 (6)0.0053 (6)
C140.0324 (8)0.0206 (8)0.0153 (6)0.0025 (6)0.0013 (6)0.0048 (6)
C150.0262 (7)0.0165 (7)0.0185 (7)0.0022 (6)0.0040 (5)0.0002 (5)
C160.0221 (7)0.0153 (7)0.0165 (6)0.0008 (6)0.0018 (5)0.0022 (5)
C310.0374 (9)0.0237 (8)0.0149 (7)0.0008 (7)0.0023 (6)0.0009 (6)
C410.0166 (7)0.0182 (7)0.0192 (7)0.0006 (6)0.0006 (5)0.0018 (5)
Geometric parameters (Å, º) top
N1—N21.3759 (16)C13—H130.95
N2—C31.3276 (18)C14—C151.389 (2)
C3—C41.423 (2)C14—H140.95
C4—C51.3892 (18)C15—C161.3889 (19)
C5—N11.3394 (18)C15—H150.95
N1—C111.4372 (17)C16—H160.95
C4—C411.4471 (19)C3—C311.4969 (19)
C41—O41.2239 (17)C31—H31A0.98
C5—Cl51.7009 (14)C31—H31B0.98
C11—C121.382 (2)C31—H31C0.98
C11—C161.385 (2)C31—H31D0.98
C12—C131.392 (2)C31—H31E0.98
C12—H120.95C31—H31F0.98
C13—C141.385 (2)C41—H410.95
C5—N1—N2111.17 (11)C3—C31—H31C109.5
C5—N1—C11128.32 (11)H31A—C31—H31C109.5
N2—N1—C11120.50 (11)H31B—C31—H31C109.5
C12—C11—C16121.87 (13)C3—C31—H31D109.5
C12—C11—N1119.16 (12)H31A—C31—H31D141.1
C16—C11—N1118.97 (12)H31B—C31—H31D56.3
C11—C12—C13118.65 (14)H31C—C31—H31D56.3
C11—C12—H12120.7C3—C31—H31E109.5
C13—C12—H12120.7H31A—C31—H31E56.3
C14—C13—C12120.37 (14)H31B—C31—H31E141.1
C14—C13—H13119.8H31C—C31—H31E56.3
C12—C13—H13119.8H31D—C31—H31E109.5
C13—C14—C15120.11 (13)C3—C31—H31F109.5
C13—C14—H14119.9H31A—C31—H31F56.3
C15—C14—H14119.9H31B—C31—H31F56.3
C16—C15—C14120.11 (13)H31C—C31—H31F141.1
C16—C15—H15119.9H31D—C31—H31F109.5
C14—C15—H15119.9H31E—C31—H31F109.5
C11—C16—C15118.88 (13)C5—C4—C3103.49 (12)
C11—C16—H16120.6C5—C4—C41125.64 (13)
C15—C16—H16120.6C3—C4—C41130.86 (12)
C3—N2—N1105.22 (11)O4—C41—C4124.60 (13)
N2—C3—C4111.66 (12)O4—C41—H41117.7
N2—C3—C31119.86 (13)C4—C41—H41117.7
C4—C3—C31128.48 (12)N1—C5—C4108.45 (12)
C3—C31—H31A109.5N1—C5—Cl5122.23 (10)
C3—C31—H31B109.5C4—C5—Cl5129.31 (11)
H31A—C31—H31B109.5
C5—N1—C11—C1272.01 (19)N1—N2—C3—C31179.84 (12)
N2—N1—C11—C12109.18 (15)N2—C3—C4—C50.17 (16)
C5—N1—C11—C16107.61 (17)C31—C3—C4—C5180.00 (14)
N2—N1—C11—C1671.21 (17)N2—C3—C4—C41178.57 (13)
C16—C11—C12—C131.0 (2)C31—C3—C4—C411.3 (2)
N1—C11—C12—C13178.63 (13)C5—C4—C41—O4178.50 (13)
C11—C12—C13—C141.1 (2)C3—C4—C41—O40.0 (2)
C12—C13—C14—C150.3 (2)N2—N1—C5—C40.25 (15)
C13—C14—C15—C160.7 (2)C11—N1—C5—C4179.15 (13)
C12—C11—C16—C150.1 (2)N2—N1—C5—Cl5178.44 (9)
N1—C11—C16—C15179.54 (12)C11—N1—C5—Cl50.5 (2)
C14—C15—C16—C110.8 (2)C3—C4—C5—N10.05 (15)
C5—N1—N2—C30.35 (15)C41—C4—C5—N1178.88 (12)
C11—N1—N2—C3179.35 (12)C3—C4—C5—Cl5178.52 (11)
N1—N2—C3—C40.31 (15)C41—C4—C5—Cl50.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O4i0.952.513.371 (2)151
C15—H15···Cgii0.952.723.498 (2)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and HS thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaul, S., Gupta, M., Gupta, R. & Loupy, A. (2001). Tetrahedron Lett. 42, 3827–3829.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds