metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chloro-bis­{chloro­[3,5-di­methyl-1-(thio­carbamoyl)­pyrazole-κ2N2,S]­cadmium(II)}1 1

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia and Montenegro
*Correspondence e-mail: ivana.radosavljevic@durham.ac.uk

(Received 17 February 2005; accepted 25 February 2005; online 4 March 2005)

The crystal structure of the title compound, [Cd2Cl4(C6H9N3S)2], has been determined. The compound is isomorphous with the previously reported CuII and CoII complexes. It is centrosymmetric and contains binuclear molecular units with five-coordinate Cd atoms, doubly bridged by Cl atoms. The structure is stabilized by a two-dimensional network of hydrogen bonds involving the terminal Cl atoms as acceptors and thio­carbamoyl group N atoms as donors.

Comment

The complex of 3,5-di­methyl-1-(thio­carbamoyl)­pyrazole with cadmium chloride was obtained as a part of our systematic studies on pyrazole-based complexes (Jaćimović et al., 1999[Jaćimović, Ž. K., Tomić, Z. D., Bogdanović, G. A., Iveges, E. Z. & Leovac, V. M. (1999). Acta Cryst. C55, 1769-1771.]; Tomić et al., 2000[Tomić, Z. D., Jaćimović, Ž. K., Leovac, V. M. & Cesljevic, V. I. (2000). Acta Cryst. C56, 777-779.]; Mészáros Szécsényi et al., 2001[Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Z. K., Cešljevic, V. I., Kovács, A., Pokol, G. & Gal, S. (2001). J. Therm. Anal. Calorim. 63, 723-732.]; Mészáros Szécsényi, Leovac, Češljević et al., 2003[Mészáros Szécsényi, K., Leovac, V. M., Češljević, V. I., Kovács, A., Pokol, G., Argay, Gy., Kálmán, A., Bogdanović, G. A., Jaćimović, Ž. K. & Spasojević-de Biré, A. (2003). Inorg. Chim. Acta, 353, 253-262.]; Jaćimović et al., 2003[Jaćimović, Ž. K., Giester, G., Tomic, Z. D. & Leovac, V. M. (2003). Acta Cryst. C59, m381-m383.]). The ligand 3,5-di­methyl-1-(thio­carbamoyl)­pyrazole, L, was synthesized by a reaction of thio­semicarbazide with acetyl­acetone in an acidic aqueous solution and its crystal structure was recently reported (Kovács et al., 2005[Kovács, A., Nemcsok, D., Pokol, G., Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Ž. K., Radosavljević Evans, I., Howard, J. A. K., Tomić, Z. D. & Giester, G. (2005). New J. Chem. Submitted.]).

The complexing ability of L was tested against a number of transition metal ions. The ligand has three potential donor atoms: the nitro­gen of the pyrazole ring, the amino N atom and the S atom of the thio­carbamoyl group. In principle, it can take part in coordination as a bi- or monodentate neutral species (Radosavljevic Evans, Howard, Mészáros Szécsényi et al., 2004[Radosavljević Evans, I., Howard, J. A. K., Mészáros Szécsényi, K., Leovac, V. M. & Jaćimović, Ž. K. (2004). J. Coord. Chem. 57, 469-476.]; Radosavljević Evans, Howard, Howard et al., 2004[Radosavljević Evans, I., Howard, J. A. K., Howard, L. E. M., Evans, J. S. O., Jaćimović, Ž. K., Jevtović, V. S. & Leovac, V. M. (2004). Inorg. Chim. Acta, 357, 4528-4536.]; Kovács et al., 2005[Kovács, A., Nemcsok, D., Pokol, G., Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Ž. K., Radosavljević Evans, I., Howard, J. A. K., Tomić, Z. D. & Giester, G. (2005). New J. Chem. Submitted.]). In addition, there is a possibility of the amino-group deprotonation, resulting in complexes of non-electrolytic character (Mészáros Szécsényi et al., 2003[Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Ž. K. & Pokol, G. (2003). J. Therm. Anal. Calorim. 74, 943-956.]; Radosavljević Evans, Howard, Mészáros Szécsényi et al., 2004[Radosavljević Evans, I., Howard, J. A. K., Mészáros Szécsényi, K., Leovac, V. M. & Jaćimović, Ž. K. (2004). J. Coord. Chem. 57, 469-476.]). The molecular structure of the coordination complex formed depends primarily on the characteristic bonding preferences of the central metal ion and the nature of the anion.[link]

[Scheme 1]

The crystal structure of the title compound, Cd2L2Cl4, (I[link]), consists of discrete neutral binuclear units (Fig. 1[link]). The Cd centres are doubly bridged by Cl atoms, with a Cd⋯Cd distance of 3.763 (1) Å. The mol­ecule is centrosymmetric, but the bridges within the Cd2Cl2 core are asymmetric, with Cd—Cl distances of 2.5393 (7) and 2.6174 (7) Å, and a bridging angle of 93.70 (2)°.

The Cd atoms are five-coordinate. Ligand L acts as a neutral bidentate ligand, coordinating through the N atom of the pyrazole ring and the thio­carbamoyl S atom. The Cd coordination is completed by two bridging and one terminal Cl atom. Pentacoordinate geometry can be described using the distortion parameter τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), where τ = 1 corresponds to an ideal trigonal bipyramid and τ = 0 to an ideal square pyramid. In the case of the title complex, τ = 0.69, suggesting that the coordination of the Cd atom is best described as distorted trigonal bipyramidal. The degree of distortion is slightly higher than in the isomorphous CuII and CoII complexes (τ values of 0.75 and 0.77, respectively; Radosavljević Evans, Howard, Howard et al., 2004[Radosavljević Evans, I., Howard, J. A. K., Howard, L. E. M., Evans, J. S. O., Jaćimović, Ž. K., Jevtović, V. S. & Leovac, V. M. (2004). Inorg. Chim. Acta, 357, 4528-4536.]). The axial positions are occupied by a bridging Cl atom and the pyrazole nitro­gen, with a Cl—Cd—N angle of 165.20 (6)°. The ligand bite angle is 75.10 (5)°, reflecting a larger degree of departure from the right angle expected for an ideal trigonal–bipyramidal environment than in the analogous Cu and Co complexes. Both the pyrazole ring and the thio­carbamoyl group are essentially planar, and they form a dihedral angle of 19.8 (5)°. The mol­ecules are packed with the ligand pyrazole rings parallel (Fig. 2[link]). Each terminal Cl atom acts as a hydrogen-bond acceptor for thio­carbamoyl NH groups in two adjacent mol­ecules, with H⋯Cl distances of 2.34 and 2.47 Å (Table 2[link]), giving rise to a two-dimensional hydrogen-bonding network in the structure.

[Figure 1]
Figure 1
The molecular structure of (I[link]), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The suffix A corresponds to the symmetry code (−x, −y, 1 − z).
[Figure 2]
Figure 2
The packing scheme for (I); red lines represent N—H⋯Cl hydrogen bonds.

Experimental

CdCl2·H2O (0.20 g, 1 mmol) was suspended in MeOH (10 ml). 3,5–Di­methyl-1-(thio­carbamoyl)­pyrazole (0.31 g, 2 mmol) was added to the suspension. The reaction mixture was heated under reflux. After 30 min of heating, the resulting clear solution was left at room temperature. About 3 h later, the white precipitate was filtered off, washed with MeOH and air-dried (yield: 0.14 g, 41%). Needle-shaped single crystals were obtained by recrystallization from MeOH.

Crystal data
  • [Cd2Cl4(C6H9N3S)2]

  • Mr = 677.06

  • Triclinic, [P\overline 1]

  • a = 7.7442 (11) Å

  • b = 8.6866 (12) Å

  • c = 8.7559 (12) Å

  • α = 90.213 (3)°

  • β = 110.427 (3)°

  • γ = 103.074 (3)°

  • V = 535.46 (13) Å3

  • Z = 1

  • Dx = 2.100 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3323 reflections

  • θ = 4.8–60.1°

  • μ = 2.69 mm−1

  • T = 150 K

  • Needle, white

  • 0.10 × 0.04 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.841, Tmax = 0.900

  • 6938 measured reflections

  • 3102 independent reflections

  • 2669 reflections with I > 2σ(I)

  • Rint = 0.018

  • θmax = 30.1°

  • h = −10 → 10

  • k = −12 → 12

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.053

  • S = 0.91

  • 2669 reflections

  • 118 parameters

  • H-atom parameters not refined

  • w = [1 − (FoFc)2/36σ2(F)]2/[2.82T0(x) + 3.29T1(x) + 1.36T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.])

  • (Δ/σ)max = 0.001

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—Cl2i 2.6174 (7)
Cd1—Cl2 2.5393 (7)
Cd1—S3 2.5768 (7)
Cd1—Cl4 2.4598 (7)
Cd1—N5 2.343 (2)
S3—C8 1.701 (3)
N5—N7 1.383 (3)
N5—C12 1.313 (3)
N6—C8 1.312 (3)
N7—C8 1.393 (3)
N7—C10 1.396 (3)
C9—C10 1.363 (4)
C9—C12 1.416 (4)
C10—C13 1.492 (4)
C11—C12 1.494 (4)
Cl2i—Cd1—Cl2 86.30 (2)
Cl2i—Cd1—S3 94.26 (3)
Cl2—Cd1—S3 120.31 (3)
Cl2i—Cd1—Cl4 98.40 (2)
Cl2—Cd1—Cl4 115.31 (2)
S3—Cd1—Cl4 123.50 (2)
Cl2i—Cd1—N5 165.20 (6)
Cl2—Cd1—N5 90.24 (6)
S3—Cd1—N5 75.10 (5)
Cl4—Cd1—N5 96.09 (6)
Cd1i—Cl2—Cd1 93.70 (2)
Cd1—S3—C8 101.41 (9)
Cd1—N5—N7 120.12 (16)
Cd1—N5—C12 131.48 (17)
N7—N5—C12 106.5 (2)
N5—N7—C8 118.6 (2)
N5—N7—C10 109.9 (2)
C8—N7—C10 131.4 (2)
N7—C8—S3 122.18 (19)
N7—C8—N6 117.9 (2)
S3—C8—N6 119.9 (2)
C10—C9—C12 106.8 (2)
N7—C10—C9 106.2 (2)
N7—C10—C13 125.8 (2)
C9—C10—C13 128.0 (2)
C11—C12—C9 128.2 (2)
C11—C12—N5 121.2 (2)
C9—C12—N5 110.7 (2)
Symmetry code: (i) -x,-y,1-z.

Table 2
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H1⋯Cl4ii 1.00 2.34 3.252 (3) 151
N6—H2⋯Cl4iii 1.00 2.47 3.232 (3) 133
Symmetry codes: (ii) 1-x,-y,2-z; (iii) x,y,1+z.

H atoms were placed geometrically after each cycle and treated as riding on their carrier atoms, with N/C—H = 1.00 Å and Uiso(H) = 1.2Ueq(N,C).

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ATOMS (Dowty, 2000[Dowty, E. (2000). ATOMS. Version 5.1. Shape Software, Kingsport, TN, USA.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.

(I) top
Crystal data top
[Cd2Cl4(C6H9N3S)2]Z = 1
Mr = 677.06F(000) = 328
Triclinic, P1Dx = 2.100 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7442 (11) ÅCell parameters from 3323 reflections
b = 8.6866 (12) Åθ = 4.8–60.1°
c = 8.7559 (12) ŵ = 2.69 mm1
α = 90.213 (3)°T = 150 K
β = 110.427 (3)°Needle, white
γ = 103.074 (3)°0.10 × 0.04 × 0.04 mm
V = 535.46 (13) Å3
Data collection top
Bruker SMART APEX
diffractometer
2669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 30.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.841, Tmax = 0.900k = 1212
6938 measured reflectionsl = 1212
3102 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters not refined
wR(F2) = 0.053 w = [1-(Fo-Fc)2/36σ2(F)]2/[2.82T0(x) + 3.29T1(x) + 1.36T2(x)]
where Ti are Chebychev polynomials and x = Fc/Fmax (Watkin, 1994; Prince, 1982)
S = 0.91(Δ/σ)max = 0.001
2669 reflectionsΔρmax = 0.63 e Å3
118 parametersΔρmin = 0.65 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.21166 (3)0.09432 (2)0.68651 (2)0.0173
Cl20.09082 (9)0.16729 (8)0.50856 (8)0.0205
S30.22169 (10)0.05068 (8)0.94454 (8)0.0211
Cl40.49608 (9)0.21159 (8)0.62265 (8)0.0193
N50.2613 (3)0.2944 (3)0.8882 (3)0.0175
N60.3136 (4)0.0813 (3)1.2401 (3)0.0231
N70.2531 (3)0.2553 (3)1.0389 (3)0.0162
C80.2656 (4)0.1035 (3)1.0841 (3)0.0173
C90.2397 (4)0.5060 (3)1.0224 (3)0.0196
C100.2381 (4)0.3860 (3)1.1223 (3)0.0175
C110.2633 (4)0.5273 (3)0.7319 (3)0.0233
C120.2552 (4)0.4441 (3)0.8791 (3)0.0182
C130.2157 (4)0.3880 (3)1.2846 (3)0.0231
H10.32460.02611.27680.0209*
H20.33940.17181.32220.0209*
H30.17490.48691.29830.0301*
H40.33920.38891.37370.0294*
H50.11710.29261.28780.0294*
H60.23150.61631.04590.0241*
H70.25680.63970.74750.0285*
H80.15370.47210.63300.0285*
H90.38500.52580.71670.0285*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01818 (9)0.01946 (9)0.01484 (8)0.00495 (6)0.00638 (6)0.00165 (6)
Cl20.0203 (3)0.0195 (3)0.0210 (3)0.0074 (2)0.0049 (2)0.0008 (2)
S30.0304 (3)0.0161 (3)0.0166 (3)0.0064 (2)0.0077 (2)0.0020 (2)
Cl40.0184 (3)0.0215 (3)0.0183 (3)0.0044 (2)0.0072 (2)0.0016 (2)
N50.0220 (10)0.0173 (10)0.0140 (9)0.0049 (8)0.0075 (8)0.0033 (7)
N60.0357 (13)0.0198 (10)0.0149 (10)0.0106 (10)0.0081 (9)0.0035 (8)
N70.0175 (9)0.0169 (10)0.0139 (9)0.0041 (8)0.0053 (7)0.0021 (7)
C80.0179 (11)0.0166 (11)0.0170 (11)0.0042 (9)0.0060 (9)0.0025 (9)
C90.0203 (12)0.0178 (11)0.0222 (12)0.0066 (9)0.0082 (10)0.0026 (9)
C100.0158 (10)0.0178 (11)0.0183 (11)0.0038 (9)0.0058 (9)0.0001 (9)
C110.0273 (13)0.0211 (12)0.0226 (12)0.0068 (10)0.0098 (10)0.0078 (10)
C120.0173 (11)0.0186 (11)0.0182 (11)0.0046 (9)0.0056 (9)0.0037 (9)
C130.0305 (14)0.0221 (12)0.0210 (12)0.0080 (11)0.0135 (11)0.0019 (10)
Geometric parameters (Å, º) top
Cd1—Cl2i2.6174 (7)N7—C101.396 (3)
Cd1—Cl22.5393 (7)C9—C101.363 (4)
Cd1—S32.5768 (7)C9—C121.416 (4)
Cd1—Cl42.4598 (7)C9—H61.000
Cd1—N52.343 (2)C10—C131.492 (4)
S3—C81.701 (3)C11—C121.494 (4)
N5—N71.383 (3)C11—H71.000
N5—C121.313 (3)C11—H81.000
N6—C81.312 (3)C11—H91.000
N6—H11.000C13—H31.000
N6—H21.000C13—H41.000
N7—C81.393 (3)C13—H51.000
Cl2i—Cd1—Cl286.30 (2)S3—C8—N6119.9 (2)
Cl2i—Cd1—S394.26 (3)C10—C9—C12106.8 (2)
Cl2—Cd1—S3120.31 (3)C10—C9—H6126.568
Cl2i—Cd1—Cl498.40 (2)C12—C9—H6126.659
Cl2—Cd1—Cl4115.31 (2)N7—C10—C9106.2 (2)
S3—Cd1—Cl4123.50 (2)N7—C10—C13125.8 (2)
Cl2i—Cd1—N5165.20 (6)C9—C10—C13128.0 (2)
Cl2—Cd1—N590.24 (6)C12—C11—H7109.516
S3—Cd1—N575.10 (5)C12—C11—H8109.530
Cl4—Cd1—N596.09 (6)H7—C11—H8109.475
Cd1i—Cl2—Cd193.70 (2)C12—C11—H9109.354
Cd1—S3—C8101.41 (9)H7—C11—H9109.476
Cd1—N5—N7120.12 (16)H8—C11—H9109.477
Cd1—N5—C12131.48 (17)C11—C12—C9128.2 (2)
N7—N5—C12106.5 (2)C11—C12—N5121.2 (2)
C8—N6—H1119.986C9—C12—N5110.7 (2)
C8—N6—H2120.013C10—C13—H3106.901
H1—N6—H2120.001C10—C13—H4110.079
N5—N7—C8118.6 (2)H3—C13—H4110.121
N5—N7—C10109.9 (2)C10—C13—H5110.123
C8—N7—C10131.4 (2)H3—C13—H5110.121
N7—C8—S3122.18 (19)H4—C13—H5109.467
N7—C8—N6117.9 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H1···Cl4ii1.002.343.252 (3)151
N6—H2···Cl4iii1.002.473.232 (3)133
Symmetry codes: (ii) x+1, y, z+2; (iii) x, y, z+1.
 

Footnotes

1Transition metal complexes with pyrazole-based ligands, Part XX

Acknowledgements

This work was financed in part by the Ministry for Science and Environmental Protection of the Republic of Serbia (Project 1318 – Physicochemical, Structural and Biological Investigation of Complex Compounds). IRE thanks the EPSRC for an Academic Fellowship.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowty, E. (2000). ATOMS. Version 5.1. Shape Software, Kingsport, TN, USA.  Google Scholar
First citationJaćimović, Ž. K., Giester, G., Tomic, Z. D. & Leovac, V. M. (2003). Acta Cryst. C59, m381–m383.  CrossRef IUCr Journals Google Scholar
First citationJaćimović, Ž. K., Tomić, Z. D., Bogdanović, G. A., Iveges, E. Z. & Leovac, V. M. (1999). Acta Cryst. C55, 1769–1771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovács, A., Nemcsok, D., Pokol, G., Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Ž. K., Radosavljević Evans, I., Howard, J. A. K., Tomić, Z. D. & Giester, G. (2005). New J. Chem. Submitted.  Google Scholar
First citationMészáros Szécsényi, K., Leovac, V. M., Češljević, V. I., Kovács, A., Pokol, G., Argay, Gy., Kálmán, A., Bogdanović, G. A., Jaćimović, Ž. K. & Spasojević-de Biré, A. (2003). Inorg. Chim. Acta, 353, 253–262.  Web of Science CSD CrossRef Google Scholar
First citationMészáros Szécsényi, K., Leovac, V. M., Jaćimović, Z. K., Cešljevic, V. I., Kovács, A., Pokol, G. & Gal, S. (2001). J. Therm. Anal. Calorim. 63, 723–732.  CrossRef CAS Google Scholar
First citationMészáros Szécsényi, K., Leovac, V. M., Jaćimović, Ž. K. & Pokol, G. (2003). J. Therm. Anal. Calorim. 74, 943–956.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationRadosavljević Evans, I., Howard, J. A. K., Howard, L. E. M., Evans, J. S. O., Jaćimović, Ž. K., Jevtović, V. S. & Leovac, V. M. (2004). Inorg. Chim. Acta, 357, 4528–4536.  Web of Science CSD CrossRef CAS Google Scholar
First citationRadosavljević Evans, I., Howard, J. A. K., Mészáros Szécsényi, K., Leovac, V. M. & Jaćimović, Ž. K. (2004). J. Coord. Chem. 57, 469–476.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationTomić, Z. D., Jaćimović, Ž. K., Leovac, V. M. & Cesljevic, V. I. (2000). Acta Cryst. C56, 777–779.  CrossRef IUCr Journals Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds