organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo­aniline at 100 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Glasgow, University Avenue, Glasgow G12 8QQ, Scotland, and bSchool of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh EH9 3JJ, Scotland
*Correspondence e-mail: a.parkin@chem.gla.ac.uk

(Received 3 February 2005; accepted 7 March 2005; online 25 March 2005)

In the crystal structure of the title compound, C6H6IN, each 2-iodo­aniline mol­ecule forms part of three extended helices. Each helix exhibits a different inter­molecular inter­action, viz. weak N—H⋯N hydrogen bonds with an H⋯N distance of 2.31 (11) Å, I⋯I inter­actions of 3.7986 (15) Å and C—H⋯π contact distances of 2.53 Å.

Comment

Despite their simple structure and ready availability, few crystal structures of mol­ecular complexes involving 2-halo­anilines have been previously determined, with only eight examples in version 5.25 of the Cambridge Structural Database (CSD; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). In addition, the mol­ecular structure of 2-fluoro­aniline has been investigated by gas-phase electron diffraction (Csákvái & Hargittai, 1992[Csákvái, E. & Hargittai, I. (1992). J. Phys. Chem. 96, 5837-5842.]). Four of these crystal structures contain 2-iodo­aniline or the protonated 2-iodo­anilinium cation. In one study (CSD refcode ZOJYAY; Casas et al., 1996[Casas, J. M., Falvello, L. R., Fornies, J. & Martin, A. (1996). Inorg. Chem. 35, 56-62.]), the iodo­aniline acts as a chelating ligand to a Pt metal centre (coordinated through the N and I atoms), whereas in the other three, the iodo­aniline is in protonated ionic complexes, one as the halide salt, 2-iodo­anilinium iodide (CSD refcode UFAJIU; Gray & Jones, 2002[Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 61-72.]), and perhaps most notably in two polymorphs of 2-iodo­anilinium picrate (CSD refcodes ZEDPON and ZEDPON01; Tanaka et al., 1994[Tanaka, M., Matsui, H., Mizoguchi, J. & Kashino, S. (1994). Bull. Chem. Soc. Jpn, 67, 1572-1579.]). The structure of the title compound, (I)[link], presented in this paper is thus the first example to be published of a crystal structure of the non-coordinated neutral compound, a fact that can probably be attributed to the low melting points of this family of materials (2-iodo­aniline melts just above room temperature).

[Scheme 1]

The geometry of the amino N atom (N1) in the crystal structure of (I)[link] is observed to be slightly pyramidal in character (Fig. 1[link]), with the sum of the angles around N1 equal to about 347°, similar to the value observed in the gas-phase electron diffraction structure of 2-fluoro­aniline (Csákvái & Hargittai, 1992[Csákvái, E. & Hargittai, I. (1992). J. Phys. Chem. 96, 5837-5842.]). Although there is obviously a large uncertainty in these values because of the presence of the I atom, the non-planarity of N1 is reasonable in terms of the hydrogen-bonding network observed within the crystal structure. The amino groups form a hydrogen-bonded chain, with an N1⋯N1i separation of 3.161 (14) Å, an H11⋯N1i distance of 2.31 (11) Å and an N1—H11⋯N1i angle of 157 (10)° [symmetry code: (i) 1 − x + y, −x, [{1\over 3}] + z]. Although this is a rather weak inter­action, it is comparable with the similar hydrogen bond that is observed in 2,4-dibromo-6-chloro­aniline (Ferguson et al., 1998[Ferguson, G., Low, J. N., Penner, G. H. & Wardell, J. L. (1998). Acta Cryst. C54, 1974-1977.]), where the N⋯N distance is 3.150 (11) Å.

Overall, the crystal packing of (I)[link] can be described in terms of three distinct helices (Fig. 2[link]), one kept together via these weak N—H⋯N hydrogen bonds, another involving I⋯I inter­actions and the third formed by C—H⋯π inter­actions. Each mol­ecule in the structure is involved in all three types of helices (Fig. 2[link]). The I atoms form an infinite chain via I1⋯I1ii inter­actions, with an I1⋯I1ii distance of 3.7986 (15) Å [symmetry code: (ii) −y, xy, −[{1\over 3}] + z]. These inter­actions are similar to those reported by Gray & Jones (2002[Gray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 61-72.]) in their structure of 3-iodo­anilinium iodide, containing two crystallographically unique I⋯I inter­actions with I⋯I distances of 3.7820 (6) and 3.9241 (6) Å. The third helix of C—H⋯π inter­actions involves the C5—H51 bond oriented in the approximate direction of the C3—H31 bond in the mol­ecule related by symmetry position (1 − y, xy, −[{1\over 3}] + z), with H51⋯H31 and H51⋯C3 distances of 2.53 and 2.86 Å, respectively.

[Figure 1]
Figure 1
A view of (I)[link], showing the atomic numbering scheme. Ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagrams for (I)[link], viewed down the c axis. The three helices observed in the crystal packing are indicated on the left, with the weak amine–amine hydrogen bond highlighted in blue, the I⋯I contacts in white and the C—H⋯π inter­actions in yellow.

Experimental

2-Iodo­aniline (98%) was obtained from Aldrich. A quantity (0.4 g) of the compound was purified by recrystallization from benzene. Colourless needle crystals of (I)[link] were grown by heating the solution until all the precipitated material was redissolved, and then allowing the solution to cool slowly to room temperature.

Crystal data
  • C6H6IN

  • Mr = 219.02

  • Trigonal, P 32

  • a = 11.2952 (8) Å

  • c = 4.5325 (4) Å

  • V = 500.79 (7) Å3

  • Z = 3

  • Dx = 2.179 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4867 reflections

  • θ = 0–32°

  • μ = 4.69 mm−1

  • T = 100 K

  • Needle, colourless

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(MULABS in PLATON; Spek, 1998[Spek, A. L. (1998) PLATON. University of Utrecht, The Netherlands.])Tmin = 0.385, Tmax = 0.626

  • 4867 measured reflections

  • 2174 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.104

  • θmax = 31.9°

  • h = −16 → 16

  • k = −16 → 15

  • l = −6 → 6

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.124

  • S = 1.00

  • 2174 reflections

  • 80 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(F2) + 0.07 + 1.39P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.4 e Å−3

  • Δρmin = −2.0 e Å−3

  • Extinction correction: none

  • Absolute structure: Flack (1983[Flack H. D. (1983). Acta Cryst. A39, 876-881.]), 1032 Friedel pairs

  • Flack parameter: 0.03 (8)

Table 1
Selected geometric parameters (Å, °)[link]

N1—C1 1.401 (11)
I1—C2 2.103 (7)
C1—C2 1.400 (11)
C1—C6 1.419 (11)
C2—C3 1.413 (11)
C3—C4 1.406 (13)
C4—C5 1.384 (15)
C5—C6 1.390 (13)
N1—C1—C2 122.5 (7)
N1—C1—C6 119.4 (7)
C2—C1—C6 118.0 (7)
C1—C2—I1 119.9 (6)
C1—C2—C3 121.1 (7)
I1—C2—C3 119.0 (6)
C2—C3—C4 119.8 (8)
C3—C4—C5 119.0 (8)
C4—C5—C6 121.7 (8)
C1—C6—C5 120.3 (8)

All H atoms were positioned geometrically. Those bound to C atoms were refined as riding groups, while those bound to N atoms were refined, with the N—H bond length restrained to 0.90 (1) Å. Although the value of Rint is rather high for this structure (0.104), as are the minimum and maximum difference densities The positions of the minimum and maximum difference electron densities are at (0.806, 0.861, 0.167) and (0.407, 0.280, -0.008), respectively.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: ORTEP3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and MERCURY (Version 1.3; Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Version 1.3; Bruno et al., 2002); software used to prepare material for publication: CRYSTALS.

2-Iodoaniline top
Crystal data top
C6H6INDx = 2.179 Mg m3
Mr = 219.02Mo Kα radiation, λ = 0.71073 Å
Trigonal, P32Cell parameters from 16755 reflections
Hall symbol: P 32θ = 0–32°
a = 11.2952 (8) ŵ = 4.69 mm1
c = 4.5325 (4) ÅT = 100 K
V = 500.79 (7) Å3Needle, colourless
Z = 30.50 × 0.10 × 0.10 mm
F(000) = 306
Data collection top
Nonius KappaCCD area-detector
diffractometer
1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
φ and ω scansθmax = 31.9°, θmin = 2.1°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 1998)
h = 1616
Tmin = 0.385, Tmax = 0.626k = 1615
4867 measured reflectionsl = 66
2174 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(F2) + 0.07 + 1.39p]
where p = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.124(Δ/σ)max < 0.001
S = 1.00Δρmax = 1.4 e Å3
2174 reflectionsΔρmin = 2.0 e Å3
80 parametersAbsolute structure: Flack (1983), 1032 Friedel pairs
3 restraintsAbsolute structure parameter: 0.03 (8)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3281 (7)0.1940 (7)0.8337 (15)0.0237
I10.13684 (5)0.06459 (5)0.6472 (5)0.0232
C10.3972 (8)0.0834 (8)0.6404 (15)0.0209
C20.3350 (8)0.0147 (8)0.5157 (17)0.0216
C30.4047 (9)0.0911 (8)0.3077 (16)0.0260
C40.5396 (9)0.1303 (9)0.2276 (19)0.0297
C50.6015 (9)0.0634 (10)0.354 (2)0.0317
C60.5335 (8)0.0418 (8)0.5565 (18)0.0252
H110.392 (9)0.211 (12)0.91 (3)0.0294*
H120.261 (9)0.195 (12)0.94 (2)0.0294*
H310.35850.13820.21740.0319*
H410.59040.20550.08170.0352*
H510.69790.09170.29930.0409*
H610.58080.08850.64320.0314*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.022 (3)0.026 (3)0.024 (3)0.012 (3)0.001 (2)0.002 (2)
I10.0221 (2)0.0236 (2)0.0265 (2)0.01328 (19)0.00161 (18)0.00084 (18)
C10.023 (3)0.021 (3)0.020 (3)0.012 (3)0.001 (2)0.007 (2)
C20.021 (3)0.023 (3)0.024 (3)0.013 (3)0.003 (3)0.003 (3)
C30.033 (4)0.020 (3)0.023 (4)0.012 (3)0.001 (3)0.003 (3)
C40.030 (4)0.026 (4)0.025 (4)0.008 (3)0.008 (3)0.002 (3)
C50.024 (4)0.035 (4)0.034 (4)0.013 (3)0.006 (3)0.008 (3)
C60.021 (3)0.024 (3)0.029 (4)0.010 (3)0.000 (3)0.007 (3)
Geometric parameters (Å, º) top
N1—C11.401 (11)C3—C41.406 (13)
N1—H110.90 (5)C3—H311.000
N1—H120.89 (5)C4—C51.384 (15)
I1—C22.103 (7)C4—H411.000
C1—C21.400 (11)C5—C61.390 (13)
C1—C61.419 (11)C5—H511.000
C2—C31.413 (11)C6—H611.000
C1—N1—H11106 (8)C4—C3—H31119.938
C1—N1—H12116 (7)C3—C4—C5119.0 (8)
H11—N1—H12124 (11)C3—C4—H41120.571
N1—C1—C2122.5 (7)C5—C4—H41120.401
N1—C1—C6119.4 (7)C4—C5—C6121.7 (8)
C2—C1—C6118.0 (7)C4—C5—H51119.318
C1—C2—I1119.9 (6)C6—C5—H51118.950
C1—C2—C3121.1 (7)C1—C6—C5120.3 (8)
I1—C2—C3119.0 (6)C1—C6—H61119.835
C2—C3—C4119.8 (8)C5—C6—H61119.860
C2—C3—H31120.298
 

Acknowledgements

This work was supported by the EPSRC through grants GR/T1608 and GR/T21615. We also acknowledge the CCLRC for support for CKS.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo G., Guagliardi A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCasas, J. M., Falvello, L. R., Fornies, J. & Martin, A. (1996). Inorg. Chem. 35, 56–62.  CrossRef PubMed CAS Google Scholar
First citationCsákvái, E. & Hargittai, I. (1992). J. Phys. Chem. 96, 5837–5842.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Low, J. N., Penner, G. H. & Wardell, J. L. (1998). Acta Cryst. C54, 1974–1977.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef IUCr Journals Google Scholar
First citationGray, L. & Jones, P. G. (2002). Z. Naturforsch. Teil B, 57, 61–72.  CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationSpek, A. L. (1998) PLATON. University of Utrecht, The Netherlands.  Google Scholar
First citationTanaka, M., Matsui, H., Mizoguchi, J. & Kashino, S. (1994). Bull. Chem. Soc. Jpn, 67, 1572–1579.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds