organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pifithrin-β

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 20 April 2005; accepted 21 April 2005; online 27 April 2005)

The title compound, 2-p-tolyl-5,6,7,8-tetra­hydro­benzo­[d]­imidazo­[2,1-b]­thia­zole, C16H16N2S, is a condensation product of pifithrin-α, which has been previously reported as an inhibitor of the tumour suppressor protein p53. The mol­ecule contains a planar fused pair of heterocyclic five-membered rings and the attached p-tolyl substituent is also essentially coplanar.

Comment

The compound pifithrin-α [2-(2-imino-4,5,6,7-tetra­hydro­benzo­thia­zol-3-yl)-1-(4-methyl­phenyl)­ethano­ne, (1[link])] was previously reported to inhibit, in vitro, a number of processes involving the tumour suppressor protein p53; it was thus of interest in the development of cancer therapies (Komarov et al., 1999[Komarov, P. G., Komarova, E. A., Kondratov, R. V, Christov-Tselkov, K., Coon, J. S., Chernov, M. V. & Gudkov, A. V. (1999). Science, 285, 1733-1737.]). During a further evaluation of the effectiveness of pifithrin-α, a crystalline sample was obtained and its structure investigated by X-ray diffraction. However, the material was found to be a condensation product of pifithrin-α, from which water had been eliminated in a ring closure. The product, referred to as pifithrin-β, (2[link]), is more stable than pifithrin-α in tissue culture medium. The revelation of this transformation through crystallographic identification of the condensation product has led to an expansion of the original evaluation of pifithrin-α to include also pifithrin-β, and the recognition that some of the inhibitory effects previously ascribed to pifithrin-α are probably due instead to pifithrin-β or a combination of the two compounds (Walton et al., 2005[Walton, M. I., Wilson, S. C., Hardcastle, I. R., Mirza, A. R. & Workman, P. (2005). Mol. Cancer Ther. In the press.]).[link]

[Scheme 1]

The mol­ecule of pifithrin-β (Fig. 1[link]) contains three fused rings with a p-tolyl substituent. The cyclo­hexene ring (or tetra­hydro­benzo group) is disordered over two conformations, in which the two saturated C atoms furthest from the double bond lie one on each side of the mean plane of the other atoms of the ring [by 0.377 (4) and 0.375 (4) Å for the major component]; the two disorder components have opposite senses of twist for this CH2CH2 segment (see the torsion angles in Table 1[link]). The fused thia­zole and imidazole rings are individually planar (r.m.s. deviations < 0.003 Å) and form a single planar unit [r.m.s. deviation 0.009 Å; dihedral angle between the two five-membered rings = 1.32 (5)°]. Such imidazo­[2,1-b]­thia­zole fused ring systems have been found in ten other crystal structures in the Cambridge Structural Database (Version 5.26 plus one update, February 2005; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), and they are all planar.

The benzene ring of the p-tolyl substituent makes a dihedral angle of 2.32 (5)° with the imidazole ring to which it is attached. The whole mol­ecule, excluding H atoms and the disordered CH2CH2 linkage, is thus essentially planar, with an r.m.s. deviation of 0.039 Å. There are no notable intermolecular interactions in the crystal structure. The mol­ecules lie in almost planar sheets parallel to (001) (Fig. 2[link]).

[Figure 1]
Figure 1
The molecular structure of (2[link]) with atom labels and 50% probability ellipsoids for non-H atoms. The minor disorder component has been omitted.
[Figure 2]
Figure 2
The crystal packing, viewed along the a axis, showing almost planar sheets of mol­ecules parallel to (001).

Experimental

The compound was prepared by a condensation reaction of pifithrin-α, initially unintentionally during a study of anti-tumour agents, and subsequently by refluxing in aqueous methanol (Walton et al., 2005[Walton, M. I., Wilson, S. C., Hardcastle, I. R., Mirza, A. R. & Workman, P. (2005). Mol. Cancer Ther. In the press.]). It was recrystallized from methanol.

Crystal data
  • C16H16N2S

  • Mr = 268.37

  • Monoclinic, P21/c

  • a = 7.1729 (4) Å

  • b = 13.5386 (8) Å

  • c = 14.3530 (8) Å

  • β = 103.917 (2)°

  • V = 1352.92 (13) Å3

  • Z = 4

  • Dx = 1.318 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 9390 reflections

  • θ = 2.1–28.5°

  • μ = 0.23 mm−1

  • T = 160 (2) K

  • Block, colourless

  • 0.44 × 0.30 × 0.26 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Thin-slice ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.91, Tmax = 0.94

  • 11454 measured reflections

  • 3222 independent reflections

  • 2871 reflections with I > 2σ(I)

  • Rint = 0.022

  • θmax = 28.5°

  • h = −9 → 9

  • k = −17 → 17

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.05

  • 3222 reflections

  • 192 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0542P)2 + 0.5147P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Selected geometric parameters (Å, °)

N1—C1 1.3949 (17)
N1—C2 1.3147 (17)
N2—C2 1.3666 (16)
N2—C8 1.3991 (16)
N2—C9 1.3770 (17)
S1—C2 1.7391 (13)
S1—C3 1.7650 (14)
C1—C9 1.3760 (18)
C3—C8 1.3447 (19)
C1—N1—C2 103.49 (11)
C2—N2—C8 115.28 (11)
C2—N2—C9 106.49 (11)
C8—N2—C9 138.21 (11)
C2—S1—C3 90.36 (6)
N1—C1—C9 111.16 (11)
N1—C1—C10 121.52 (11)
C9—C1—C10 127.32 (12)
N1—C2—N2 113.56 (11)
N1—C2—S1 136.19 (10)
N2—C2—S1 110.23 (10)
S1—C3—C4 123.59 (10)
S1—C3—C8 112.18 (10)
C4—C3—C8 124.22 (13)
N2—C8—C3 111.96 (11)
N2—C8—C7 122.51 (11)
C3—C8—C7 125.52 (12)
N2—C9—C1 105.31 (11)
C3—C4—C5—C6 −45.8 (3)
C4—C5—C6—C7 64.3 (3)
C3—C4—C5X—C6X 47.9 (8)
C4—C5X—C6X—C7 −61.1 (10)
C5X—C6X—C7—C8 41.1 (9)
C5—C6—C7—C8 −45.5 (3)
N1—C1—C10—C15 −1.16 (19)
C9—C1—C10—C11 −1.5 (2)

H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined with a riding model (including free rotation about the C—C bond for the methyl group), and with Uiso values constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom. Twofold disorder was resolved and refined for the central CH2CH2 linkage of the cyclo­hexene ring, with occupancy factors 0.766 (6):0.234 (6).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

2-p-tolyl-5,6,7,8-tetrahydrobenzo[d]imidazo[2,1-b]thiazole top
Crystal data top
C16H16N2SF(000) = 568
Mr = 268.37Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.1729 (4) ÅCell parameters from 9390 reflections
b = 13.5386 (8) Åθ = 2.1–28.5°
c = 14.3530 (8) ŵ = 0.23 mm1
β = 103.917 (2)°T = 160 K
V = 1352.92 (13) Å3Block, colourless
Z = 40.44 × 0.30 × 0.26 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
3222 independent reflections
Radiation source: sealed tube2871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 8.192 pixels mm-1θmax = 28.5°, θmin = 2.1°
thin–slice ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1717
Tmin = 0.91, Tmax = 0.94l = 1818
11454 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.5147P]
where P = (Fo2 + 2Fc2)/3
3222 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.32 e Å3
36 restraintsΔρmin = 0.25 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.58299 (16)0.17620 (8)0.14058 (8)0.0257 (2)
N20.69620 (16)0.02495 (8)0.12171 (8)0.0242 (2)
S10.35910 (5)0.00517 (3)0.14928 (3)0.03065 (12)
C10.76869 (18)0.18220 (10)0.12686 (9)0.0237 (3)
C20.54752 (18)0.08082 (10)0.13678 (9)0.0242 (3)
C30.4914 (2)0.10047 (10)0.13244 (9)0.0268 (3)
C40.4184 (2)0.20417 (11)0.13456 (11)0.0326 (3)
H4A0.32390.21890.07360.039*0.766 (6)
H4B0.35350.21140.18770.039*0.766 (6)
H4X0.28340.20880.09710.039*0.234 (6)
H4Y0.42460.22470.20140.039*0.234 (6)
C50.5846 (3)0.27551 (14)0.1484 (2)0.0333 (6)0.766 (6)
H5A0.53450.34350.13470.040*0.766 (6)
H5B0.65900.27320.21610.040*0.766 (6)
C60.7167 (4)0.25056 (15)0.0826 (2)0.0316 (6)0.766 (6)
H6A0.64090.25030.01520.038*0.766 (6)
H6B0.81640.30230.08900.038*0.766 (6)
C5X0.5584 (10)0.2755 (5)0.0866 (7)0.035 (2)0.234 (6)
H5X10.53110.34560.09800.042*0.234 (6)
H5X20.52730.26470.01630.042*0.234 (6)
C6X0.7701 (13)0.2555 (6)0.1274 (8)0.0367 (19)0.234 (6)
H6X10.84780.30110.09810.044*0.234 (6)
H6X20.80330.26700.19760.044*0.234 (6)
C70.8147 (2)0.14939 (10)0.10651 (11)0.0304 (3)
H7A0.91810.15390.16610.036*0.766 (6)
H7B0.87210.12780.05370.036*0.766 (6)
H7X0.93950.13060.14940.036*0.234 (6)
H7Y0.82820.14510.03960.036*0.234 (6)
C80.66567 (19)0.07719 (9)0.11945 (9)0.0249 (3)
C90.84012 (19)0.08993 (10)0.11508 (10)0.0258 (3)
H90.96260.07440.10460.031*
C100.86652 (18)0.27755 (10)0.12710 (9)0.0241 (3)
C111.05548 (19)0.28174 (10)0.11660 (10)0.0291 (3)
H111.11970.22240.10770.035*
C121.1500 (2)0.37143 (11)0.11911 (10)0.0315 (3)
H121.27850.37220.11220.038*
C131.0616 (2)0.46007 (10)0.13146 (9)0.0288 (3)
C140.8730 (2)0.45609 (11)0.14183 (10)0.0317 (3)
H140.80920.51560.15070.038*
C150.7773 (2)0.36671 (10)0.13934 (10)0.0294 (3)
H150.64870.36610.14610.035*
C161.1659 (2)0.55676 (11)0.13264 (11)0.0360 (3)
H16A1.30470.54550.15340.054*
H16B1.12610.60240.17720.054*
H16C1.13480.58540.06800.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0233 (5)0.0267 (5)0.0276 (5)0.0019 (4)0.0071 (4)0.0006 (4)
N20.0238 (5)0.0234 (5)0.0262 (5)0.0018 (4)0.0080 (4)0.0015 (4)
S10.02331 (18)0.02947 (19)0.0411 (2)0.00072 (12)0.01156 (14)0.00096 (14)
C10.0233 (6)0.0262 (6)0.0220 (6)0.0019 (5)0.0060 (5)0.0012 (5)
C20.0214 (6)0.0265 (6)0.0253 (6)0.0021 (5)0.0069 (5)0.0010 (5)
C30.0279 (6)0.0256 (6)0.0266 (6)0.0007 (5)0.0059 (5)0.0017 (5)
C40.0337 (7)0.0292 (7)0.0348 (7)0.0068 (6)0.0081 (6)0.0019 (6)
C50.0387 (11)0.0231 (9)0.0372 (16)0.0024 (7)0.0074 (9)0.0046 (8)
C60.0373 (13)0.0232 (9)0.0350 (14)0.0043 (8)0.0098 (10)0.0003 (10)
C5X0.039 (4)0.026 (3)0.037 (5)0.000 (2)0.005 (3)0.003 (3)
C6X0.042 (4)0.031 (3)0.032 (4)0.000 (3)0.000 (3)0.001 (3)
C70.0314 (7)0.0255 (6)0.0358 (7)0.0029 (5)0.0114 (6)0.0013 (5)
C80.0285 (6)0.0219 (6)0.0244 (6)0.0011 (5)0.0064 (5)0.0018 (5)
C90.0236 (6)0.0249 (6)0.0305 (6)0.0013 (5)0.0094 (5)0.0019 (5)
C100.0250 (6)0.0254 (6)0.0215 (6)0.0003 (5)0.0048 (5)0.0007 (5)
C110.0268 (7)0.0293 (7)0.0320 (7)0.0014 (5)0.0083 (5)0.0032 (5)
C120.0249 (6)0.0383 (8)0.0319 (7)0.0043 (5)0.0079 (5)0.0028 (6)
C130.0323 (7)0.0305 (7)0.0219 (6)0.0070 (5)0.0033 (5)0.0005 (5)
C140.0337 (7)0.0254 (7)0.0368 (7)0.0010 (5)0.0101 (6)0.0012 (5)
C150.0261 (7)0.0270 (6)0.0366 (7)0.0014 (5)0.0101 (5)0.0017 (5)
C160.0391 (8)0.0340 (7)0.0332 (7)0.0118 (6)0.0053 (6)0.0003 (6)
Geometric parameters (Å, º) top
N1—C11.3949 (17)C5X—C6X1.515 (12)
N1—C21.3147 (17)C6X—H6X10.990
N2—C21.3666 (16)C6X—H6X20.990
N2—C81.3991 (16)C6X—C71.518 (8)
N2—C91.3770 (17)C7—H7A0.990
S1—C21.7391 (13)C7—H7B0.990
S1—C31.7650 (14)C7—H7X0.990
C1—C91.3760 (18)C7—H7Y0.990
C1—C101.4689 (18)C7—C81.4926 (18)
C3—C41.5014 (19)C9—H90.950
C3—C81.3447 (19)C10—C111.4005 (18)
C4—H4A0.990C10—C151.3971 (18)
C4—H4B0.990C11—H110.950
C4—H4X0.990C11—C121.387 (2)
C4—H4Y0.990C12—H120.950
C4—C51.510 (2)C12—C131.389 (2)
C4—C5X1.658 (7)C13—C141.397 (2)
C5—H5A0.990C13—C161.5061 (19)
C5—H5B0.990C14—H140.950
C5—C61.528 (3)C14—C151.388 (2)
C6—H6A0.990C15—H150.950
C6—H6B0.990C16—H16A0.980
C6—C71.540 (3)C16—H16B0.980
C5X—H5X10.990C16—H16C0.980
C5X—H5X20.990
C1—N1—C2103.49 (11)C5X—C6X—C7109.4 (7)
C2—N2—C8115.28 (11)H6X1—C6X—H6X2108.2
C2—N2—C9106.49 (11)H6X1—C6X—C7109.8
C8—N2—C9138.21 (11)H6X2—C6X—C7109.8
C2—S1—C390.36 (6)C6—C7—H7A110.1
N1—C1—C9111.16 (11)C6—C7—H7B110.1
N1—C1—C10121.52 (11)C6—C7—C8107.94 (13)
C9—C1—C10127.32 (12)C6X—C7—H7X108.8
N1—C2—N2113.56 (11)C6X—C7—H7Y108.8
N1—C2—S1136.19 (10)C6X—C7—C8113.9 (3)
N2—C2—S1110.23 (10)H7A—C7—H7B108.4
S1—C3—C4123.59 (10)H7A—C7—C8110.1
S1—C3—C8112.18 (10)H7B—C7—C8110.1
C4—C3—C8124.22 (13)H7X—C7—H7Y107.7
C3—C4—H4A109.8H7X—C7—C8108.8
C3—C4—H4B109.8H7Y—C7—C8108.8
C3—C4—H4X110.4N2—C8—C3111.96 (11)
C3—C4—H4Y110.4N2—C8—C7122.51 (11)
C3—C4—C5109.43 (13)C3—C8—C7125.52 (12)
C3—C4—C5X106.7 (2)N2—C9—C1105.31 (11)
H4A—C4—H4B108.2N2—C9—H9127.3
H4A—C4—C5109.8C1—C9—H9127.3
H4B—C4—C5109.8C1—C10—C11120.64 (12)
H4X—C4—H4Y108.6C1—C10—C15121.77 (12)
H4X—C4—C5X110.4C11—C10—C15117.59 (12)
H4Y—C4—C5X110.4C10—C11—H11119.6
C4—C5—H5A109.4C10—C11—C12120.84 (13)
C4—C5—H5B109.4H11—C11—C12119.6
C4—C5—C6111.4 (2)C11—C12—H12119.2
H5A—C5—H5B108.0C11—C12—C13121.61 (13)
H5A—C5—C6109.4H12—C12—C13119.2
H5B—C5—C6109.4C12—C13—C14117.66 (13)
C5—C6—H6A109.2C12—C13—C16120.75 (14)
C5—C6—H6B109.2C14—C13—C16121.58 (14)
C5—C6—C7112.1 (2)C13—C14—H14119.4
H6A—C6—H6B107.9C13—C14—C15121.12 (13)
H6A—C6—C7109.2H14—C14—C15119.4
H6B—C6—C7109.2C10—C15—C14121.18 (13)
C4—C5X—H5X1109.0C10—C15—H15119.4
C4—C5X—H5X2109.0C14—C15—H15119.4
C4—C5X—C6X112.7 (6)C13—C16—H16A109.5
H5X1—C5X—H5X2107.8C13—C16—H16B109.5
H5X1—C5X—C6X109.0C13—C16—H16C109.5
H5X2—C5X—C6X109.0H16A—C16—H16B109.5
C5X—C6X—H6X1109.8H16A—C16—H16C109.5
C5X—C6X—H6X2109.8H16B—C16—H16C109.5
C2—N1—C1—C90.04 (14)C2—N2—C8—C30.29 (16)
C2—N1—C1—C10179.28 (11)C2—N2—C8—C7178.23 (12)
C1—N1—C2—N20.03 (14)C9—N2—C8—C3178.36 (15)
C1—N1—C2—S1177.90 (12)C9—N2—C8—C70.2 (2)
C8—N2—C2—N1178.58 (11)C6—C7—C8—N2166.19 (16)
C8—N2—C2—S10.15 (14)C6—C7—C8—C315.5 (2)
C9—N2—C2—N10.08 (15)C6X—C7—C8—N2167.5 (5)
C9—N2—C2—S1178.51 (9)C6X—C7—C8—C310.8 (5)
C3—S1—C2—N1178.32 (15)N1—C1—C9—N20.08 (15)
C3—S1—C2—N20.39 (10)C10—C1—C9—N2179.18 (12)
C2—S1—C3—C4179.36 (12)C2—N2—C9—C10.10 (14)
C2—S1—C3—C80.57 (11)C8—N2—C9—C1178.09 (14)
S1—C3—C4—C5162.66 (15)N1—C1—C10—C11177.71 (12)
S1—C3—C4—C5X164.7 (3)N1—C1—C10—C151.16 (19)
C8—C3—C4—C516.0 (2)C9—C1—C10—C111.5 (2)
C8—C3—C4—C5X16.7 (4)C9—C1—C10—C15179.65 (13)
C3—C4—C5—C645.8 (3)C1—C10—C11—C12178.43 (12)
C4—C5—C6—C764.3 (3)C15—C10—C11—C120.5 (2)
C3—C4—C5X—C6X47.9 (8)C10—C11—C12—C130.4 (2)
C4—C5X—C6X—C761.1 (10)C11—C12—C13—C140.3 (2)
C5X—C6X—C7—C841.1 (9)C11—C12—C13—C16179.17 (13)
C5—C6—C7—C845.5 (3)C12—C13—C14—C150.3 (2)
S1—C3—C8—N20.59 (14)C16—C13—C14—C15179.12 (13)
S1—C3—C8—C7177.88 (11)C13—C14—C15—C100.5 (2)
C4—C3—C8—N2179.37 (12)C1—C10—C15—C14178.36 (13)
C4—C3—C8—C70.9 (2)C11—C10—C15—C140.5 (2)
 

Acknowledgements

We thank the EPSRC for financial support and Dr Ian Hardcastle for supplying the sample.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKomarov, P. G., Komarova, E. A., Kondratov, R. V, Christov-Tselkov, K., Coon, J. S., Chernov, M. V. & Gudkov, A. V. (1999). Science, 285, 1733–1737.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWalton, M. I., Wilson, S. C., Hardcastle, I. R., Mirza, A. R. & Workman, P. (2005). Mol. Cancer Ther. In the press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds