organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-C-Benzyl­oxymethyl-2,3:5,6-di-O-iso­propyl­­idene-D-allono-1,4-lactone

CROSSMARK_Color_square_no_text.svg

aChemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and cRare Sugar Research Center, Kagawa University, Mikicho, Kagawa 761-0795, Japan
*Correspondence e-mail: david.watkin@chem.ox.ac.uk

(Received 10 August 2005; accepted 12 August 2005; online 17 August 2005)

The crystal structure of the title benzyl ether, C20H26O7, establishes the stereochemistry of the major diacetonide product from the Kiliani reaction of D-psicose. There are two independent mol­ecules in the cell related by a pseudo-twofold screw axis. There are no suitable donors for strong hydrogen bonds: the mol­ecules are simply in van der Waals contact.

Comment

Almost all of the readily available carbohydrate building blocks have linear carbon chains (Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.]; Lichtenthaler & Peters, 2004[Lichtenthaler, F. W. & Peters, S. (2004). Compt. Rend. Chim. 7, 65-90.]). However, the Kiliani reaction on ketohexoses provides branched sugar lactones bearing a hydroxy­methyl substituent at C-2. Acetonation of the crude mixtures of the resulting lactones gives reasonable yields of crystalline diacetonides (Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.]) which are suitable chiral starting materials for the synthesis of branched sugar mimics (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]). Ambiguities in the structures of the acetonides arise from (i) the stereochemistry at the quaternary carbon and (ii) the ring size of the ketal protecting groups. The structures of diacetonides derived from three of the four diastereomeric ketohexoses [D-fructose (Cowley et al., 2004[Cowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142-o2143.]; van Ameijde et al., 2004[Ameijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J, Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140-o2141.]), L-sorbose (Anderson et al., 1977[Anderson, R. A., Einstein, F. W. B., Hoge, R. & Slessor, K. N. (1977). Acta Cryst. B33, 2780-2783.]) and D-tagatose (Harding et al., 2005[Harding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o250-o252.]; Shallard-Brown et al., 2004[Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet G. W. J. (2004). Acta Cryst. E60, o2163-o2164.])] have been firmly established by X-ray crystallographic analysis. The fourth diastereomeric ketohexose D-psicose (1) is available from equilibration of D-fructose by D-tagatose 3-epimerase (Granstrom et al., 2004[Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89-94.]; Izumori, 2002[Izumori, K. (2002). Naturwissenschaften, 89, 120-124.]; Takeshita et al., 2000[Takeshita, K., Suga, A., Takada, G. & Izumori, K. (2000). J. Biosci. Bioeng. 90, 453-455.]; Itoh & Izumori, 1996[Itoh, H. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 351-353.]).

[Scheme 1]

The sequential treatment of D-psicose (1) with sodium cyanide, followed by extraction of the crude lactones with acetone in the presence of sulfuric acid gave, as the major product (Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]), a diacetonide tentatively assigned as structure (2); although the cis-fused diacetonide (2) was easily crystallized, the crystals were not suitable for X-ray crystallographic analysis. However, reaction of (2) with benzyl bromide and sodium hydride in the presence of tetra-n-butyl­ammonium iodide in dimethyl­formamide afforded the corresponding benzyl ether (3), which formed crystals for X-;ray suitable analysis. This paper reports the crystal structure of (3) (Fig. 1[link]) which unequivocally establishes the stereochemistry of the major lactone product (2) from the Kiliani–acetonation sequence on D-psicose.

The crystals were in the form of large fragile prisms which crushed easily. A long sample was eventually selected and mounted on a nylon loop using perfluoro­polyether oil so that the damaged end of the crystal was outside the X-ray beam. By mounting the crystal approximately parallel to the φ axis, the changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999[Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.]) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]).

There are two independent mol­ecules in the asymmetric unit related by a pseudo-twofold screw axis (0.51 − x, 0.46 + y, 1.50 − z). The mol­ecules differ mainly in the orientation of the phenyl group (Fig. 2[link]). The structure contains no hydrogen bonds and consists of layers loosely packed perpendicular to the c axis (Fig. 3[link]). Alternate layers contain only mol­ecules of one type.

[Figure 1]
Figure 1
View of one of the two independent mol­ecules in the asymmetric unit, with atomic displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitary.
[Figure 2]
Figure 2
View of the two independent mol­ecules superimposed to give the least-squares best fit between the atom coordinates.
[Figure 3]
Figure 3
An a axis projection of the title compound. The C atoms in one of the independent mol­ecules are coloured green, those in the other blue.

Experimental

The benzyl ether (3) was crystallized from ethyl acetate–cyclo­hexane (m.p. 345–346 K); [α]D22 − 30.0 (c, 1.06 in chloro­form); νmax (NaCl): 1781 (–C=O) cm-1; 1H NMR (CDCl3): δ 1.27, 1.40, 1.46 [3 × s, 12 H, 2 × –C(CH3)2], 3.73 (d, 1H, J2′,2′′ 9.0 Hz, H2′), 3.92–3.97 (m, 3H, H6, H6?, H4), 4.12–4.15 (m, 1 H, H5), 4.29 (d, 1H, J2′,2′′ 9.0 Hz, H2′′), 4.57 (s, 2H, –OCH2Ph), 4.85 (s, 1H, H3); 13C NMR (CDCl3): δ 24.60, 26.07, 26.60, 26.63 [2 × –C(CH3)2], 66.47 (C2'), 69.34 (C6), 73.37 (C5), 73.99 (–OCH2Ph), 80.05 (C3), 83.13 (C4), 83.70 (C2), 109.91, 113.33 [2 × –C(CH3)2], 127.76, 127.91, 128.29 (–CHAr), 136.70 (–CAr) 174.56 (C1); m/z (NH3, ES+): 401 (M + Na)+.

Crystal data
  • C20H26O7

  • Mr = 378.42

  • Monoclinic, P 21

  • a = 10.3839 (2) Å

  • b = 10.4574 (2) Å

  • c = 19.0310 (5) Å

  • β = 103.8061 (9)°

  • V = 2006.84 (8) Å3

  • Z = 4

  • Dx = 1.252 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3433 reflections

  • θ = 1–30°

  • μ = 0.09 mm−1

  • T = 190 K

  • Prism, colourless

  • 1.20 × 0.75 × 0.45 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.81, Tmax = 0.96

  • 11499 measured reflections

  • 5664 independent reflections

  • 5635 reflections with I > −3σ(I)

  • Rint = 0.027

  • θmax = 30.1°

  • h = −14 → 14

  • k = −7 → 14

  • l = −26 → 26

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.097

  • S = 0.95

  • 5635 reflections

  • 487 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.03P)2 + 0.6P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–98 Å) and isotropic displacement parameters [Uiso(H) = 1.2–1.5Ueq(C)], after which they were refined with riding constraints. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

