metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1,2-Bis(di­ethyl­phosphino)ethane]di­chloro­nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, England
*Correspondence e-mail: sianc.davies@bbsrc.ac.uk

(Received 11 July 2005; accepted 26 July 2005; online 6 August 2005)

The neutral title complex, [NiCl2(C10H24P2)] or [NiCl2(depe)], where depe is 1,2-bis­(diethyl­phosphino)ethane, has two independent mol­ecules in the asymmetric unit. The Ni atoms in both mol­ecules are coordinated in a slightly distorted square-planar geometry by the two P atoms and two Cl ions, with bond dimensions as expected. The geometry of the depe ligand in one of the mol­ecules is typical; there is disorder in the ethyl groups in the second mol­ecule, however, leading to some slightly distorted dimensions. The two independent mol­ecules form discrete columns parallel to the crystallographic a axis; these `ordered' and `disordered' columns alternate along the crystallographic b and c directions, with short Cl⋯H van der Waals contacts linking four columns.

Comment

The title compound, (I)[link], was prepared as a starting material for the preparation of new heterometallic nickel–iron complexes, which have structural and functional properties related to those of the active site of the enzyme NiFe-hydrogenase (Smith et al., 2002[Smith, M. C., Barclay, J. E., Cramer, S. P., Davies, S. C., Gu, W.-W., Hughes, D. L., Longhurst, S. & Evans, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2641-2647.], 2003[Smith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147-4151.]; Evans & Pickett, 2003[Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.]). Good quality crystals of (I)[link] were obtained, as unreacted starting material, from an attempted preparation of novel dinickel coordination complexes that have an analogy to the active site structures of certain other metalloenzymes (Duff et al., 2005[Duff, S. E., Barclay, J. E., Davies, S. C. & Evans, D. J. (2005). Inorg. Chem. Commun. 8, 170-173.]; Evans, 2005[Evans, D. J. (2005). Coord. Chem. Rev. In the press.]).

[Scheme 1]

There are two independent mol­ecules in the asymmetric unit, 1 and 2, the second being disordered (see Fig. 1[link]). Two distinct orientations were determined for the ethyl C atoms (except for one shared terminal C) in the second mol­ecule; relative occupancies were 83.3 (4) and 16.7 (4)%. Owing to the low scattering power of the minor disordered component, bond lengths were restrained to be effectively equivalent to those in mol­ecule 1. Each Ni atom is slightly distorted square-planar coordinated by the two P and two Cl ions; the bond dimensions about the Ni atoms are as expected (Table 1[link]). The Ni atoms lie 0.0185 (4) Å from the Cl2P2 mean plane in mol­ecule 1, and 0.047 (2) and −0.061 (11) Å in 2a and 2b respectively (+ and − indicate opposite sides of the plane). The geometry of the depe ligand in mol­ecule 1 is typical, with the bridging C atoms lying −0.120 (3) and 0.246 (3) Å from the NiP2 plane; in mol­ecule 2 the equivalent distances are −0.387 (4) and 0.062 (5) Å in 2a, and 0.762 (15) and 0.839 (14) Å in 2b. The torsion angles in the major component of mol­ecule 2 are also slightly larger than those in mol­ecule 1 (Table 1[link]). In the ordered mol­ecule, the atoms lie in two inter­secting planes, one formed by Cl2NiP2 and the bridging C atoms [designated plane 1(i)], and the second formed by P2 and the ethyl C atoms [designated plane 1(ii)] (see Fig. 2[link]). The largest deviation from the 1(i) NiP2 sub-plane is 0.246 (3) Å for C2 and that from the 1(ii) P2C111 sub-plane is −0.170 (4) Å, for C122, with an angle between the normals to the sub-planes of 88.77 (9)°. The disorder in the ethyl groups of the second mol­ecule results in some degree of loss of planarity in the equivalent planes. For the major component, the largest deviation from the 2a(i) NiP2 sub-plane is 0.387 (4) Å for C3, while the 2a(ii) P2C311 sub-plane shows a more marked loss of planarity, the largest deviations from the sub-plane being 0.959 (5) Å for C312 and −0.430 (6) Å for C412. The angle between the normals to the 2a(i) and 2a(ii) sub-planes is 85.01 (13)°. For the minor component, planarity is virtually completely removed, the largest distances to the 2b(i) NiP2 sub-plane being 0.839 (14) and 0.762 (15) Å for C4b and C3b respectively. The largest distances to the 2b(ii) P2C331 sub-plane are −1.246 (5), −1.156 (17) and 0.477 (23) Å for atoms C322, C442 and C332, respectively; the angle between the normals to the 2b(i) and 2a(ii) sub-planes is 71.0 (8)°. The major orientation of the disordered mol­ecule is similar to that of the ordered mol­ecule, the two being related by a pseudo-twofold screw axis on which the two Ni atoms lie; no crystallographic pseudosymmetry relates the minor disordered C atoms to those in the ordered mol­ecule and so the pseudo-monoclinic symmetry of the crystal system is reduced to triclinic.

The two independent mol­ecules of (I)[link] in the crystal structure form discrete columns parallel to the crystallographic a direction; these `ordered' and `disordered' columns alternate along the crystallographic a and b axial directions (see Fig. 3[link]). Short van der Waals contacts (Table 2[link]), or weak hydrogen bonds, between an H atom of each bridging alkyl C atom in the ordered mol­ecule and a Cl atom of the major component of the disordered mol­ecule, are present; these bonds link two ordered and two disordered mol­ecules into tetrads about a centre of symmetry. The Cl2H4 plane is puckered, with the H2B atoms lying ±1.345 Å from the Cl42H1B2 mean plane.

[Figure 1]
Figure 1
A view of both mol­ecules in (I)[link], showing the disorder in the second and relative orientations. The minor disordered component is shown with dashed bonds. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2]
Figure 2
View showing the pseudo-twofold screw axis relating the two mol­ecules. Atoms are represented by arbitrary spheres for clarity, and H atoms have been omitted.
[Figure 3]
Figure 3
Packing arrangement in (I)[link], as viewed along the [100] vector, showing tetrads generated by weak hydrogen bonds, which are drawn as dashed lines. Atoms are drawn as arbitrary spheres for clarity, and only H atoms involved in the hydrogen bonding are shown.

Experimental

To a solution of NiCl2·6H2O (13.2 g, 55 mmol) in ethanol (50 ml), under an atmosphere of dinitro­gen, was added a solution of depe (5 g, 55 mmol) in ethanol (10 ml). The red–orange solution that formed immediately was stirred for 1 h. After reducing the volume in vacuo to approximately 30 ml, the solution was placed in a freezer overnight, during which time orange material separated out. Filtration gave the product (I)[link], which was washed with diethyl ether then dried in vacuo (8.63 g, 47%). Analysis expected for C10H24Cl2NiP2: C 35.8, H 7.2%; found C 35.9, H 7.3%. Solution 31P NMR (CD3CN; ref. phospho­ric acid): 78.04 p.p.m. Crystals were obtained as recovered starting material from an attempted reaction of [Ni(depe)Cl2] with (NEt4)[Fe{SCH2CH2)3N}(CO)] in acetonitrile solvent.

Crystal data
  • C10H24Cl2NiP2

  • Mr = 335.84

  • Triclinic, [P \overline 1]

  • a = 8.947 (2) Å

  • b = 14.082 (8) Å

  • c = 13.604 (2) Å

  • α = 91.51 (2)°

  • β = 98.18 (2)°

  • γ = 112.27 (2)°

  • V = 1564.0 (10) Å3

  • Z = 4

  • Dx = 1.426 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 10–11°

  • μ = 1.76 mm−1

  • T = 150 (2) K

  • Block, orange

  • 0.55 × 0.48 × 0.41 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • ω/θ scans

  • Absorption correction: ψ scan(EMPABS; Sheldrick et al., 1977[Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). Fourth European Crystallographic Meeting, Oxford, Abstracts, p. 147.])Tmin = 0.395, Tmax = 0.486

  • 7878 measured reflections

  • 7515 independent reflections

  • 5564 reflections with I > 2σ(I)

  • Rint = 0.011

  • θmax = 28.0°

  • h = −11 → 11

  • k = −18 → 18

  • l = 0 → 17

  • 3 standard reflections frequency: 167 min intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.07

  • 7514 reflections

  • 358 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.034P)2 + 0.317P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Ni1—Cl1 2.2073 (12)
Ni1—Cl2 2.2012 (8)
Ni1—P1 2.1372 (8)
Ni1—P2 2.1376 (12)
P1—C1 1.833 (3)
P1—C111 1.823 (3)
P1—C121 1.808 (3)
C1—C2 1.507 (4)
C2—P2 1.829 (3)
P2—C211 1.822 (3)
P2—C221 1.822 (3)
Ni2—Cl3 2.2035 (18)
Ni2—Cl4 2.214 (2)
Ni2—P3 2.139 (2)
Ni2—P4 2.140 (2)
P3—C3 1.839 (4)
P3—C311 1.840 (5)
P3—C321 1.818 (4)
C3—C4 1.476 (6)
C4—P4 1.837 (4)
P4—C411 1.808 (6)
P4—C421 1.820 (5)
Cl2—Ni1—Cl1 95.24 (4)
P1—Ni1—Cl1 87.71 (4)
P2—Ni1—Cl1 174.57 (3)
P1—Ni1—Cl2 174.44 (3)
P2—Ni1—Cl2 89.51 (4)
P1—Ni1—P2 87.78 (4)
C1—P1—Ni1 111.96 (10)
C2—C1—P1 111.48 (19)
C1—C2—P2 112.39 (19)
C2—P2—Ni1 111.28 (10)
Cl3—Ni2—Cl4 96.68 (11)
P3—Ni2—Cl3 89.43 (8)
P4—Ni2—Cl3 176.09 (13)
P3—Ni2—Cl4 173.37 (12)
P4—Ni2—Cl4 86.30 (12)
P3—Ni2—P4 87.49 (10)
C3—P3—Ni2 111.43 (14)
C4—C3—P3 108.9 (2)
C3—C4—P4 114.0 (3)
C4—P4—Ni2 109.96 (18)
Ni1—P1—C1—C2 18.2 (3)
P1—C1—C2—P2 −24.5 (3)
C1—C2—P2—Ni1 21.8 (3)
Ni2—P3—C3—C4 28.6 (4)
P3—C3—C4—P4 −30.5 (5)
C3—C4—P4—Ni2 21.1 (4)
Ni2B—P3B—C3B—C4B −18.4 (14)
P3B—C3B—C4B—P4B −5.2 (14)
C3B—C4B—P4B—Ni2B 27.5 (12)

Table 2
Table of weak hydrogen-bond interactions (Å, °)

  D—H H⋯A D⋯A D—H⋯A
C1—H1B⋯Cl4i 0.99 2.784 (3) 3.716 (4) 157.2 (2)
C2—H2B⋯Cl4ii 0.99 2.793 (4) 3.683 (5) 149.8 (2)
H1Biii⋯Cl4⋯H2Bii 77.56 (9)
Symmetry codes: (i) x, y-1, z; (ii) 1-x, 1-y, -z; (iii) x, 1+y, z.

The reflection ([\overline{1}]20) was found to be unreliable and was not used in the final refinement cycles. In the minor disordered mol­ecule, with an occupancy factor of 0.167 (4), bond lengths were restrained to be effectively equivalent to those in the ordered mol­ecule; the C atoms of the minor disorder component were refined isotropically. H atoms were included in idealized positions and set to ride on their parent atoms, with C—H distances of 0.99 and 0.98 A for ethyl and methyl C atoms, respectively; isotropic displacement parameters were set to be 1.2 and 1.5 times Ueq/Uiso(C), respectively.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: CAD4 (Hursthouse, 1976[Hursthouse, M. B. (1976). CAD4. Queen Mary College, University of London, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: CAD4 (Hursthouse, 1976); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

[1,2-bis(diethylphosphino)ethane]dichloronickel(II) top
Crystal data top
C10H24Cl2NiP2Z = 4
Mr = 335.84F(000) = 704
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.947 (2) ÅCell parameters from 25 reflections
b = 14.082 (8) Åθ = 10–11°
c = 13.604 (2) ŵ = 1.76 mm1
α = 91.51 (2)°T = 150 K
β = 98.18 (2)°Block, orange
γ = 112.27 (2)°0.55 × 0.48 × 0.41 mm
V = 1564.0 (10) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
5564 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.011
Graphite monochromatorθmax = 28.0°, θmin = 1.5°
scintillation counter; ω/θ scansh = 1111
Absorption correction: ψ scan
(EMPABS; Sheldrick et al., 1977)
k = 1818
Tmin = 0.395, Tmax = 0.486l = 017
7878 measured reflections3 standard reflections every 167 min
7515 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.034P)2 + 0.317P]
where P = (Fo2 + 2Fc2)/3
7514 reflections(Δ/σ)max = 0.001
358 parametersΔρmax = 0.34 e Å3
62 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Cell parameters were refined and the structure solved in space group C-1 (equivalent to No. 2; angles closest to 90°) with subsequent cell reduction using Delauney reduction prior to final cycles of refinement (Delauney, 1933). Data were corrected using BAYES (French and Wilson, 1978) to eliminate negative intensities prior to structure solution. The reflection (-1 2 0) was found to be unreliable and was not used in the final refinement cycles. The minor disordered component was restrained to have bond lengths as in the ordered molecule using the instruction SADI. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Delauney, B. N. (1933). Z. Kristallogr. 84, 109–149.

French, S. & Wilson, K. (1978). Acta Cryst. A34, 517–525. BAYES program to eliminate negative intensities.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.42110 (3)0.23592 (2)0.27269 (2)0.03919 (8)
Cl10.61161 (8)0.37505 (5)0.35782 (5)0.06274 (17)
Cl20.21712 (8)0.25060 (6)0.33620 (5)0.06474 (18)
P10.60665 (8)0.22224 (5)0.19714 (5)0.05002 (15)
C1110.6740 (4)0.3266 (2)0.1167 (2)0.0707 (8)
H11A0.74580.39080.15830.085*
H11B0.73960.31040.07100.085*
C1120.5351 (4)0.3444 (3)0.0563 (3)0.0854 (10)
H11C0.57840.40620.02080.128*
H11D0.46360.35390.10050.128*
H11E0.47240.28480.00800.128*
C1210.7959 (3)0.2296 (2)0.2712 (3)0.0726 (8)
H12A0.86580.21760.22600.087*
H12B0.85440.30020.30420.087*
C1220.7756 (4)0.1541 (3)0.3499 (3)0.0971 (12)
H12C0.88320.16480.38790.146*
H12D0.72430.08360.31790.146*
H12E0.70610.16480.39500.146*
C10.5313 (4)0.1019 (2)0.1163 (2)0.0694 (8)
H1A0.57500.11570.05290.083*
H1B0.57180.05230.14920.083*
C20.3470 (4)0.0551 (2)0.0943 (2)0.0648 (7)
H2A0.30930.02090.08900.078*
H2B0.30960.07540.02920.078*
P20.25418 (8)0.09540 (5)0.19029 (5)0.04841 (15)
C2110.0596 (3)0.0929 (2)0.1258 (2)0.0725 (8)
H21A0.00070.02500.08750.087*
H21B0.00640.09930.17630.087*
C2120.0732 (5)0.1751 (3)0.0564 (3)0.0990 (13)
H21C0.03630.16580.02250.148*
H21D0.14020.17060.00680.148*
H21E0.12460.24280.09430.148*
C2210.1896 (4)0.0096 (2)0.2703 (2)0.0762 (9)
H22A0.12430.00610.31650.091*
H22B0.11730.07340.22830.091*
C2220.3281 (5)0.0294 (3)0.3308 (3)0.0991 (12)
H22C0.28350.08570.37260.149*
H22D0.40020.03310.37320.149*
H22E0.39060.04830.28580.149*
Ni20.45422 (15)0.74390 (13)0.21859 (15)0.0431 (2)0.833 (4)
Cl30.2401 (3)0.7574 (2)0.12745 (18)0.0679 (4)0.833 (4)
Cl40.6425 (3)0.8765 (2)0.1648 (3)0.0672 (6)0.833 (4)
P30.2928 (2)0.61808 (13)0.28562 (12)0.0548 (4)0.833 (4)
C3110.2006 (5)0.6705 (3)0.3745 (3)0.0739 (11)0.833 (4)
H31A0.28900.71510.42760.089*0.833 (4)
H31B0.15080.71460.33920.089*0.833 (4)
C3120.0710 (5)0.5910 (4)0.4231 (4)0.1002 (17)0.833 (4)
H31C0.03050.62620.46960.150*0.833 (4)
H31D0.11880.54740.45950.150*0.833 (4)
H31E0.02000.54820.37170.150*0.833 (4)
C3210.1250 (5)0.5178 (3)0.2046 (3)0.0782 (12)0.833 (4)
H32A0.07310.46060.24510.094*0.833 (4)
H32B0.04190.54590.18000.094*0.833 (4)
C3220.1689 (5)0.4746 (3)0.1168 (4)0.1172 (15)
H32C0.06980.42260.07740.176*0.833 (4)
H32D0.24620.44260.13990.176*0.833 (4)
H32E0.21950.53010.07540.176*0.833 (4)
H32F0.14090.40790.07950.176*0.167 (4)
H32G0.23440.53000.08000.176*0.167 (4)
H32H0.06820.48390.12520.176*0.167 (4)
C30.4052 (4)0.5516 (3)0.3599 (4)0.0696 (11)0.833 (4)
H3A0.34910.52290.41650.083*0.833 (4)
H3B0.40870.49410.31820.083*0.833 (4)
C40.5732 (6)0.6260 (3)0.3976 (4)0.0765 (15)0.833 (4)
H4A0.64700.58820.40690.092*0.833 (4)
H4B0.57510.65790.46370.092*0.833 (4)
P40.6528 (3)0.72846 (19)0.31533 (19)0.0547 (5)0.833 (4)
C4110.7860 (6)0.8421 (4)0.3958 (3)0.0958 (16)0.833 (4)
H41A0.86000.82320.44540.115*0.833 (4)
H41B0.85460.89320.35530.115*0.833 (4)
C4120.6940 (9)0.8905 (4)0.4494 (4)0.122 (2)0.833 (4)
H41C0.77170.95190.49120.183*0.833 (4)
H41D0.62860.84110.49140.183*0.833 (4)
H41E0.62140.91020.40070.183*0.833 (4)
C4210.7981 (6)0.7041 (5)0.2478 (4)0.1023 (17)0.833 (4)
H42A0.85140.76570.21280.123*0.833 (4)
H42B0.88430.69610.29710.123*0.833 (4)
C4220.7303 (8)0.6131 (5)0.1742 (4)0.118 (2)0.833 (4)
H42C0.81810.60810.14150.178*0.833 (4)
H42D0.64580.62020.12410.178*0.833 (4)
H42E0.68220.55080.20810.178*0.833 (4)
Ni2B0.4425 (9)0.7305 (7)0.2314 (8)0.0565 (19)0.167 (4)
Cl3B0.2129 (15)0.7365 (13)0.1488 (11)0.088 (4)0.167 (4)
Cl4B0.5889 (14)0.8687 (11)0.1619 (14)0.064 (3)0.167 (4)
P3B0.3093 (11)0.5943 (6)0.2923 (6)0.075 (3)0.167 (4)
C3310.1133 (13)0.5851 (12)0.3207 (12)0.095 (7)*0.167 (4)
H33A0.05350.60450.26290.115*0.167 (4)
H33B0.04810.51270.33110.115*0.167 (4)
C3320.128 (2)0.6521 (18)0.4104 (15)0.084 (7)*0.167 (4)
H33C0.02020.65040.41800.127*0.167 (4)
H33D0.20140.72290.40320.127*0.167 (4)
H33E0.17380.62730.46940.127*0.167 (4)
C3410.262 (2)0.4773 (8)0.2135 (8)0.121 (10)*0.167 (4)
H34A0.36560.47080.20440.146*0.167 (4)
H34B0.19910.41740.24770.146*0.167 (4)
C3B0.4165 (16)0.5717 (12)0.4098 (9)0.18 (2)*0.167 (4)
H3BA0.37100.58960.46650.215*0.167 (4)
H3BB0.39790.49780.40950.215*0.167 (4)
C4B0.5926 (14)0.6335 (13)0.4230 (8)0.043 (5)*0.167 (4)
H4B10.65440.58830.43430.051*0.167 (4)
H4B20.62530.68430.48180.051*0.167 (4)
P4B0.6389 (13)0.7000 (7)0.3113 (8)0.049 (2)0.167 (4)
C4310.8232 (14)0.8138 (10)0.3518 (13)0.118 (11)*0.167 (4)
H43A0.91490.79190.37290.142*0.167 (4)
H43B0.84930.85520.29430.142*0.167 (4)
C4320.813 (3)0.8792 (15)0.4337 (17)0.092 (8)*0.167 (4)
H43C0.92310.92750.46310.138*0.167 (4)
H43D0.76160.83620.48470.138*0.167 (4)
H43E0.74680.91790.40830.138*0.167 (4)
C4410.7098 (15)0.6201 (9)0.2393 (9)0.046 (3)*0.167 (4)
H44A0.78360.59710.28480.056*0.167 (4)
H44B0.61460.55800.20850.056*0.167 (4)
C4420.798 (2)0.6744 (12)0.1598 (11)0.055 (4)*0.167 (4)
H44C0.83510.62830.12410.083*0.167 (4)
H44D0.89260.73580.18980.083*0.167 (4)
H44E0.72400.69490.11300.083*0.167 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03773 (15)0.03539 (15)0.04404 (16)0.01446 (11)0.00512 (11)0.00025 (11)
Cl10.0531 (4)0.0484 (3)0.0756 (4)0.0135 (3)0.0035 (3)0.0140 (3)
Cl20.0486 (3)0.0822 (5)0.0652 (4)0.0277 (3)0.0113 (3)0.0117 (3)
P10.0442 (3)0.0471 (3)0.0625 (4)0.0198 (3)0.0148 (3)0.0042 (3)
C1110.0690 (18)0.0661 (18)0.0755 (19)0.0176 (15)0.0295 (15)0.0151 (15)
C1120.099 (3)0.078 (2)0.078 (2)0.032 (2)0.0142 (19)0.0235 (17)
C1210.0463 (15)0.079 (2)0.100 (2)0.0314 (15)0.0149 (15)0.0117 (17)
C1220.069 (2)0.109 (3)0.122 (3)0.044 (2)0.009 (2)0.041 (2)
C10.0761 (19)0.0619 (17)0.0802 (19)0.0347 (15)0.0240 (16)0.0054 (14)
C20.0764 (19)0.0510 (15)0.0622 (16)0.0184 (14)0.0169 (14)0.0109 (12)
P20.0480 (3)0.0389 (3)0.0506 (3)0.0085 (3)0.0087 (3)0.0017 (2)
C2110.0493 (15)0.074 (2)0.0771 (19)0.0116 (14)0.0052 (14)0.0175 (16)
C2120.094 (3)0.085 (2)0.105 (3)0.040 (2)0.036 (2)0.005 (2)
C2210.085 (2)0.0503 (16)0.0769 (19)0.0035 (15)0.0248 (17)0.0087 (14)
C2220.136 (3)0.066 (2)0.100 (3)0.039 (2)0.029 (3)0.0286 (19)
Ni20.0508 (4)0.0379 (4)0.0446 (6)0.0214 (2)0.0071 (3)0.0097 (3)
Cl30.0777 (7)0.0737 (9)0.0632 (11)0.0458 (7)0.0028 (7)0.0145 (8)
Cl40.0763 (14)0.0525 (6)0.0682 (7)0.0149 (9)0.0237 (11)0.0176 (5)
P30.0464 (6)0.0464 (6)0.0675 (7)0.0153 (5)0.0015 (4)0.0180 (5)
C3110.058 (2)0.086 (3)0.079 (2)0.0261 (19)0.0196 (19)0.024 (2)
C3120.062 (2)0.133 (4)0.097 (3)0.022 (3)0.025 (2)0.049 (3)
C3210.059 (2)0.059 (2)0.097 (3)0.0050 (17)0.000 (2)0.012 (2)
C3220.111 (3)0.075 (3)0.142 (4)0.015 (2)0.014 (3)0.023 (3)
C30.068 (2)0.0472 (18)0.095 (3)0.0248 (16)0.0056 (19)0.0297 (19)
C40.095 (3)0.061 (2)0.061 (2)0.030 (2)0.026 (2)0.014 (2)
P40.0519 (7)0.0549 (11)0.0569 (7)0.0223 (7)0.0035 (5)0.0053 (6)
C4110.091 (3)0.091 (3)0.061 (3)0.006 (3)0.008 (2)0.008 (3)
C4120.206 (7)0.081 (3)0.071 (3)0.057 (4)0.006 (3)0.006 (2)
C4210.080 (3)0.141 (5)0.109 (4)0.068 (3)0.017 (3)0.008 (3)
C4220.150 (5)0.125 (5)0.115 (4)0.099 (5)0.006 (4)0.020 (4)
Ni2B0.097 (4)0.045 (3)0.039 (2)0.039 (2)0.0112 (18)0.0162 (16)
Cl3B0.113 (7)0.112 (9)0.063 (5)0.072 (7)0.003 (4)0.037 (4)
Cl4B0.075 (7)0.049 (4)0.079 (4)0.030 (5)0.026 (6)0.014 (3)
P3B0.086 (5)0.077 (6)0.079 (4)0.043 (4)0.031 (4)0.043 (4)
P4B0.043 (3)0.051 (5)0.050 (3)0.017 (3)0.002 (2)0.001 (3)
Geometric parameters (Å, º) top
Ni1—Cl12.2073 (12)C322—H32F0.980
Ni1—Cl22.2012 (8)C322—H32G0.980
Ni1—P12.1372 (8)C322—H32H0.980
Ni1—P22.1376 (12)C3—C41.476 (6)
P1—C11.833 (3)C3—H3A0.990
P1—C1111.823 (3)C3—H3B0.990
P1—C1211.808 (3)C4—P41.837 (4)
C111—C1121.497 (4)C4—H4A0.990
C111—H11A0.990C4—H4B0.990
C111—H11B0.990P4—C4111.808 (6)
C112—H11C0.980P4—C4211.820 (5)
C112—H11D0.980C411—C4121.499 (8)
C112—H11E0.980C411—H41A0.990
C121—C1221.510 (4)C411—H41B0.990
C121—H12A0.990C412—H41C0.980
C121—H12B0.990C412—H41D0.980
C122—H12C0.980C412—H41E0.980
C122—H12D0.980C421—C4221.477 (7)
C122—H12E0.980C421—H42A0.990
C1—C21.507 (4)C421—H42B0.990
C1—H1A0.990C422—H42C0.980
C1—H1B0.990C422—H42D0.980
C2—P21.829 (3)C422—H42E0.980
C2—H2A0.990Ni2B—Cl3B2.230 (9)
C2—H2B0.990Ni2B—Cl4B2.217 (9)
P2—C2111.822 (3)Ni2B—P3B2.102 (8)
P2—C2211.822 (3)Ni2B—P4B2.123 (8)
C211—C2121.494 (5)P3B—C3B1.843 (8)
C211—H21A0.990P3B—C3311.806 (8)
C211—H21B0.990P3B—C3411.815 (8)
C212—H21C0.980C331—C3321.481 (10)
C212—H21D0.980C331—H33A0.990
C212—H21E0.980C331—H33B0.990
C221—C2221.508 (5)C332—H33C0.980
C221—H22A0.990C332—H33D0.980
C221—H22B0.990C332—H33E0.980
C222—H22C0.980C341—H34A0.990
C222—H22D0.980C341—H34B0.990
C222—H22E0.980C3B—C4B1.465 (11)
Ni2—Cl32.2035 (18)C3B—H3BA0.990
Ni2—Cl42.214 (2)C3B—H3BB0.990
Ni2—P32.139 (2)C4B—P4B1.822 (9)
Ni2—P42.140 (2)C4B—H4B10.990
P3—C31.839 (4)C4B—H4B20.990
P3—C3111.840 (5)P4B—C4311.812 (8)
P3—C3211.818 (4)P4B—C4411.812 (8)
C311—C3121.520 (5)C431—C4321.463 (10)
C311—H31A0.990C431—H43A0.990
C311—H31B0.990C431—H43B0.990
C312—H31C0.980C432—H43C0.980
C312—H31D0.980C432—H43D0.980
C312—H31E0.980C432—H43E0.980
C321—C3221.493 (6)C441—C4421.485 (10)
C321—H32A0.990C441—H44A0.990
C321—H32B0.990C441—H44B0.990
C322—C3411.445 (10)C442—H44C0.980
C322—H32C0.980C442—H44D0.980
C322—H32D0.980C442—H44E0.980
C322—H32E0.980
Cl2—Ni1—Cl195.24 (4)H32F—C322—H32G109.5
P1—Ni1—Cl187.71 (4)C341—C322—H32H109.5
P2—Ni1—Cl1174.57 (3)C321—C322—H32H49.4
P1—Ni1—Cl2174.44 (3)H32C—C322—H32H66.3
P2—Ni1—Cl289.51 (4)H32D—C322—H32H146.9
P1—Ni1—P287.78 (4)H32E—C322—H32H102.4
C1—P1—Ni1111.96 (10)H32F—C322—H32H109.5
C111—P1—Ni1110.18 (11)H32G—C322—H32H109.5
C121—P1—Ni1118.32 (11)C4—C3—P3108.9 (2)
C111—P1—C1106.46 (15)P3—C3—H3A109.9
C121—P1—C1105.75 (15)P3—C3—H3B109.9
C121—P1—C111103.24 (14)C4—C3—H3A109.9
C112—C111—P1113.1 (2)C4—C3—H3B109.9
C112—C111—H11A109.0H3A—C3—H3B108.3
P1—C111—H11A109.0C3—C4—P4114.0 (3)
C112—C111—H11B109.0P4—C4—H4A108.8
P1—C111—H11B109.0P4—C4—H4B108.8
H11A—C111—H11B107.8C3—C4—H4A108.8
C111—C112—H11C109.5C3—C4—H4B108.8
C111—C112—H11D109.5H4A—C4—H4B107.7
H11C—C112—H11D109.5C4—P4—Ni2109.96 (18)
C111—C112—H11E109.5C411—P4—Ni2115.8 (2)
H11C—C112—H11E109.5C421—P4—Ni2112.8 (2)
H11D—C112—H11E109.5C411—P4—C4106.3 (2)
C122—C121—P1114.8 (2)C421—P4—C4110.4 (3)
C122—C121—H12A108.6C411—P4—C421101.1 (3)
P1—C121—H12A108.6C412—C411—P4112.9 (4)
C122—C121—H12B108.6P4—C411—H41A109.0
P1—C121—H12B108.6P4—C411—H41B109.0
H12A—C121—H12B107.6C412—C411—H41A109.0
C121—C122—H12C109.5C412—C411—H41B109.0
C121—C122—H12D109.5H41A—C411—H41B107.8
H12C—C122—H12D109.5C411—C412—H41C109.5
C121—C122—H12E109.5C411—C412—H41D109.5
H12C—C122—H12E109.5H41C—C412—H41D109.5
H12D—C122—H12E109.5C411—C412—H41E109.5
C2—C1—P1111.48 (19)H41C—C412—H41E109.5
P1—C1—H1A109.3H41D—C412—H41E109.5
P1—C1—H1B109.3C422—C421—P4116.3 (4)
C2—C1—H1A109.3P4—C421—H42A108.2
C2—C1—H1B109.3P4—C421—H42B108.2
H1A—C1—H1B108.0C422—C421—H42A108.2
C1—C2—P2112.39 (19)C422—C421—H42B108.2
P2—C2—H2A109.1H42A—C421—H42B107.4
P2—C2—H2B109.1C421—C422—H42C109.5
C1—C2—H2A109.1C421—C422—H42D109.5
C1—C2—H2B109.1H42C—C422—H42D109.5
H2A—C2—H2B107.9C421—C422—H42E109.5
C2—P2—Ni1111.28 (10)H42C—C422—H42E109.5
C211—P2—Ni1117.82 (11)H42D—C422—H42E109.5
C221—P2—Ni1111.85 (11)Cl4B—Ni2B—Cl3B90.0 (5)
C211—P2—C2105.28 (15)P3B—Ni2B—Cl4B176.6 (7)
C221—P2—C2107.32 (15)P4B—Ni2B—Cl4B98.3 (5)
C211—P2—C221102.42 (16)P3B—Ni2B—Cl3B91.3 (4)
C212—C211—P2114.9 (2)P4B—Ni2B—Cl3B171.0 (6)
P2—C211—H21A108.5P3B—Ni2B—P4B80.3 (4)
P2—C211—H21B108.5C3B—P3B—Ni2B114.2 (5)
C212—C211—H21A108.5C331—P3B—Ni2B115.3 (5)
C212—C211—H21B108.5C341—P3B—Ni2B114.4 (5)
H21A—C211—H21B107.5C331—P3B—C3B104.5 (5)
C211—C212—H21C109.5C341—P3B—C3B102.8 (6)
C211—C212—H21D109.5C331—P3B—C341104.2 (6)
H21C—C212—H21D109.5C332—C331—P3B112.8 (8)
C211—C212—H21E109.5P3B—C331—H33A109.0
H21C—C212—H21E109.5P3B—C331—H33B109.0
H21D—C212—H21E109.5C332—C331—H33A109.0
C222—C221—P2114.5 (2)C332—C331—H33B109.0
P2—C221—H22A108.6H33A—C331—H33B107.8
P2—C221—H22B108.6C331—C332—H33C109.5
C222—C221—H22A108.6C331—C332—H33D109.5
C222—C221—H22B108.6H33C—C332—H33D109.5
H22A—C221—H22B107.6C331—C332—H33E109.5
C221—C222—H22C109.5H33C—C332—H33E109.5
C221—C222—H22D109.5H33D—C332—H33E109.5
H22C—C222—H22D109.5C322—C341—P3B113.3 (7)
C221—C222—H22E109.5P3B—C341—H34A108.9
H22C—C222—H22E109.5P3B—C341—H34B108.9
H22D—C222—H22E109.5C322—C341—H34A108.9
Cl3—Ni2—Cl496.68 (11)C322—C341—H34B108.9
P3—Ni2—Cl389.43 (8)H34A—C341—H34B107.7
P4—Ni2—Cl3176.09 (13)C4B—C3B—P3B111.2 (6)
P3—Ni2—Cl4173.37 (12)P3B—C3B—H3BA109.4
P4—Ni2—Cl486.30 (12)P3B—C3B—H3BB109.4
P3—Ni2—P487.49 (10)C4B—C3B—H3BA109.4
C3—P3—Ni2111.43 (14)C4B—C3B—H3BB109.4
C311—P3—Ni2108.22 (15)H3BA—C3B—H3BB108.0
C321—P3—Ni2118.19 (16)C3B—C4B—P4B108.8 (6)
C3—P3—C311105.7 (2)P4B—C4B—H4B1109.9
C321—P3—C3105.8 (2)P4B—C4B—H4B2109.9
C321—P3—C311106.7 (2)C3B—C4B—H4B1109.9
C312—C311—P3115.6 (3)C3B—C4B—H4B2109.9
P3—C311—H31A108.4H4B1—C4B—H4B2108.3
P3—C311—H31B108.4C4B—P4B—Ni2B114.6 (6)
C312—C311—H31A108.4C431—P4B—Ni2B114.2 (5)
C312—C311—H31B108.4C441—P4B—Ni2B113.8 (5)
H31A—C311—H31B107.5C431—P4B—C4B105.5 (6)
C322—C321—P3116.1 (3)C441—P4B—C4B104.4 (6)
P3—C321—H32A108.3C441—P4B—C431103.1 (6)
P3—C321—H32B108.3C432—C431—P4B114.6 (8)
C322—C321—H32A108.3P4B—C431—H43A108.6
C322—C321—H32B108.3P4B—C431—H43B108.6
H32A—C321—H32B107.4C432—C431—H43A108.6
C341—C322—C32162.6 (6)C432—C431—H43B108.6
C341—C322—H32C133.3H43A—C431—H43B107.6
C321—C322—H32C109.5C431—C432—H43C109.5
C341—C322—H32D47.8C431—C432—H43D109.5
C321—C322—H32D109.5H43C—C432—H43D109.5
H32C—C322—H32D109.5C431—C432—H43E109.5
C341—C322—H32E116.5H43C—C432—H43E109.5
C321—C322—H32E109.5H43D—C432—H43E109.5
H32C—C322—H32E109.5C442—C441—P4B112.9 (7)
H32D—C322—H32E109.5P4B—C441—H44A109.0
C341—C322—H32F109.5P4B—C441—H44B109.0
C321—C322—H32F139.2C442—C441—H44A109.0
H32C—C322—H32F44.2C442—C441—H44B109.0
H32D—C322—H32F68.3H44A—C441—H44B107.8
H32E—C322—H32F109.3C441—C442—H44C109.5
C341—C322—H32G109.5C441—C442—H44D109.5
C321—C322—H32G110.7H44C—C442—H44D109.5
H32C—C322—H32G115.6C441—C442—H44E109.5
H32D—C322—H32G101.8H44C—C442—H44E109.5
H32E—C322—H32G8.2H44D—C442—H44E109.5
P2—Ni1—P1—C121127.40 (12)C3—C4—P4—C411147.1 (4)
Cl1—Ni1—P1—C12149.57 (12)C3—C4—P4—C421104.0 (4)
P2—Ni1—P1—C111114.23 (12)C3—C4—P4—Ni221.1 (4)
Cl1—Ni1—P1—C11168.80 (12)P3—Ni2—P4—C411122.6 (2)
P2—Ni1—P1—C14.05 (11)Cl4—Ni2—P4—C41155.1 (2)
Cl1—Ni1—P1—C1172.92 (11)P3—Ni2—P4—C421121.6 (2)
C121—P1—C111—C112172.8 (2)Cl4—Ni2—P4—C42160.7 (3)
C1—P1—C111—C11276.0 (3)P3—Ni2—P4—C42.1 (2)
Ni1—P1—C111—C11245.6 (3)Cl4—Ni2—P4—C4175.6 (2)
C111—P1—C121—C122176.8 (3)C421—P4—C411—C412170.6 (4)
C1—P1—C121—C12271.6 (3)C4—P4—C411—C41274.1 (4)
Ni1—P1—C121—C12254.8 (3)Ni2—P4—C411—C41248.3 (4)
C121—P1—C1—C2148.4 (2)C411—P4—C421—C422179.2 (4)
C111—P1—C1—C2102.2 (2)C4—P4—C421—C42266.9 (5)
Ni1—P1—C1—C218.2 (3)Ni2—P4—C421—C42256.5 (5)
P1—C1—C2—P224.5 (3)P4B—Ni2B—P3B—C331148.0 (6)
C1—C2—P2—C211150.5 (2)Cl3B—Ni2B—P3B—C33135.1 (9)
C1—C2—P2—C221100.9 (2)P4B—Ni2B—P3B—C34191.2 (7)
C1—C2—P2—Ni121.8 (3)Cl3B—Ni2B—P3B—C34185.7 (8)
P1—Ni1—P2—C211129.98 (12)P4B—Ni2B—P3B—C3B27.0 (8)
Cl2—Ni1—P2—C21145.15 (12)Cl3B—Ni2B—P3B—C3B156.1 (9)
P1—Ni1—P2—C221111.74 (13)C341—P3B—C331—C332159.8 (15)
Cl2—Ni1—P2—C22173.12 (13)C3B—P3B—C331—C33252.2 (17)
P1—Ni1—P2—C28.29 (11)Ni2B—P3B—C331—C33274.0 (16)
Cl2—Ni1—P2—C2166.84 (11)C321—C322—C341—P3B40.0 (7)
C221—P2—C211—C212177.5 (3)C331—P3B—C341—C32268.3 (12)
C2—P2—C211—C21270.4 (3)C3B—P3B—C341—C322177.2 (10)
Ni1—P2—C211—C21254.4 (3)Ni2B—P3B—C341—C32258.4 (11)
C211—P2—C221—C222177.4 (3)C331—P3B—C3B—C4B145.3 (12)
C2—P2—C221—C22266.8 (3)C341—P3B—C3B—C4B106.1 (13)
Ni1—P2—C221—C22255.5 (3)Ni2B—P3B—C3B—C4B18.4 (14)
P4—Ni2—P3—C321136.0 (2)P3B—C3B—C4B—P4B5.2 (14)
Cl3—Ni2—P3—C32146.5 (2)C3B—C4B—P4B—C44197.7 (11)
P4—Ni2—P3—C313.1 (2)C3B—C4B—P4B—C431154.0 (11)
Cl3—Ni2—P3—C3169.3 (2)C3B—C4B—P4B—Ni2B27.5 (12)
P4—Ni2—P3—C311102.75 (17)P3B—Ni2B—P4B—C44189.7 (6)
Cl3—Ni2—P3—C31174.83 (18)Cl4B—Ni2B—P4B—C44187.1 (8)
C321—P3—C311—C31246.9 (3)P3B—Ni2B—P4B—C431152.3 (7)
C3—P3—C311—C31265.4 (3)Cl4B—Ni2B—P4B—C43130.9 (9)
Ni2—P3—C311—C312175.1 (3)P3B—Ni2B—P4B—C4B30.4 (7)
C3—P3—C321—C32276.4 (4)Cl4B—Ni2B—P4B—C4B152.7 (9)
C311—P3—C321—C322171.3 (3)C441—P4B—C431—C432163.8 (17)
Ni2—P3—C321—C32249.3 (4)C4B—P4B—C431—C43254.5 (18)
P3—C321—C322—C34151.8 (7)Ni2B—P4B—C431—C43272.2 (18)
C321—P3—C3—C4158.3 (4)C431—P4B—C441—C44253.6 (13)
C311—P3—C3—C488.7 (4)C4B—P4B—C441—C442163.6 (11)
Ni2—P3—C3—C428.6 (4)Ni2B—P4B—C441—C44270.6 (12)
P3—C3—C4—P430.5 (5)
Table of weak hydrogen-bond interactions (Å, °) top
D—HH···AD···AD—H···A
C1—H1B···Cl4i0.992.784 (3)3.716 (4)157.2 (2)
C2—H2B···Cl4ii0.992.793 (4)3.683 (5)149.8 (2)
H1Biii···Cl4···H2Bii77.56 (9)
Symmetry codes: (i) x, y-1, z; (ii) 1-x, 1-y, -z; (iii) x, 1+y, z.
 

Acknowledgements

The authors thank the Biotechnology and Biological Sciences Research Council, UK, and the John Innes Foundation (SED) for financial support.

References

First citationDuff, S. E., Barclay, J. E., Davies, S. C. & Evans, D. J. (2005). Inorg. Chem. Commun. 8, 170–173.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationEvans, D. J. (2005). Coord. Chem. Rev. In the press.  Google Scholar
First citationEvans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268–275.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHursthouse, M. B. (1976). CAD4. Queen Mary College, University of London, England.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). Fourth European Crystallographic Meeting, Oxford, Abstracts, p. 147.  Google Scholar
First citationSmith, M. C., Barclay, J. E., Cramer, S. P., Davies, S. C., Gu, W.-W., Hughes, D. L., Longhurst, S. & Evans, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2641–2647.  Web of Science CSD CrossRef Google Scholar
First citationSmith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147–4151.  Web of Science CSD CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds