metal-organic compounds
aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and bFaculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia and Montenegro
*Correspondence e-mail: ivana.radosavljevic@durham.ac.uk
The 2Cl4(C6H9N3S)2], has been determined. The compound is isomorphous with the previously reported CuII and CoII complexes. It is centrosymmetric and contains binuclear molecular units with five-coordinate Cd atoms, doubly bridged by Cl atoms. The structure is stabilized by a two-dimensional network of hydrogen bonds involving the terminal Cl atoms as acceptors and thiocarbamoyl group N atoms as donors.
of the title compound, [CdComment
The complex of 3,5-dimethyl-1-(thiocarbamoyl)pyrazole with cadmium chloride was obtained as a part of our systematic studies on pyrazole-based complexes (Jaćimović et al., 1999; Tomić et al., 2000; Mészáros Szécsényi et al., 2001; Mészáros Szécsényi, Leovac, Češljević et al., 2003; Jaćimović et al., 2003). The ligand 3,5-dimethyl-1-(thiocarbamoyl)pyrazole, L, was synthesized by a reaction of thiosemicarbazide with acetylacetone in an acidic aqueous solution and its was recently reported (Kovács et al., 2005).
The complexing ability of L was tested against a number of transition metal ions. The ligand has three potential donor atoms: the nitrogen of the pyrazole ring, the amino N atom and the S atom of the thiocarbamoyl group. In principle, it can take part in coordination as a bi- or monodentate neutral species (Radosavljevic Evans, Howard, Mészáros Szécsényi et al., 2004; Radosavljević Evans, Howard, Howard et al., 2004; Kovács et al., 2005). In addition, there is a possibility of the amino-group deprotonation, resulting in complexes of non-electrolytic character (Mészáros Szécsényi et al., 2003; Radosavljević Evans, Howard, Mészáros Szécsényi et al., 2004). The molecular structure of the coordination complex formed depends primarily on the characteristic bonding preferences of the central metal ion and the nature of the anion.
The 2L2Cl4, (I), consists of discrete neutral binuclear units (Fig. 1). The Cd centres are doubly bridged by Cl atoms, with a Cd⋯Cd distance of 3.763 (1) Å. The molecule is centrosymmetric, but the bridges within the Cd2Cl2 core are asymmetric, with Cd—Cl distances of 2.5393 (7) and 2.6174 (7) Å, and a bridging angle of 93.70 (2)°.
of the title compound, CdThe Cd atoms are five-coordinate. Ligand L acts as a neutral bidentate ligand, coordinating through the N atom of the pyrazole ring and the thiocarbamoyl S atom. The Cd coordination is completed by two bridging and one terminal Cl atom. Pentacoordinate geometry can be described using the distortion parameter τ (Addison et al., 1984), where τ = 1 corresponds to an ideal trigonal bipyramid and τ = 0 to an ideal square pyramid. In the case of the title complex, τ = 0.69, suggesting that the coordination of the Cd atom is best described as distorted trigonal bipyramidal. The degree of distortion is slightly higher than in the isomorphous CuII and CoII complexes (τ values of 0.75 and 0.77, respectively; Radosavljević Evans, Howard, Howard et al., 2004). The axial positions are occupied by a bridging Cl atom and the pyrazole nitrogen, with a Cl—Cd—N angle of 165.20 (6)°. The ligand bite angle is 75.10 (5)°, reflecting a larger degree of departure from the right angle expected for an ideal trigonal–bipyramidal environment than in the analogous Cu and Co complexes. Both the pyrazole ring and the thiocarbamoyl group are essentially planar, and they form a dihedral angle of 19.8 (5)°. The molecules are packed with the ligand pyrazole rings parallel (Fig. 2). Each terminal Cl atom acts as a hydrogen-bond acceptor for thiocarbamoyl NH groups in two adjacent molecules, with H⋯Cl distances of 2.34 and 2.47 Å (Table 2), giving rise to a two-dimensional hydrogen-bonding network in the structure.
Experimental
CdCl2·H2O (0.20 g, 1 mmol) was suspended in MeOH (10 ml). 3,5–Dimethyl-1-(thiocarbamoyl)pyrazole (0.31 g, 2 mmol) was added to the suspension. The reaction mixture was heated under reflux. After 30 min of heating, the resulting clear solution was left at room temperature. About 3 h later, the white precipitate was filtered off, washed with MeOH and air-dried (yield: 0.14 g, 41%). Needle-shaped single crystals were obtained by recrystallization from MeOH.
Crystal data
|
Refinement
|
H atoms were placed geometrically after each cycle and treated as riding on their carrier atoms, with N/C—H = 1.00 Å and Uiso(H) = 1.2Ueq(N,C).
Data collection: SMART (Bruker, 1999); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536805006173/wn6332sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805006173/wn6332Isup2.hkl
Data collection: SMART (Bruker, 1999); cell
SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.[Cd2Cl4(C6H9N3S)2] | Z = 1 |
Mr = 677.06 | F(000) = 328 |
Triclinic, P1 | Dx = 2.100 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7442 (11) Å | Cell parameters from 3323 reflections |
b = 8.6866 (12) Å | θ = 4.8–60.1° |
c = 8.7559 (12) Å | µ = 2.69 mm−1 |
α = 90.213 (3)° | T = 150 K |
β = 110.427 (3)° | Needle, white |
γ = 103.074 (3)° | 0.10 × 0.04 × 0.04 mm |
V = 535.46 (13) Å3 |
Bruker SMART APEX diffractometer | 2669 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ω scans | θmax = 30.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.841, Tmax = 0.900 | k = −12→12 |
6938 measured reflections | l = −12→12 |
3102 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters not refined |
wR(F2) = 0.053 | w = [1-(Fo-Fc)2/36σ2(F)]2/[2.82T0(x) + 3.29T1(x) + 1.36T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Watkin, 1994; Prince, 1982) |
S = 0.91 | (Δ/σ)max = 0.001 |
2669 reflections | Δρmax = 0.63 e Å−3 |
118 parameters | Δρmin = −0.65 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.21166 (3) | 0.09432 (2) | 0.68651 (2) | 0.0173 | |
Cl2 | −0.09082 (9) | 0.16729 (8) | 0.50856 (8) | 0.0205 | |
S3 | 0.22169 (10) | −0.05068 (8) | 0.94454 (8) | 0.0211 | |
Cl4 | 0.49608 (9) | 0.21159 (8) | 0.62265 (8) | 0.0193 | |
N5 | 0.2613 (3) | 0.2944 (3) | 0.8882 (3) | 0.0175 | |
N6 | 0.3136 (4) | 0.0813 (3) | 1.2401 (3) | 0.0231 | |
N7 | 0.2531 (3) | 0.2553 (3) | 1.0389 (3) | 0.0162 | |
C8 | 0.2656 (4) | 0.1035 (3) | 1.0841 (3) | 0.0173 | |
C9 | 0.2397 (4) | 0.5060 (3) | 1.0224 (3) | 0.0196 | |
C10 | 0.2381 (4) | 0.3860 (3) | 1.1223 (3) | 0.0175 | |
C11 | 0.2633 (4) | 0.5273 (3) | 0.7319 (3) | 0.0233 | |
C12 | 0.2552 (4) | 0.4441 (3) | 0.8791 (3) | 0.0182 | |
C13 | 0.2157 (4) | 0.3880 (3) | 1.2846 (3) | 0.0231 | |
H1 | 0.3246 | −0.0261 | 1.2768 | 0.0209* | |
H2 | 0.3394 | 0.1718 | 1.3222 | 0.0209* | |
H3 | 0.1749 | 0.4869 | 1.2983 | 0.0301* | |
H4 | 0.3392 | 0.3889 | 1.3737 | 0.0294* | |
H5 | 0.1171 | 0.2926 | 1.2878 | 0.0294* | |
H6 | 0.2315 | 0.6163 | 1.0459 | 0.0241* | |
H7 | 0.2568 | 0.6397 | 0.7475 | 0.0285* | |
H8 | 0.1537 | 0.4721 | 0.6330 | 0.0285* | |
H9 | 0.3850 | 0.5258 | 0.7167 | 0.0285* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01818 (9) | 0.01946 (9) | 0.01484 (8) | 0.00495 (6) | 0.00638 (6) | 0.00165 (6) |
Cl2 | 0.0203 (3) | 0.0195 (3) | 0.0210 (3) | 0.0074 (2) | 0.0049 (2) | 0.0008 (2) |
S3 | 0.0304 (3) | 0.0161 (3) | 0.0166 (3) | 0.0064 (2) | 0.0077 (2) | 0.0020 (2) |
Cl4 | 0.0184 (3) | 0.0215 (3) | 0.0183 (3) | 0.0044 (2) | 0.0072 (2) | 0.0016 (2) |
N5 | 0.0220 (10) | 0.0173 (10) | 0.0140 (9) | 0.0049 (8) | 0.0075 (8) | 0.0033 (7) |
N6 | 0.0357 (13) | 0.0198 (10) | 0.0149 (10) | 0.0106 (10) | 0.0081 (9) | 0.0035 (8) |
N7 | 0.0175 (9) | 0.0169 (10) | 0.0139 (9) | 0.0041 (8) | 0.0053 (7) | 0.0021 (7) |
C8 | 0.0179 (11) | 0.0166 (11) | 0.0170 (11) | 0.0042 (9) | 0.0060 (9) | 0.0025 (9) |
C9 | 0.0203 (12) | 0.0178 (11) | 0.0222 (12) | 0.0066 (9) | 0.0082 (10) | 0.0026 (9) |
C10 | 0.0158 (10) | 0.0178 (11) | 0.0183 (11) | 0.0038 (9) | 0.0058 (9) | 0.0001 (9) |
C11 | 0.0273 (13) | 0.0211 (12) | 0.0226 (12) | 0.0068 (10) | 0.0098 (10) | 0.0078 (10) |
C12 | 0.0173 (11) | 0.0186 (11) | 0.0182 (11) | 0.0046 (9) | 0.0056 (9) | 0.0037 (9) |
C13 | 0.0305 (14) | 0.0221 (12) | 0.0210 (12) | 0.0080 (11) | 0.0135 (11) | 0.0019 (10) |
Cd1—Cl2i | 2.6174 (7) | N7—C10 | 1.396 (3) |
Cd1—Cl2 | 2.5393 (7) | C9—C10 | 1.363 (4) |
Cd1—S3 | 2.5768 (7) | C9—C12 | 1.416 (4) |
Cd1—Cl4 | 2.4598 (7) | C9—H6 | 1.000 |
Cd1—N5 | 2.343 (2) | C10—C13 | 1.492 (4) |
S3—C8 | 1.701 (3) | C11—C12 | 1.494 (4) |
N5—N7 | 1.383 (3) | C11—H7 | 1.000 |
N5—C12 | 1.313 (3) | C11—H8 | 1.000 |
N6—C8 | 1.312 (3) | C11—H9 | 1.000 |
N6—H1 | 1.000 | C13—H3 | 1.000 |
N6—H2 | 1.000 | C13—H4 | 1.000 |
N7—C8 | 1.393 (3) | C13—H5 | 1.000 |
Cl2i—Cd1—Cl2 | 86.30 (2) | S3—C8—N6 | 119.9 (2) |
Cl2i—Cd1—S3 | 94.26 (3) | C10—C9—C12 | 106.8 (2) |
Cl2—Cd1—S3 | 120.31 (3) | C10—C9—H6 | 126.568 |
Cl2i—Cd1—Cl4 | 98.40 (2) | C12—C9—H6 | 126.659 |
Cl2—Cd1—Cl4 | 115.31 (2) | N7—C10—C9 | 106.2 (2) |
S3—Cd1—Cl4 | 123.50 (2) | N7—C10—C13 | 125.8 (2) |
Cl2i—Cd1—N5 | 165.20 (6) | C9—C10—C13 | 128.0 (2) |
Cl2—Cd1—N5 | 90.24 (6) | C12—C11—H7 | 109.516 |
S3—Cd1—N5 | 75.10 (5) | C12—C11—H8 | 109.530 |
Cl4—Cd1—N5 | 96.09 (6) | H7—C11—H8 | 109.475 |
Cd1i—Cl2—Cd1 | 93.70 (2) | C12—C11—H9 | 109.354 |
Cd1—S3—C8 | 101.41 (9) | H7—C11—H9 | 109.476 |
Cd1—N5—N7 | 120.12 (16) | H8—C11—H9 | 109.477 |
Cd1—N5—C12 | 131.48 (17) | C11—C12—C9 | 128.2 (2) |
N7—N5—C12 | 106.5 (2) | C11—C12—N5 | 121.2 (2) |
C8—N6—H1 | 119.986 | C9—C12—N5 | 110.7 (2) |
C8—N6—H2 | 120.013 | C10—C13—H3 | 106.901 |
H1—N6—H2 | 120.001 | C10—C13—H4 | 110.079 |
N5—N7—C8 | 118.6 (2) | H3—C13—H4 | 110.121 |
N5—N7—C10 | 109.9 (2) | C10—C13—H5 | 110.123 |
C8—N7—C10 | 131.4 (2) | H3—C13—H5 | 110.121 |
N7—C8—S3 | 122.18 (19) | H4—C13—H5 | 109.467 |
N7—C8—N6 | 117.9 (2) |
Symmetry code: (i) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N6—H1···Cl4ii | 1.00 | 2.34 | 3.252 (3) | 151 |
N6—H2···Cl4iii | 1.00 | 2.47 | 3.232 (3) | 133 |
Symmetry codes: (ii) −x+1, −y, −z+2; (iii) x, y, z+1. |
Footnotes
1Transition metal complexes with pyrazole-based ligands, Part XX
Acknowledgements
This work was financed in part by the Ministry for Science and Environmental Protection of the Republic of Serbia (Project 1318 – Physicochemical, Structural and Biological Investigation of Complex Compounds). IRE thanks the EPSRC for an Academic Fellowship.
References
Addison, A. W., Rao, T. N., Reedijk, J., Vanrijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (1999). SMART (Version 5.049) and SAINT (Version 5.00). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dowty, E. (2000). ATOMS. Version 5.1. Shape Software, Kingsport, TN, USA. Google Scholar
Jaćimović, Ž. K., Giester, G., Tomic, Z. D. & Leovac, V. M. (2003). Acta Cryst. C59, m381–m383. CrossRef IUCr Journals Google Scholar
Jaćimović, Ž. K., Tomić, Z. D., Bogdanović, G. A., Iveges, E. Z. & Leovac, V. M. (1999). Acta Cryst. C55, 1769–1771. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kovács, A., Nemcsok, D., Pokol, G., Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Ž. K., Radosavljević Evans, I., Howard, J. A. K., Tomić, Z. D. & Giester, G. (2005). New J. Chem. Submitted. Google Scholar
Mészáros Szécsényi, K., Leovac, V. M., Češljević, V. I., Kovács, A., Pokol, G., Argay, Gy., Kálmán, A., Bogdanović, G. A., Jaćimović, Ž. K. & Spasojević-de Biré, A. (2003). Inorg. Chim. Acta, 353, 253–262. Web of Science CSD CrossRef Google Scholar
Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Z. K., Cešljevic, V. I., Kovács, A., Pokol, G. & Gal, S. (2001). J. Therm. Anal. Calorim. 63, 723–732. CrossRef CAS Google Scholar
Mészáros Szécsényi, K., Leovac, V. M., Jaćimović, Ž. K. & Pokol, G. (2003). J. Therm. Anal. Calorim. 74, 943–956. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Radosavljević Evans, I., Howard, J. A. K., Howard, L. E. M., Evans, J. S. O., Jaćimović, Ž. K., Jevtović, V. S. & Leovac, V. M. (2004). Inorg. Chim. Acta, 357, 4528–4536. Web of Science CSD CrossRef CAS Google Scholar
Radosavljević Evans, I., Howard, J. A. K., Mészáros Szécsényi, K., Leovac, V. M. & Jaćimović, Ž. K. (2004). J. Coord. Chem. 57, 469–476. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Tomić, Z. D., Jaćimović, Ž. K., Leovac, V. M. & Cesljevic, V. I. (2000). Acta Cryst. C56, 777–779. CrossRef IUCr Journals Google Scholar
Watkin, D. J. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.