2-C-Benzyloxymethyl-2,3:5,6-di-O-isopropylidene-D-allono-1,4-lactone top
Crystal data top
C20H26O7F(000) = 808
Mr = 378.42Dx = 1.252 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3433 reflections
a = 10.3839 (2) Åθ = 1–30°
b = 10.4574 (2) ŵ = 0.09 mm1
c = 19.0310 (5) ÅT = 190 K
β = 103.8061 (9)°Prism, colourless
V = 2006.84 (8) Å31.20 × 0.75 × 0.45 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
5635 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 30.1°, θmin = 1.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.81, Tmax = 0.96k = 714
11499 measured reflectionsl = 2626
5664 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(F2) + (0.03P)2 + 0.6P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.95(Δ/σ)max = 0.001
5635 reflectionsΔρmax = 0.23 e Å3
487 parametersΔρmin = 0.17 e Å3
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6912 (3)0.6817 (3)0.89496 (16)0.0613
C20.6732 (2)0.7661 (2)0.95659 (12)0.0358
O30.56299 (14)0.72111 (16)0.98275 (10)0.0429
C40.4476 (2)0.7902 (2)0.94647 (13)0.0393
C50.3862 (2)0.8461 (2)1.00390 (12)0.0342
C60.32997 (19)0.74764 (19)1.04783 (11)0.0309
C70.17916 (19)0.7523 (2)1.01840 (11)0.0312
C80.1574 (2)0.8728 (2)0.97093 (12)0.0351
O90.27461 (15)0.92551 (15)0.96805 (9)0.0397
O100.05341 (16)0.9189 (2)0.94083 (10)0.0526
O110.12530 (14)0.77517 (17)1.07923 (8)0.0389
H110.76920.71110.87520.1072*
C120.2311 (2)0.7618 (2)1.14340 (12)0.0385
H120.71220.59350.91070.1072*
O130.34809 (15)0.79243 (17)1.12045 (8)0.0389
H130.61530.68110.85720.1070*
C140.2355 (3)0.6250 (3)1.17066 (15)0.0499
C150.2127 (3)0.8590 (3)1.19836 (15)0.0595
C160.1155 (2)0.6383 (2)0.97486 (13)0.0409
O170.17799 (16)0.63022 (18)0.91661 (9)0.0475
C180.1019 (3)0.5727 (3)0.85246 (14)0.0523
C190.1805 (3)0.5838 (2)0.79633 (13)0.0493
C200.1947 (4)0.7012 (3)0.76556 (17)0.0745
C210.2743 (5)0.7150 (4)0.71718 (19)0.0858
C220.3377 (4)0.6098 (4)0.69765 (17)0.0723
C230.3234 (4)0.4942 (3)0.72696 (19)0.0731
C240.2461 (3)0.4807 (3)0.77668 (17)0.0645
C250.5008 (2)0.8934 (3)0.90304 (16)0.0541
O260.63821 (16)0.89243 (16)0.93251 (10)0.0468
C270.7940 (2)0.7712 (3)1.01804 (15)0.0502
H410.38460.73270.91420.0519*
H510.45710.89981.03600.0470*
H610.36650.66071.04370.0466*
C1010.1863 (3)0.2800 (3)0.60522 (15)0.0542
C1020.1537 (2)0.3374 (2)0.53881 (12)0.0337
O1030.03441 (14)0.28084 (15)0.52740 (10)0.0430
C1040.0740 (2)0.3658 (2)0.55386 (13)0.0365
C1050.1294 (2)0.40541 (19)0.48991 (13)0.0371
C1060.18060 (19)0.29669 (19)0.45118 (11)0.0303
C1070.33235 (19)0.30000 (18)0.47837 (11)0.0296
C1080.3581 (2)0.4284 (2)0.51802 (12)0.0360
O1090.24325 (16)0.48850 (14)0.51772 (10)0.0434
O1100.46329 (17)0.47463 (18)0.54578 (10)0.0520
O1110.38350 (15)0.30560 (16)0.41557 (8)0.0392
C1120.2743 (2)0.2868 (2)0.35378 (12)0.0404
O1130.16033 (17)0.32835 (17)0.37628 (9)0.0437
C1140.2634 (3)0.1469 (2)0.33179 (14)0.0505
C1150.2938 (3)0.3743 (3)0.29361 (16)0.0636
C1160.3952 (2)0.1928 (2)0.52760 (11)0.0325
O1170.33834 (14)0.20092 (15)0.58821 (8)0.0367
C1180.3999 (2)0.1202 (2)0.64651 (11)0.0358
C1190.3113 (2)0.11102 (19)0.69815 (12)0.0336
C1200.3578 (2)0.1389 (2)0.77052 (12)0.0412
C1210.2762 (3)0.1263 (3)0.81823 (14)0.0526
C1220.1479 (3)0.0854 (3)0.79376 (16)0.0584
C1230.0992 (3)0.0588 (3)0.72118 (18)0.0561
C1240.1804 (2)0.0716 (2)0.67285 (14)0.0436
C1250.0123 (2)0.4789 (2)0.58536 (15)0.0459
O1260.12454 (15)0.47056 (15)0.54808 (9)0.0398
C1270.2637 (2)0.3203 (2)0.47264 (14)0.0447
H1410.29950.61221.21680.0839*
H1420.14940.60411.17870.0838*
H1430.25260.56601.13560.0836*
H1510.28500.85721.23960.1017*
H1520.13400.84231.21210.1012*
H1530.20730.94371.17650.1018*
H1610.12710.56281.00730.0582*
H1620.01610.65200.95780.0579*
H1810.01500.62300.83670.0714*
H1820.07680.48570.86130.0722*
H2010.14970.77030.77740.0980*
H2110.28410.79750.69950.1165*
H2210.38780.61800.66340.0961*
H2310.36130.42220.71190.1003*
H2410.23980.39820.79720.0892*
H2510.46210.97580.90980.0691*
H2520.47510.87270.85090.0691*
H2710.76740.81791.05670.0819*
H2720.86370.81511.00070.0826*
H2730.82360.68501.03510.0821*
H10110.26710.32190.61440.0981*
H10120.11170.29280.64520.0979*
H10130.20080.18810.59920.0982*
H10410.14220.32150.59240.0478*
H10510.05750.44920.45380.0514*
H10610.13960.21490.45960.0428*
H11410.34100.11960.31550.0940*
H11420.26140.09160.37170.0936*
H11430.18890.13110.29150.0936*
H11510.37600.36120.28290.1135*
H11520.29260.46270.31150.1137*
H11530.22420.36460.25220.1139*
H11610.49300.20110.54130.0455*
H11620.37640.10910.50060.0447*
H11810.48990.15260.67160.0480*
H11820.41700.03560.62730.0484*
H12010.44220.16570.78730.0534*
H12110.30840.14990.86660.0663*
H12210.09690.07500.82770.0864*
H12310.01200.03260.70350.0778*
H12410.14580.05680.62340.0614*
H12510.03190.46860.63890.0615*
H12520.05320.56180.57460.0617*
H12710.34190.36610.48050.0712*
H12720.28120.23110.46410.0709*
H12730.23140.35610.43230.0713*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.078 (2)0.0607 (17)0.0530 (16)0.0116 (15)0.0308 (15)0.0019 (13)
C20.0313 (10)0.0382 (10)0.0431 (11)0.0027 (8)0.0194 (9)0.0076 (9)
O30.0283 (7)0.0490 (9)0.0559 (10)0.0048 (6)0.0189 (7)0.0216 (8)
C40.0284 (9)0.0488 (12)0.0433 (11)0.0027 (9)0.0136 (9)0.0113 (10)
C50.0257 (9)0.0366 (10)0.0410 (11)0.0003 (7)0.0093 (8)0.0066 (8)
C60.0271 (9)0.0338 (9)0.0334 (10)0.0020 (7)0.0102 (8)0.0052 (8)
C70.0254 (8)0.0364 (9)0.0339 (10)0.0029 (7)0.0114 (7)0.0049 (8)
C80.0312 (10)0.0398 (10)0.0368 (11)0.0073 (8)0.0131 (8)0.0074 (8)
O90.0354 (8)0.0352 (7)0.0514 (9)0.0055 (6)0.0163 (7)0.0139 (7)
O100.0369 (9)0.0685 (12)0.0545 (10)0.0182 (8)0.0147 (8)0.0266 (9)
O110.0327 (7)0.0530 (9)0.0346 (7)0.0110 (7)0.0147 (6)0.0101 (7)
C120.0371 (10)0.0473 (12)0.0330 (10)0.0087 (9)0.0124 (8)0.0100 (9)
O130.0347 (7)0.0498 (9)0.0324 (7)0.0016 (7)0.0082 (6)0.0048 (7)
C140.0446 (13)0.0526 (14)0.0568 (15)0.0087 (11)0.0204 (12)0.0253 (12)
C150.080 (2)0.0647 (17)0.0388 (13)0.0124 (15)0.0235 (13)0.0008 (12)
C160.0331 (11)0.0443 (12)0.0484 (13)0.0063 (9)0.0156 (10)0.0027 (10)
O170.0386 (8)0.0621 (11)0.0432 (9)0.0114 (8)0.0124 (7)0.0155 (8)
C180.0537 (14)0.0534 (14)0.0440 (13)0.0082 (12)0.0000 (11)0.0052 (11)
C190.0648 (16)0.0427 (12)0.0341 (12)0.0026 (11)0.0003 (11)0.0018 (9)
C200.128 (3)0.0489 (15)0.0520 (17)0.0237 (18)0.0317 (19)0.0098 (13)
C210.148 (4)0.061 (2)0.0553 (19)0.007 (2)0.039 (2)0.0144 (16)
C220.097 (3)0.076 (2)0.0456 (16)0.0005 (19)0.0204 (16)0.0011 (15)
C230.089 (2)0.0637 (19)0.068 (2)0.0196 (18)0.0212 (18)0.0010 (16)
C240.084 (2)0.0454 (14)0.0615 (18)0.0088 (14)0.0117 (16)0.0011 (13)
C250.0395 (12)0.0686 (17)0.0599 (16)0.0118 (12)0.0230 (12)0.0316 (14)
O260.0361 (8)0.0436 (9)0.0670 (12)0.0043 (7)0.0249 (8)0.0207 (8)
C270.0363 (11)0.0541 (14)0.0593 (15)0.0000 (11)0.0094 (11)0.0084 (12)
C1010.0612 (16)0.0611 (15)0.0474 (14)0.0054 (13)0.0267 (12)0.0070 (12)
C1020.0303 (10)0.0327 (9)0.0409 (11)0.0050 (7)0.0139 (8)0.0020 (8)
O1030.0314 (7)0.0345 (7)0.0682 (11)0.0012 (6)0.0221 (7)0.0129 (8)
C1040.0286 (9)0.0349 (10)0.0476 (12)0.0033 (8)0.0123 (9)0.0044 (9)
C1050.0321 (10)0.0272 (9)0.0524 (13)0.0042 (8)0.0107 (9)0.0002 (9)
C1060.0284 (9)0.0278 (8)0.0348 (10)0.0006 (7)0.0076 (8)0.0029 (7)
C1070.0284 (9)0.0292 (9)0.034 (1)0.0004 (7)0.0133 (8)0.0033 (7)
C1080.0369 (11)0.0317 (9)0.0430 (11)0.0067 (8)0.0165 (9)0.0016 (8)
O1090.0423 (9)0.0258 (7)0.0646 (11)0.0037 (6)0.0180 (8)0.0051 (7)
O1100.0431 (9)0.0531 (10)0.0629 (12)0.0206 (8)0.0187 (8)0.0122 (9)
O1110.0383 (8)0.0483 (9)0.0354 (8)0.0037 (7)0.0177 (7)0.0062 (6)
C1120.0479 (12)0.0412 (11)0.0338 (10)0.0025 (10)0.0130 (9)0.0056 (9)
O1130.0428 (9)0.0503 (9)0.0357 (8)0.0075 (7)0.0049 (7)0.0058 (7)
C1140.0631 (16)0.0447 (13)0.0480 (14)0.0056 (11)0.0220 (12)0.0037 (11)
C1150.092 (2)0.0594 (17)0.0422 (14)0.0056 (16)0.0214 (14)0.0162 (12)
C1160.0292 (9)0.0361 (9)0.0354 (10)0.0062 (7)0.0141 (8)0.0056 (8)
O1170.0380 (8)0.0414 (8)0.0346 (7)0.0132 (6)0.0163 (6)0.0118 (6)
C1180.0330 (10)0.0402 (10)0.0331 (10)0.0080 (8)0.0056 (8)0.0072 (8)
C1190.0369 (10)0.0304 (9)0.0338 (10)0.0053 (8)0.0091 (8)0.0066 (8)
C1200.0389 (11)0.0478 (12)0.0345 (11)0.0105 (9)0.0038 (9)0.0045 (9)
C1210.0577 (15)0.0671 (16)0.0345 (11)0.0239 (13)0.0142 (11)0.0094 (11)
C1220.0568 (16)0.0704 (18)0.0559 (16)0.0205 (14)0.0294 (14)0.0281 (14)
C1230.0424 (13)0.0590 (16)0.0701 (19)0.0047 (12)0.0200 (13)0.0119 (14)
C1240.0415 (12)0.0479 (12)0.0411 (12)0.0063 (10)0.0097 (10)0.0014 (10)
C1250.0308 (10)0.0470 (12)0.0586 (14)0.0041 (9)0.0081 (10)0.0192 (11)
O1260.0301 (7)0.0334 (7)0.0569 (10)0.0032 (6)0.0122 (7)0.0111 (7)
C1270.0435 (12)0.0371 (11)0.0496 (13)0.0023 (9)0.0036 (10)0.0009 (10)
Geometric parameters (Å, º) top
C1—C21.515 (4)C101—C1021.509 (3)
C1—H111.018C101—H10110.999
C1—H120.978C101—H10120.957
C1—H130.932C101—H10130.975
C2—O31.432 (2)C102—O1031.435 (2)
C2—O261.417 (3)C102—O1261.427 (3)
C2—C271.498 (3)C102—C1271.496 (3)
O3—C41.428 (3)O103—C1041.428 (3)
C4—C51.509 (3)C104—C1051.522 (3)
C4—C251.540 (3)C104—C1251.534 (3)
C4—H410.987C104—H10411.003
C5—C61.527 (3)C105—C1061.518 (3)
C5—O91.456 (3)C105—O1091.461 (3)
C5—H511.008C105—H10510.998
C6—C71.533 (3)C106—C1071.537 (3)
C6—O131.429 (2)C106—O1131.429 (2)
C6—H610.995C106—H10610.985
C7—C81.535 (3)C107—C1081.532 (3)
C7—O111.421 (2)C107—O1111.420 (2)
C7—C161.511 (3)C107—C1161.506 (3)
C8—O91.349 (2)C108—O1091.347 (3)
C8—O101.197 (3)C108—O1101.196 (3)
O11—C121.441 (3)O111—C1121.439 (3)
C12—O131.422 (2)C112—O1131.419 (3)
C12—C141.518 (3)C112—C1141.518 (3)
C12—C151.503 (4)C112—C1151.517 (3)
C14—H1410.976C114—H11410.974
C14—H1420.967C114—H11420.959
C14—H1430.956C114—H11430.964
C15—H1510.948C115—H11510.934
C15—H1520.933C115—H11520.986
C15—H1530.974C115—H11530.939
C16—O171.414 (3)C116—O1171.418 (2)
C16—H1610.992C116—H11610.991
C16—H1621.016C116—H11621.010
O17—C181.420 (3)O117—C1181.419 (2)
C18—C191.496 (4)C118—C1191.501 (3)
C18—H1811.025C118—H11811.001
C18—H1820.972C118—H11820.989
C19—C201.383 (4)C119—C1201.377 (3)
C19—C241.374 (4)C119—C1241.392 (3)
C20—C211.384 (5)C120—C1211.389 (3)
C20—H2010.917C120—H12010.902
C21—C221.378 (5)C121—C1221.371 (4)
C21—H2110.941C121—H12110.934
C22—C231.354 (5)C122—C1231.381 (4)
C22—H2210.930C122—H12210.934
C23—C241.386 (5)C123—C1241.395 (3)
C23—H2310.927C123—H12310.929
C24—H2410.955C124—H12410.937
C25—O261.403 (3)C125—O1261.431 (3)
C25—H2510.973C125—H12510.996
C25—H2520.989C125—H12521.008
C27—H2710.976C127—H12710.984
C27—H2720.978C127—H12720.957
C27—H2730.983C127—H12730.983
C2—C1—H11111.4C102—C101—H1011109.8
C2—C1—H12111.8C102—C101—H1012108.0
H11—C1—H12105.1H1011—C101—H1012110.8
C2—C1—H13111.3C102—C101—H1013110.7
H11—C1—H13108.6H1011—C101—H1013109.8
H12—C1—H13108.4H1012—C101—H1013107.7
C1—C2—O3109.6 (2)C101—C102—O103109.69 (19)
C1—C2—O26111.2 (2)C101—C102—O126111.6 (2)
O3—C2—O26104.72 (16)O103—C102—O126104.83 (16)
C1—C2—C27113.0 (2)C101—C102—C127112.2 (2)
O3—C2—C27109.27 (19)O103—C102—C127109.69 (18)
O26—C2—C27108.7 (2)O126—C102—C127108.53 (18)
C2—O3—C4108.29 (16)C102—O103—C104109.05 (15)
O3—C4—C5107.26 (19)O103—C104—C105107.69 (19)
O3—C4—C25104.32 (16)O103—C104—C125104.46 (16)
C5—C4—C25112.6 (2)C105—C104—C125112.05 (19)
O3—C4—H41110.4O103—C104—H1041109.3
C5—C4—H41110.7C105—C104—H1041112.0
C25—C4—H41111.2C125—C104—H1041111.0
C4—C5—C6114.72 (18)C104—C105—C106115.28 (17)
C4—C5—O9107.97 (18)C104—C105—O109107.44 (19)
C6—C5—O9106.00 (15)C106—C105—O109105.91 (16)
C4—C5—H51106.3C104—C105—H1051108.2
C6—C5—H51111.3C106—C105—H1051107.5
O9—C5—H51110.5O109—C105—H1051112.6
C5—C6—C7105.60 (16)C105—C106—C107105.63 (16)
C5—C6—O13109.23 (17)C105—C106—O113108.98 (17)
C7—C6—O13103.30 (15)C107—C106—O113103.04 (15)
C5—C6—H61111.7C105—C106—H1061110.9
C7—C6—H61112.1C107—C106—H1061114.4
O13—C6—H61114.2O113—C106—H1061113.4
C6—C7—C8103.62 (16)C106—C107—C108103.30 (16)
C6—C7—O11105.91 (16)C106—C107—O111106.07 (16)
C8—C7—O11108.09 (16)C108—C107—O111108.78 (15)
C6—C7—C16116.74 (17)C106—C107—C116116.72 (15)
C8—C7—C16109.94 (18)C108—C107—C116110.32 (18)
O11—C7—C16111.94 (16)O111—C107—C116111.13 (15)
C7—C8—O9110.60 (17)C107—C108—O109110.89 (17)
C7—C8—O10127.0 (2)C107—C108—O110127.3 (2)
O9—C8—O10122.4 (2)O109—C108—O110121.8 (2)
C5—O9—C8111.86 (16)C105—O109—C108111.30 (16)
C7—O11—C12107.78 (15)C107—O111—C112107.57 (15)
O11—C12—O13104.60 (16)O111—C112—O113105.24 (17)
O11—C12—C14109.6 (2)O111—C112—C114110.5 (2)
O13—C12—C14111.07 (18)O113—C112—C114111.4 (2)
O11—C12—C15109.02 (19)O111—C112—C115108.2 (2)
O13—C12—C15108.7 (2)O113—C112—C115108.3 (2)
C14—C12—C15113.4 (2)C114—C112—C115112.8 (2)
C6—O13—C12107.35 (16)C106—O113—C112107.15 (16)
C12—C14—H141113.3C112—C114—H1141111.0
C12—C14—H142108.2C112—C114—H1142112.2
H141—C14—H142106.5H1141—C114—H1142104.5
C12—C14—H143111.4C112—C114—H1143112.2
H141—C14—H143109.8H1141—C114—H1143105.3
H142—C14—H143107.3H1142—C114—H1143111.2
C12—C15—H151110.8C112—C115—H1151111.8
C12—C15—H152109.5C112—C115—H1152106.9
H151—C15—H152109.7H1151—C115—H1152107.4
C12—C15—H153108.8C112—C115—H1153110.7
H151—C15—H153109.0H1151—C115—H1153111.1
H152—C15—H153109.0H1152—C115—H1153108.7
C7—C16—O17104.76 (16)C107—C116—O117104.97 (15)
C7—C16—H161108.3C107—C116—H1161111.3
O17—C16—H161115.5O117—C116—H1161112.4
C7—C16—H162110.0C107—C116—H1162109.1
O17—C16—H162112.3O117—C116—H1162113.5
H161—C16—H162105.9H1161—C116—H1162105.7
C16—O17—C18115.72 (18)C116—O117—C118113.76 (15)
O17—C18—C19107.1 (2)O117—C118—C119108.54 (16)
O17—C18—H181107.8O117—C118—H1181111.5
C19—C18—H181110.1C119—C118—H1181111.0
O17—C18—H182111.4O117—C118—H1182109.3
C19—C18—H182114.2C119—C118—H1182112.1
H181—C18—H182106.1H1181—C118—H1182104.4
C18—C19—C20120.2 (3)C118—C119—C120121.2 (2)
C18—C19—C24121.6 (3)C118—C119—C124119.5 (2)
C20—C19—C24118.2 (3)C120—C119—C124119.3 (2)
C19—C20—C21121.0 (3)C119—C120—C121120.7 (2)
C19—C20—H201118.9C119—C120—H1201119.9
C21—C20—H201120.1C121—C120—H1201119.3
C20—C21—C22119.8 (3)C120—C121—C122120.2 (3)
C20—C21—H211117.8C120—C121—H1211119.2
C22—C21—H211122.5C122—C121—H1211120.5
C21—C22—C23119.6 (3)C121—C122—C123119.8 (2)
C21—C22—H221119.9C121—C122—H1221117.9
C23—C22—H221120.4C123—C122—H1221122.3
C22—C23—C24120.7 (3)C122—C123—C124120.4 (3)
C22—C23—H231120.1C122—C123—H1231120.9
C24—C23—H231119.1C124—C123—H1231118.7
C23—C24—C19120.7 (3)C123—C124—C119119.6 (2)
C23—C24—H241118.6C123—C124—H1241120.0
C19—C24—H241120.7C119—C124—H1241120.3
C4—C25—O26103.96 (18)C104—C125—O126102.55 (18)
C4—C25—H251109.8C104—C125—H1251108.3
O26—C25—H251111.5O126—C125—H1251115.9
C4—C25—H252109.9C104—C125—H1252110.4
O26—C25—H252113.9O126—C125—H1252111.6
H251—C25—H252107.8H1251—C125—H1252107.9
C2—O26—C25107.06 (18)C125—O126—C102106.07 (17)
C2—C27—H271105.8C102—C127—H1271107.8
C2—C27—H272107.6C102—C127—H1272109.6
H271—C27—H272112.5H1271—C127—H1272111.7
C2—C27—H273111.3C102—C127—H1273106.1
H271—C27—H273109.4H1271—C127—H1273112.4
H272—C27—H273110.1H1272—C127—H1273109.0
 

Acknowledgements

Financial support (to RS) provided by the Xunta de Galicia is gratefully acknowledged.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmeijde, J. van, Cowley, A. R., Fleet, G. W. J., Nash, R. J, Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2140–o2141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnderson, R. A., Einstein, F. W. B., Hoge, R. & Slessor, K. N. (1977). Acta Cryst. B33, 2780–2783.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.  Google Scholar
First citationCowley, A. R., Fleet, G. W. J., Simone, M. I. & Soengas, R. (2004). Acta Cryst. E60, o2142–o2143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. (1999). Acta Cryst. B55, 1090–1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94.  Web of Science CrossRef PubMed Google Scholar
First citationHarding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o250–o252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationItoh, H. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 351–353.  CrossRef CAS Web of Science Google Scholar
First citationIzumori, K. (2002). Naturwissenschaften, 89, 120–124.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLichtenthaler, F. W. & Peters, S. (2004). Compt. Rend. Chim. 7, 65–90.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationShallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet G. W. J. (2004). Acta Cryst. E60, o2163–o2164.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationTakeshita, K., Suga, A., Takada, G. & Izumori, K. (2000). J. Biosci. Bioeng. 90, 453–455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds