organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetamido-4-nitro­toluene

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk

(Received 26 July 2005; accepted 27 July 2005; online 6 August 2005)

The structure of the title compound, C9H10N2O3, was determined as one of a group of five related compounds in order to assess its suitability as a test material for the 2004 Cambridge Crystallographic Data Centre `Blind Structure Prediction Test'. The molecules are almost planar except for the acetamide group, which is involved in hydrogen bonding. The structure consists of columns of molecules hudrogen bonded into chains parallel to the c axis.

Comment

The Cambridge Crystallographic Data Centre (CCDC) `Blind Structure Prediction Tests' are carried out periodically by a number of participating groups in order to evaluate developments in structure prediction techniques. As part of the preparations for the 2004 test, five well crystalline samples whose crystal structure was previously unknown were provided by Gavezzotti. The materials were from a collection of nitro­toluene derivatives synthesized by Wilhelm Koerner about a century ago and retrieved from a depository at the University of Milan. The structures and analyses of several other materials from this collection have recently been discussed (Demartin et al., 2004[Demartin, F., Filippini, G., Gavezzotti, A. & Rizzato, S. (2004). Acta Cryst. B60, 609-620.]).

[Scheme 1]

The sample consisted of a mixture of crushed and broken fragments and some striated pale-cream lath-shaped crystals. These were always long and generally very thin. Attempts were made to obtain a roughly isometric sample, but the specimens inevitably cleaved freely parallel to their long axis if any attempt was made to cut them into shorter segments. A crystal 0.12 × 0.63 × 1.22 mm (Fig. 1[link]) was selected on the basis of its sharp diffraction pattern. By mounting the crystal approximately parallel to the φ axis, the changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by the multi-scan inter­frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

The nitro group is almost complanar with the benzene ring [O8—N7—C5—C6 = −177.3 (3)°]. The acetamide group is itself planar [C14—C12—N11—C1 = 178.3 (3)°], but is rotated out of the plane of the benzene ring [C12—N11—C1—C2 = −133.3 (3)°] (Fig. 2[link]).

Hydrogen bonding between atom H5 of one mol­ecule and O13 of an adjacent mol­ecule causes the structure to consist of chains parallel to the c axis (Fig. 3[link]). The benzene rings in adjacent chains lie parallel to each other, with a perpendicular separation of 3.58 Å, but do not overlap in projection (Fig. 4[link]). Other inter­molecular contacts are unexceptional.

[Figure 1]
Figure 1
Perspective view of the crystal used for data collection showing the indices of the principal faces and their relationship to the diffractometer axes.
[Figure 2]
Figure 2
The molecular structure with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
[Figure 3]
Figure 3
Packing diagram, showing the hydrogen-bonded chains parallel to the c axis. Hydrogen bonds are indicated as dotted lines.
[Figure 4]
Figure 4
Projection of mol­ecules from two adjacent chains on to the plane of one benzene ring.

Experimental

Details of the synthesis are unknown; the 100-year-old sample was provided from the depository at the University of Milan.

Crystal data
  • C9H10N2O3

  • Mr = 194.19

  • Monoclinic, P 21 /c

  • a = 8.2167 (2) Å

  • b = 13.6406 (3) Å

  • c = 8.7203 (2) Å

  • β = 107.2307 (9)°

  • V = 933.51 (4) Å3

  • Z = 4

  • Dx = 1.382 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2141 reflections

  • θ = 5–27°

  • μ = 0.11 mm−1

  • T = 150 K

  • Lath, pale yellow

  • 1.22 × 0.63 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.77, Tmax = 0.99

  • 10098 measured reflections

  • 2110 independent reflections

  • 2110 reflections with I > −10.0σ(I)

  • Rint = 0.027

  • θmax = 27.5°

  • h = −10 → 10

  • k = −17 → 17

  • l = −11 → 11

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.098

  • S = 1.00

  • 2110 reflections

  • 127 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2 + 0.32P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H5⋯O13i 0.86 2.06 2.911 (1) 175
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å, N—H = 0.86–0.89 Å and O—H = 0.82 Å) and displacement parameters [Uiso(H) = 1.2–1.5Ueq(parent atom)], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-Acetamido-4-nitrotoluene top
Crystal data top
C9H10N2O3F(000) = 408
Mr = 194.19Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2141 reflections
a = 8.2167 (2) Åθ = 5–27°
b = 13.6406 (3) ŵ = 0.11 mm1
c = 8.7203 (2) ÅT = 150 K
β = 107.2307 (9)°Lath, pale yellow
V = 933.51 (4) Å31.22 × 0.63 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2110 reflections with I > 10.0σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1010
Tmin = 0.77, Tmax = 0.99k = 1717
10098 measured reflectionsl = 1111
2110 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(F2) + (0.04P)2 + 0.32P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.00(Δ/σ)max = 0.000416
2110 reflectionsΔρmax = 0.22 e Å3
127 parametersΔρmin = 0.27 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66060 (14)0.65335 (8)0.13949 (12)0.0205
C20.69944 (14)0.55296 (8)0.14755 (13)0.0222
C30.60557 (15)0.49005 (9)0.21537 (14)0.0266
C40.47870 (15)0.52447 (9)0.27626 (14)0.0272
C50.44408 (15)0.62402 (9)0.26521 (14)0.0241
C60.53092 (14)0.68921 (8)0.19623 (13)0.0225
N70.30928 (13)0.66177 (8)0.32777 (13)0.0311
O80.23776 (16)0.60433 (8)0.39389 (17)0.0584
O90.27408 (14)0.74913 (7)0.31277 (15)0.0501
C100.84177 (16)0.51420 (9)0.08932 (15)0.0289
N110.75561 (12)0.71876 (7)0.07257 (11)0.0228
C120.82179 (14)0.80492 (8)0.13955 (13)0.0204
O130.80172 (11)0.83621 (6)0.26552 (10)0.0276
C140.92198 (16)0.86113 (9)0.05038 (14)0.0267
H310.63110.42110.22000.0312*
H410.41490.48210.32210.0342*
H610.50180.75670.18870.0272*
H1010.84750.44310.09640.0447*
H1020.95000.54030.15330.0452*
H1030.82760.53400.02210.0431*
H50.77480.70130.01490.0311*
H81.03360.87150.11820.0457*
H90.92730.82940.04620.0438*
H100.87100.92390.02500.0461*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0235 (5)0.0222 (5)0.0164 (5)0.0024 (4)0.0070 (4)0.0003 (4)
C20.0248 (6)0.0239 (6)0.0171 (5)0.0011 (4)0.0051 (4)0.0005 (4)
C30.0320 (6)0.0212 (5)0.0262 (6)0.0002 (5)0.0080 (5)0.0016 (4)
C40.0291 (6)0.0261 (6)0.0279 (6)0.0061 (5)0.0106 (5)0.0024 (5)
C50.0224 (5)0.0280 (6)0.0239 (6)0.0023 (5)0.0099 (5)0.0012 (5)
C60.0252 (6)0.0215 (5)0.0220 (5)0.0002 (4)0.0087 (4)0.0001 (4)
N70.0290 (5)0.0327 (6)0.0369 (6)0.0024 (4)0.0181 (5)0.0000 (5)
O80.0616 (7)0.0468 (6)0.0910 (9)0.0008 (5)0.0600 (7)0.0134 (6)
O90.0536 (7)0.0333 (5)0.0804 (8)0.0089 (5)0.0462 (6)0.0061 (5)
C100.0329 (6)0.0285 (6)0.0276 (6)0.0080 (5)0.0124 (5)0.0019 (5)
N110.0304 (5)0.0236 (5)0.0194 (5)0.0022 (4)0.0153 (4)0.0022 (4)
C120.0228 (5)0.0222 (5)0.0180 (5)0.0021 (4)0.0088 (4)0.0022 (4)
O130.0400 (5)0.0258 (4)0.0225 (4)0.0042 (4)0.0178 (4)0.0031 (3)
C140.0300 (6)0.0317 (6)0.0211 (6)0.0069 (5)0.0119 (5)0.0009 (5)
Geometric parameters (Å, º) top
C1—C21.4030 (16)N7—O81.2216 (14)
C1—C61.3899 (15)N7—O91.2241 (14)
C1—N111.4198 (14)C10—H1010.973
C2—C31.3969 (16)C10—H1020.967
C2—C101.5023 (16)C10—H1030.982
C3—C41.3846 (17)N11—C121.3528 (15)
C3—H310.962N11—H50.857
C4—C51.3849 (17)C12—O131.2342 (13)
C4—H410.945C12—C141.4998 (15)
C5—C61.3842 (16)C14—H80.943
C5—N71.4655 (15)C14—H90.960
C6—H610.949C14—H100.949
C2—C1—C6120.84 (10)O8—N7—O9122.91 (11)
C2—C1—N11119.30 (10)C2—C10—H101111.0
C6—C1—N11119.86 (10)C2—C10—H102110.5
C1—C2—C3118.35 (10)H101—C10—H102108.2
C1—C2—C10120.99 (10)C2—C10—H103111.2
C3—C2—C10120.64 (10)H101—C10—H103109.1
C2—C3—C4121.79 (11)H102—C10—H103106.8
C2—C3—H31118.6C1—N11—C12124.63 (9)
C4—C3—H31119.6C1—N11—H5117.4
C3—C4—C5117.93 (11)C12—N11—H5117.9
C3—C4—H41122.0N11—C12—O13122.82 (10)
C5—C4—H41120.1N11—C12—C14115.63 (9)
C4—C5—C6122.58 (11)O13—C12—C14121.55 (10)
C4—C5—N7118.75 (10)C12—C14—H8109.4
C6—C5—N7118.67 (10)C12—C14—H9113.5
C1—C6—C5118.48 (11)H8—C14—H9109.2
C1—C6—H61121.4C12—C14—H10108.1
C5—C6—H61120.1H8—C14—H10106.9
C5—N7—O8118.20 (11)H9—C14—H10109.5
C5—N7—O9118.88 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H5···O13i0.862.062.911 (1)175
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors thank Professor Angelo Gavezzotti for obtaining the samples, Professor Lucio Merlini, Director of the Dipartmento di Scienze Molecolari Agroalimentari of the University of Milano, for generously donationg the samples, and Professor Anna Arnoldi for help in the retrieval of the crystals.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDemartin, F., Filippini, G., Gavezzotti, A. & Rizzato, S. (2004). Acta Cryst. B60, 609–620.  Web of Science CSD CAS Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds