organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Anhydro-2-C-benzyl­oxymethyl-2,3:5,6-di-O-iso­propyl­­idene-D-tallitol

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk

(Received 1 August 2005; accepted 3 August 2005; online 12 August 2005)

The crystal structure of the title compound, C20H28O6, allows a firm assignment of the stereochemistry at C-4 of formation of the tetra­hydro­furan (THF) ring.

Comment

Hitherto, most carbohydrate building blocks have linear carbon chains (Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65-90.]). However, the Kiliani reaction on each of the four ketohexoses provides branched sugar lactones which are readily crystallized as a new family of chiral carbohydrate building blocks (Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]). Such materials have been used to make novel sugar amino acids as potential dipeptide isosteres (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]). In further studies on the potential of such inter­mediates to form complex chiral targets, further investigations into the synthesis of branched THF rings have been carried out. Thus reaction of D-fructose (1)[link] with sodium cyanide, followed by acetonation of the crude mixture of the resulting lactones, gave the crystalline diacetonide (2)[link] (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]). Reaction of (2)[link] with benzyl bromide and sodium hydride in the presence of tetra-n-butyl ammonium iodide in dimethylformamide afforded the corresponding benzyl ether (3)[link]. The lactone (3) was subjected to a sequence of reactions to construct the THF ring: reduction of (3)[link] to the corresponding diol, followed by protection of one of the hydr­oxy groups as a silyl ether, activation of the remaining hydr­oxy group by mesyl chloride and ring closure of the resulting silyl ether by treatment with tetra­butyl­ammonium fluoride gave a crystalline ether (4)[link]. As silyl ethers are particularly prone to migrate under basic conditions, there were a number of stages in the sequence that could have given rise to alternative stereochemistry at C-4; the crystal structure of the title compound (Fig. 1[link]) firmly establishes that the closure of the THF ring proceeded by nucleophilic displacement of a C-4 mesylate by the C-1 hydr­oxy function of the polyol (Soengas & Fleet, 2005[Soengas, R. & Fleet, G. W. J. (2005). In preparation.]).

[Scheme 1]

The crystal structure of (4) (Fig. 2[link]) contains a close contact, H231⋯O70 = 2.49 Å, which, if it were a weak C—H⋯O inter­action, would link mol­ecules along 21 screw axes to form extended chains in the b axis direction. However, this inter­action is too weak to prevent the O70/O71 disorder.

[Figure 1]
Figure 1
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. Both disorder components are shown.
[Figure 2]
Figure 2
A projection of the crystal structure of the title compound along the a axis. Putative hydrogen bonding is shown by dotted lines.

Experimental

The benzyl ether (4) was crystallized from 60–80′ petroleum spirit (m.p. 317–318 K, [α]D23 −13.2, c 1.0 in chloro­form) (Soengas & Fleet, 2005[Soengas, R. & Fleet, G. W. J. (2005). In preparation.]).

Crystal data
  • C20H28O6

  • Mr = 364.44

  • Orthorhombic, P 21 21 21

  • a = 5.9504 (2) Å

  • b = 14.5676 (4) Å

  • c = 22.0403 (8) Å

  • V = 1910.52 (11) Å3

  • Z = 4

  • Dx = 1.267 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2296 reflections

  • θ = 5–27°

  • μ = 0.09 mm−1

  • T = 170 K

  • Lath, colourless

  • 0.90 × 0.15 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.84, Tmax = 0.99

  • 10188 measured reflections

  • 2486 independent reflections

  • 2305 reflections with I > −3σ(I)

  • Rint = 0.037

  • θmax = 27.5°

  • h = −7 → 7

  • k = −18 → 18

  • l = −28 → 28

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.075

  • S = 0.99

  • 2305 reflections

  • 245 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + ( 0.03P)2 + 0.2P] where P = (max(Fo2,0) + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

  • Extinction correction: Larson (1970[Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.]), equation 22

  • Extinction coefficient: 7.9 (11) × 102

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H231⋯O70i 0.95 2.49 3.372 (2) 155
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

In the absence of significant anomalous scattering, Friedel pairs were merged, and the absolute configuration was arbitrarily assigned. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by multi-scan inter-frame scaling (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]). H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å) and displacement parameters [Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom], after which they were refined with riding constraints. The crystal structure shows disorder in the C4–C8 ring. One of the O atoms was modelled as split (O70 and O71, with site-occupancy factors of 0.44 and 0.56, respectively). The consequential alternative sites for C9 and C10 were adequately accommodated by their anisotropic displacement parameters. No attempt was made to model disordered H atoms on C8, C9 and C10; stable positions were found for `average' atoms during the restrained least-squares refinement.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]; data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

1,4-Anhydro-2-C-benzyloxymethyl-2,3:5,6-di-O-isopropylidene-D-tallitol top
Crystal data top
C20H28O6F(000) = 784
Mr = 364.44Dx = 1.267 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2296 reflections
a = 5.9504 (2) Åθ = 5–27°
b = 14.5676 (4) ŵ = 0.09 mm1
c = 22.0403 (8) ÅT = 170 K
V = 1910.52 (11) Å3Lath, colourless
Z = 40.90 × 0.15 × 0.10 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2305 reflections with I > 3.0σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 77
Tmin = 0.84, Tmax = 0.99k = 1818
10188 measured reflectionsl = 2828
2486 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(F2) + ( 0.03P)2 + 0.2P]
where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max = 0.000389
S = 0.99Δρmax = 0.21 e Å3
2305 reflectionsΔρmin = 0.20 e Å3
245 parametersExtinction correction: Larson 1970 Crystallographic Computing eq 22
0 restraintsExtinction coefficient: 790 (110)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4054 (3)0.02469 (12)0.51386 (8)0.0259
C20.5454 (3)0.05597 (12)0.53868 (7)0.0255
C30.4794 (3)0.13805 (13)0.50008 (8)0.0286
C40.6390 (4)0.16062 (12)0.44865 (8)0.0303
O50.6652 (2)0.08412 (8)0.40887 (6)0.0347
C60.7076 (4)0.11835 (14)0.34932 (9)0.0360
O700.5562 (9)0.1956 (4)0.3499 (2)0.04470.4412
O710.6677 (8)0.2170 (3)0.34900 (19)0.04430.5588
C80.5589 (4)0.23673 (13)0.40643 (9)0.0372
C90.9553 (4)0.1208 (2)0.33683 (11)0.0621
C100.5849 (4)0.0607 (2)0.30437 (10)0.0626
O110.2561 (2)0.11806 (9)0.47960 (6)0.0314
C120.2451 (3)0.02028 (12)0.46856 (8)0.0289
O130.4616 (2)0.07040 (8)0.59844 (5)0.0315
C140.3653 (4)0.01380 (13)0.61898 (8)0.0313
O150.2823 (2)0.05770 (8)0.56549 (5)0.0321
C160.5412 (4)0.07157 (15)0.65028 (10)0.0461
C170.1677 (4)0.00759 (17)0.65927 (10)0.0477
C180.5505 (3)0.09920 (12)0.48604 (8)0.0282
O190.4125 (2)0.16380 (8)0.45525 (6)0.0332
C200.5411 (4)0.23965 (13)0.43153 (10)0.0384
C210.6787 (3)0.21552 (13)0.37669 (9)0.0316
C220.5918 (4)0.22880 (14)0.31876 (9)0.0383
C230.7158 (4)0.20694 (15)0.26792 (10)0.0489
C240.9296 (5)0.17026 (16)0.27436 (13)0.0548
C251.0174 (4)0.15653 (15)0.33164 (12)0.0502
C260.8945 (4)0.17985 (14)0.38224 (11)0.0383
H210.70630.04380.53930.0296*
H310.47380.19370.52670.0323*
H410.78900.17570.46580.0372*
H810.63080.29540.41550.0441*
H820.39790.24560.40970.0449*
H910.97990.14770.29730.0922*
H921.00890.05770.33710.0946*
H931.03260.15520.36710.0935*
H1010.61310.08400.26330.0941*
H1020.64000.00110.30750.0942*
H1030.42800.06170.31170.0947*
H1210.29080.00720.42590.0322*
H1220.08870.00200.47570.0342*
H1610.47230.13060.66190.0699*
H1620.66940.08210.62320.0694*
H1630.59210.04070.68730.0696*
H1710.09290.05010.67090.0725*
H1720.06660.04530.63640.0734*
H1730.21510.03950.69490.0729*
H1810.65850.07040.45710.0336*
H1820.63640.12990.51830.0345*
H2010.43050.28540.41840.0471*
H2020.63920.26390.46350.0461*
H2210.44290.25380.31480.0456*
H2310.65330.21670.22890.0584*
H2411.01370.15630.23960.0668*
H2511.16370.13150.33640.0600*
H2610.95620.17000.42170.0465*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (10)0.0244 (9)0.0260 (9)0.0029 (9)0.0009 (8)0.0019 (8)
C20.0280 (9)0.0251 (9)0.0232 (9)0.0014 (9)0.0011 (8)0.0061 (8)
C30.0311 (10)0.0246 (10)0.0303 (10)0.0009 (9)0.0001 (9)0.0049 (8)
C40.0351 (11)0.0231 (9)0.0329 (10)0.0050 (9)0.0019 (9)0.0012 (8)
O50.0442 (8)0.0279 (7)0.0321 (7)0.0018 (7)0.0084 (7)0.0016 (6)
C60.0432 (13)0.0364 (11)0.0284 (10)0.0045 (11)0.0029 (10)0.0022 (9)
O700.054 (3)0.051 (3)0.029 (2)0.008 (3)0.010 (3)0.004 (2)
O710.069 (3)0.033 (2)0.0308 (17)0.003 (2)0.011 (2)0.0067 (14)
C80.0459 (12)0.0309 (10)0.0347 (11)0.0038 (11)0.0032 (11)0.0047 (9)
C90.0492 (14)0.095 (2)0.0419 (13)0.0311 (16)0.0001 (12)0.0151 (14)
C100.0398 (13)0.105 (2)0.0428 (13)0.0065 (16)0.0005 (11)0.0263 (14)
O110.0280 (7)0.0266 (7)0.0397 (8)0.0043 (6)0.0026 (6)0.0026 (6)
C120.0263 (10)0.0260 (10)0.0343 (10)0.0014 (9)0.0009 (9)0.0031 (8)
O130.0426 (8)0.0272 (7)0.0246 (6)0.0078 (7)0.0045 (6)0.0045 (5)
C140.0405 (12)0.0282 (10)0.0250 (9)0.0096 (10)0.0014 (9)0.0030 (8)
O150.0374 (7)0.0329 (7)0.0261 (6)0.0102 (7)0.0026 (6)0.0024 (6)
C160.0563 (14)0.0388 (12)0.0432 (12)0.0079 (12)0.0150 (11)0.0051 (10)
C170.0523 (14)0.0517 (14)0.0392 (12)0.0146 (13)0.0116 (12)0.0115 (11)
C180.0292 (9)0.0245 (9)0.0310 (10)0.0020 (9)0.0061 (9)0.0050 (8)
O190.0350 (7)0.0258 (6)0.0386 (7)0.0044 (7)0.0033 (6)0.0126 (6)
C200.0475 (13)0.0256 (10)0.0420 (12)0.0006 (10)0.0039 (11)0.0103 (9)
C210.0329 (11)0.0218 (10)0.0400 (11)0.0047 (9)0.0001 (10)0.0089 (9)
C220.0362 (12)0.0363 (11)0.0425 (12)0.0007 (11)0.0001 (11)0.0122 (10)
C230.0635 (16)0.0440 (13)0.0391 (12)0.0048 (13)0.0026 (12)0.0109 (11)
C240.0622 (16)0.0403 (13)0.0619 (16)0.0025 (14)0.0294 (14)0.0071 (12)
C250.0347 (12)0.0342 (12)0.0816 (18)0.0046 (10)0.0144 (13)0.0215 (12)
C260.0310 (12)0.0335 (12)0.0504 (13)0.0049 (10)0.0028 (10)0.0134 (10)
Geometric parameters (Å, º) top
C1—C21.541 (2)O11—C121.447 (2)
C1—C121.528 (3)C12—H1210.998
C1—O151.436 (2)C12—H1220.998
C1—C181.516 (2)O13—C141.428 (2)
C2—C31.519 (3)C14—O151.429 (2)
C2—O131.424 (2)C14—C161.510 (3)
C2—H210.974C14—C171.506 (3)
C3—C41.515 (3)C16—H1610.986
C3—O111.433 (2)C16—H1620.982
C3—H311.002C16—H1630.979
C4—O51.426 (2)C17—H1710.985
C4—C81.524 (3)C17—H1720.958
C4—H410.994C17—H1730.955
O5—C61.427 (2)C18—O191.421 (2)
C6—O701.441 (6)C18—H1810.998
C6—C91.500 (4)C18—H1820.984
C6—C101.490 (3)O19—C201.442 (2)
C6—O711.457 (5)C20—C211.501 (3)
C6—C91.500 (4)C20—H2010.980
C6—C101.490 (3)C20—H2020.982
O70—C81.384 (6)C21—C221.391 (3)
O71—C81.450 (5)C21—C261.391 (3)
C8—H810.976C22—C231.379 (3)
C8—H820.970C22—H2210.962
C8—H810.976C23—C241.387 (4)
C8—H820.970C23—H2310.948
C9—H910.966C24—C251.381 (4)
C9—H920.972C24—H2410.937
C9—H930.953C25—C261.376 (3)
C10—H1010.982C25—H2510.949
C10—H1020.961C26—H2610.955
C10—H1030.947
C2—C1—C12104.03 (14)H101—C10—H103108.7
C2—C1—O15104.47 (13)H102—C10—H103109.8
C12—C1—O15110.03 (15)C3—O11—C12107.15 (14)
C2—C1—C18112.45 (15)C1—C12—O11106.49 (14)
C12—C1—C18113.44 (15)C1—C12—H121111.4
O15—C1—C18111.79 (14)O11—C12—H121109.5
C1—C2—C3105.17 (14)C1—C12—H122109.8
C1—C2—O13104.58 (14)O11—C12—H122109.6
C3—C2—O13108.14 (14)H121—C12—H122109.9
C1—C2—H21113.5C2—O13—C14107.88 (13)
C3—C2—H21113.9O13—C14—O15105.17 (13)
O13—C2—H21110.9O13—C14—C16110.22 (17)
C2—C3—C4115.33 (16)O15—C14—C16111.54 (16)
C2—C3—O11104.84 (15)O13—C14—C17108.82 (16)
C4—C3—O11112.94 (15)O15—C14—C17107.99 (16)
C2—C3—H31108.5C16—C14—C17112.77 (17)
C4—C3—H31106.5C1—O15—C14109.10 (12)
O11—C3—H31108.5C14—C16—H161108.5
C3—C4—O5111.02 (15)C14—C16—H162110.3
C3—C4—C8114.75 (17)H161—C16—H162110.2
O5—C4—C8103.14 (14)C14—C16—H163109.8
C3—C4—H41109.0H161—C16—H163108.2
O5—C4—H41108.0H162—C16—H163109.8
C8—C4—H41110.7C14—C17—H171109.3
C4—O5—C6108.16 (13)C14—C17—H172107.4
O5—C6—O7098.9 (3)H171—C17—H172110.0
O5—C6—C9110.54 (19)C14—C17—H173110.8
O70—C6—C9126.7 (3)H171—C17—H173109.6
O5—C6—C10109.16 (18)H172—C17—H173109.7
O70—C6—C1098.0 (3)C1—C18—O19109.76 (15)
C9—C6—C10111.9 (2)C1—C18—H181108.9
O5—C6—O71108.7 (2)O19—C18—H181110.2
O5—C6—C9110.54 (19)C1—C18—H182109.2
O71—C6—C997.8 (3)O19—C18—H182110.1
O5—C6—C10109.16 (18)H181—C18—H182108.6
O71—C6—C10118.2 (3)C18—O19—C20111.94 (14)
C9—C6—C10111.9 (2)O19—C20—C21113.68 (16)
C6—O70—C8109.8 (3)O19—C20—H201105.7
C6—O71—C8105.3 (3)C21—C20—H201106.8
C4—C8—O70103.8 (3)O19—C20—H202109.3
C4—C8—H81112.0C21—C20—H202109.8
O70—C8—H81124.7H201—C20—H202111.5
C4—C8—H82111.2C20—C21—C22120.25 (19)
O70—C8—H8296.4C20—C21—C26121.3 (2)
H81—C8—H82107.5C22—C21—C26118.4 (2)
C4—C8—O71104.4 (2)C21—C22—C23121.0 (2)
C4—C8—H81112.0C21—C22—H221118.6
O71—C8—H8199.0C23—C22—H221120.4
C4—C8—H82111.2C22—C23—C24119.8 (2)
O71—C8—H82122.1C22—C23—H231119.5
H81—C8—H82107.5C24—C23—H231120.7
C6—C9—H91108.9C23—C24—C25119.8 (2)
C6—C9—H92107.4C23—C24—H241119.4
H91—C9—H92109.8C25—C24—H241120.9
C6—C9—H93111.0C24—C25—C26120.3 (2)
H91—C9—H93110.1C24—C25—H251120.2
H92—C9—H93109.5C26—C25—H251119.5
C6—C10—H101109.5C21—C26—C25120.8 (2)
C6—C10—H102108.2C21—C26—H261119.4
H101—C10—H102109.4C25—C26—H261119.8
C6—C10—H103111.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H231···O70i0.952.493.372 (2)155
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

Financial support (to RS) provided by the Xunta de Galicia is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationLarson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.  Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R. & Fleet, G. W. J. (2005). In preparation.  Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds