organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A tetra­azamacrocycle with benzyl substituents

CROSSMARK_Color_square_no_text.svg

aSchool of Natural Sciences (Chemistry), Bedson Building, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, England, and bDepartment of Chemistry, Andong National University, Andong 760-749, South Korea
*Correspondence e-mail: w.clegg@ncl.ac.uk

(Received 12 January 2006; accepted 12 January 2006; online 18 January 2006)

The mol­ecule of the title compound, 2,13-dibenzyl-5,16-dimethyl-2,6,13,17-tetra­azatricyclo­[16.4.01,18.07,12]docosane, C34H52N4, is centrosymmetric. The 14-membered macrocycle adopts the stable trans-III (RRSS) configuration, with one benzyl group above and the other below the macrocycle mean plane. The crystal structure is stabilized by N—H⋯N hydrogen bonds. There is no inter­molecular ππ inter­action between benzyl planes, which are almost 6Å apart.

Comment

The 14-membered cyclam (1,4,8,11-tetra­azacyclo­tetra­deca­ne) ligand and its substituted derivatives are involved in diverse application fields, such as catalysis, enzyme mimics, chemical sensors, selective metal ion recovery, pharmacology and therapy (Meyer et al., 1998[Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.], and references therein). Metal–cyclam adducts have a moderately flexible structure, and can adopt both planar (trans) and folded (cis) configurations (Poon et al., 1980[Poon, C. K., & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]). There are five configurational trans isomers for the N4-donor set of cyclam which differ in the chirality of the sec-NH centres. The trans-V configuration can fold to form a cis-V isomer. We previously described the spectroscopic and ligand-field properties based on the emission, far-IR and electronic spectroscopy of chromium(III) complexes with 14-membered cyclam derivatives and two auxiliary ligands (Choi, 2000a[Choi, J. H. (2000a). Chem. Phys. 256, 29-35.],b[Choi, J. H. (2000b). Spectrochim. Acta A, 58, 1599-1606.]; Choi, Oh, Suzuki & Kaizaki, 2004[Choi, J. H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39-44.]; Choi, Oh, Linder & Schönherr, 2004[Choi, J. H., Oh, I. G., Linder, R. & Schönherr, T. (2004). Chem. Phys. 297, 7-12.]; Choi, Oh, Lim & Park, 2004[Choi, J. H., Oh, I. G., Lim, W. T. & Park, K. M. (2004). Acta Cryst. C60, m238-m240.]). The modification of C- and/or N-configurational isomers of polyaza macrocyclic ligands to control the chemical and physical properties of metal complexes has been of considerable inter­est (Dong & Lindoy, 2001[Dong, Y. & Lindoy, L. F. (2001). Aust J. Chem. 54, 291-297.]). The 14-membered cyclam containing two 1,2-diamino­cyclo­hexa­nediamine subunits occurs in both cis- and trans-configurations (Kang & Jeong, 2003[Kang, S. G. & Jeong, J. H. (2003). Bull. Korean Chem. Soc. 24, 393-396.]).

Octa­hedral transition metal complexes with cyclam deriv­atives display UV–visible electronic absorption bands. The dd transitions are symmetry forbidden, so extinction coefficients are relatively small. Thus, it is necessary to prepare new systems with ligand-based chromophores with higher extinction coefficients (Bernhardt & Riley, 2002[Bernhardt, P. V. & Riley, M. J. (2002). Inorg. Chem. 41, 3025-3031.]). Benzyl groups are introduced as possible inter­nal sensitizers of the macrocyclic ligand and its metal complexes. Recently, the synthesis and chemical properties of tetra­aza marcrocycles containing two pendant arms and their nickel(II) and copper(II) complexes have been reported (Kang & Kim, 2003[Kang, S. G. & Kim, S. J. (2003). Bull. Korean Chem. Soc. 24, 269-273.]). However, the structures of (I)[link] and its complexes have not previously been determined by X-ray crystallography. We report here the crystal structure of the title macrocycle, (I)[link], with the aim of confirming the stereochemistry of the attached groups and gaining further insight into its coordination properties for various transition metal ions.

[Scheme 1]

Selected bond lengths and angles are listed in Table 1[link]. A perspective drawing of the centrosymmetric mol­ecular structure is depicted in Fig. 1[link]. Bond distances and angles are in normal ranges. The crystal structure of (I)[link] shows a configuration with one benzyl group above and the other below the macrocycle mean plane, this being the sterically least-hindered configuration. The cyclam ligand has the trans-III (RRSS) form, consistent with a crystallographic centre of symmetry. The four N atoms are exactly coplanar as a result of the centrosymmetry of the mol­ecule. The (CH2)4 part of the cyclo­hexane subunit is anti with respect to the macrocycle plane. The intra­molecular hydrogen bond between secondary N2—H2N and tertiary N1 lends some rigidity to the cyclam ring. The closest inter­molecular distance between benzyl rings is >5.8Å, which is not within the range associated with ππ inter­actions (Munakata et al., 1994[Munakata, M., Dai, J. Maekawa, M., Takayoshi, K. S. & Fukui, J. (1994). J. Chem. Soc. Chem. Commun. pp. 2231-2332.]). We can anti­cipate that a related new macrocycle, containing two naphthyl­methyl pendant arms, will adopt the most stable trans-III configuration, in which the two H atoms on the secondary amines and the two naphthyl­methyl groups are likewise oriented on opposite sides of the macrocycle plane. The crystal structure of a copper(II) complex with the title ligand will be reported later (Choi et al., 2006[Choi, J. H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. C. In preparation.]).

[Figure 1]
Figure 1
The mol­ecular structure with 50% probability displacement ellipsoids. H atoms have been omitted, except for those on N atoms and major asymmetric centres. The dashed lines represent N—H⋯N hydrogen bonds. The suffix A corresponds to symmetry code (i) in Tables 1[link] and 2[link].

Experimental

The title macrocycle was prepared according to a published procedure (Kang et al., 1991[Kang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483-487.]). To a solution of 5,16-dimethyl-2,6,13,17-tetra­azatricyclo­[14.4.01,18.07,12]docosane (8.814 g, 2.42 mmol) in methanol (10 ml) were added benzyl bromide (0.838 g, 4.90 mmol) and a solution containing Na2CO3 (0.520 g, 4.90 mmol) in water (4 ml). The solution was refluxed for 24 h and cooled to room temperature, and the resultant white solid was filtered off and washed with cold water. The crude compound was recrystallized from tetra­hydro­furan to give colourless crystals suitable for X-ray analysis (yield 0.828 g, 66.3%). The IR spectrum (KBr) showed peaks at 3264 (N—H), 3063 and 3027 (aromatic C—H), 1603 and 1484 cm−1 (aromatic C=C). Analysis found: C 79.71, H 10.48, N 10.99%; C34H52N4 requires: C 79.02, H 10.14, N 10.84%. The new macrocycle containing two naphthyl­methyl pendant arms was also prepared by a similar method, except that 1-chloro­methyl­naphthalene was used instead of benzyl bromide.

Crystal data
  • C34H52N4

  • Mr = 516.80

  • Triclinic, [P \overline 1]

  • a = 8.8976 (12) Å

  • b = 9.2438 (12) Å

  • c = 9.2535 (12) Å

  • α = 82.467 (2)°

  • β = 87.605 (2)°

  • γ = 79.982 (2)°

  • V = 742.87 (17) Å3

  • Z = 1

  • Dx = 1.155 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5357 reflections

  • θ = 2.3–28.7°

  • μ = 0.07 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.56 × 0.55 × 0.50 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • ω scans

  • Absorption correction: none

  • 5375 measured reflections

  • 2590 independent reflections

  • 2363 reflections with I > 2σ(I)

  • Rint = 0.024

  • θmax = 25.0°

  • h = −10 → 10

  • k = −10 → 10

  • l = −10 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.131

  • S = 1.27

  • 2590 reflections

  • 178 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0312P)2 + 0.5246P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

  • Extinction correction: SHELXTL

  • Extinction coefficient: 0.015 (4)

Table 1
Selected geometric parameters (Å, °)

N1—C5i 1.463 (3)
N1—C6 1.468 (3)
N1—C1 1.474 (3)
N2—C2 1.463 (3)
N2—C3 1.466 (3)
C5i—N1—C6 110.47 (15)
C5i—N1—C1 113.92 (15)
C6—N1—C1 113.44 (15)
C2—N2—C3 116.53 (16)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N1i 0.86 (2) 2.32 (2) 3.025 (2) 139.9 (19)
Symmetry code: (i) -x+1, -y+1, -z+1.

The H atom bonded to N2 was located in a difference map and refined freely. Other H atoms were positioned geometrically, with C—H distances of 0.95–1.00Å, and refined as riding, with Uiso(H) = 1.2Ueq(C).

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

2,13-dibenzyl-5,16-dimethyl-2,6,13,17- tetraazatricyclo[16.4.01,18.07,12]docosane top
Crystal data top
C34H52N4Z = 1
Mr = 516.80F(000) = 284
Triclinic, P1Dx = 1.155 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8976 (12) ÅCell parameters from 5357 reflections
b = 9.2438 (12) Åθ = 2.3–28.7°
c = 9.2535 (12) ŵ = 0.07 mm1
α = 82.467 (2)°T = 150 K
β = 87.605 (2)°Block, colourless
γ = 79.982 (2)°0.56 × 0.55 × 0.50 mm
V = 742.87 (17) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
2363 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 1010
5375 measured reflectionsk = 1010
2590 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.5246P]
where P = (Fo2 + 2Fc2)/3
S = 1.27(Δ/σ)max < 0.001
2590 reflectionsΔρmax = 0.27 e Å3
178 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.63153 (18)0.26660 (17)0.59479 (18)0.0170 (4)
N20.49804 (19)0.42433 (19)0.33715 (18)0.0191 (4)
H2N0.508 (2)0.503 (3)0.372 (2)0.018 (6)*
C10.7304 (2)0.2942 (2)0.4658 (2)0.0182 (5)
H10.77060.38660.47660.022*
C20.6433 (2)0.3248 (2)0.3222 (2)0.0194 (5)
H20.61950.22830.29990.023*
C30.4077 (2)0.4704 (2)0.2050 (2)0.0195 (5)
H30.47060.52030.12830.023*
C40.2659 (2)0.5800 (2)0.2386 (2)0.0203 (5)
H4A0.21320.53620.32550.024*
H4B0.19580.59430.15570.024*
C50.2963 (2)0.7312 (2)0.2666 (2)0.0200 (5)
H5A0.36230.76820.18640.024*
H5B0.19800.80070.26320.024*
C60.5653 (2)0.1314 (2)0.5978 (2)0.0217 (5)
H6A0.63810.04550.64270.026*
H6B0.54760.11480.49680.026*
C70.4164 (2)0.1427 (2)0.6833 (2)0.0205 (5)
C80.2895 (2)0.2395 (2)0.6271 (2)0.0254 (5)
H80.29710.29730.53520.030*
C90.1521 (3)0.2528 (3)0.7035 (3)0.0309 (6)
H90.06580.31920.66360.037*
C100.1393 (3)0.1699 (3)0.8378 (3)0.0326 (6)
H100.04450.17900.88990.039*
C110.2645 (3)0.0745 (3)0.8952 (3)0.0321 (6)
H110.25650.01800.98790.039*
C120.4027 (3)0.0601 (2)0.8186 (2)0.0257 (5)
H120.48860.00670.85880.031*
C130.8702 (2)0.1735 (2)0.4506 (2)0.0239 (5)
H13A0.92380.14830.54450.029*
H13B0.83660.08310.42630.029*
C140.9794 (2)0.2261 (3)0.3314 (3)0.0297 (5)
H14A1.01860.31240.35910.036*
H14B1.06740.14600.32150.036*
C150.8990 (2)0.2694 (3)0.1867 (2)0.0297 (5)
H15A0.87610.17930.15090.036*
H15B0.96780.31450.11420.036*
C160.7505 (2)0.3790 (2)0.2000 (2)0.0244 (5)
H16A0.69680.39580.10620.029*
H16B0.77530.47490.21940.029*
C170.3638 (3)0.3360 (2)0.1489 (2)0.0273 (5)
H17A0.45530.27550.11200.041*
H17B0.29070.36900.07010.041*
H17C0.31720.27700.22860.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0163 (9)0.0163 (8)0.0188 (9)0.0033 (7)0.0009 (7)0.0028 (7)
N20.0194 (9)0.0177 (9)0.0203 (9)0.0011 (7)0.0003 (7)0.0055 (7)
C10.0161 (10)0.0162 (10)0.0225 (11)0.0034 (8)0.0019 (8)0.0034 (8)
C20.0186 (11)0.0188 (10)0.0214 (11)0.0025 (8)0.0038 (8)0.0071 (8)
C30.0198 (11)0.0229 (11)0.0163 (10)0.0054 (8)0.0004 (8)0.0023 (8)
C40.0168 (10)0.0272 (11)0.0173 (10)0.0047 (9)0.0018 (8)0.0028 (8)
C50.0165 (10)0.0191 (11)0.0221 (11)0.0018 (8)0.0014 (8)0.0002 (8)
C60.0208 (11)0.0166 (10)0.0274 (12)0.0028 (8)0.0019 (9)0.0025 (8)
C70.0212 (11)0.0188 (10)0.0242 (11)0.0077 (8)0.0007 (9)0.0072 (8)
C80.0244 (12)0.0253 (12)0.0269 (12)0.0065 (9)0.0015 (9)0.0017 (9)
C90.0201 (12)0.0310 (13)0.0428 (14)0.0035 (9)0.0009 (10)0.0105 (11)
C100.0216 (12)0.0448 (15)0.0370 (14)0.0142 (11)0.0091 (10)0.0178 (11)
C110.0354 (14)0.0399 (14)0.0254 (12)0.0197 (11)0.0050 (10)0.0048 (10)
C120.0263 (12)0.0224 (11)0.0291 (12)0.0074 (9)0.0030 (9)0.0005 (9)
C130.0185 (11)0.0240 (11)0.0283 (12)0.0014 (9)0.0003 (9)0.0035 (9)
C140.0180 (11)0.0340 (13)0.0361 (13)0.0021 (9)0.0062 (10)0.0063 (10)
C150.0231 (12)0.0383 (13)0.0283 (12)0.0050 (10)0.0111 (9)0.0100 (10)
C160.0240 (11)0.0292 (12)0.0206 (11)0.0058 (9)0.0023 (9)0.0046 (9)
C170.0286 (12)0.0261 (12)0.0280 (12)0.0032 (9)0.0066 (9)0.0064 (9)
Geometric parameters (Å, º) top
N1—C5i1.463 (3)C7—C121.391 (3)
N1—C61.468 (3)C8—C91.381 (3)
N1—C11.474 (3)C8—H80.950
N2—C21.463 (3)C9—C101.383 (3)
N2—C31.466 (3)C9—H90.950
N2—H2N0.86 (2)C10—C111.374 (3)
C1—C131.535 (3)C10—H100.950
C1—C21.535 (3)C11—C121.389 (3)
C1—H11.000C11—H110.950
C2—C161.538 (3)C12—H120.950
C2—H21.000C13—C141.526 (3)
C3—C171.523 (3)C13—H13A0.990
C3—C41.523 (3)C13—H13B0.990
C3—H31.000C14—C151.519 (3)
C4—C51.524 (3)C14—H14A0.990
C4—H4A0.990C14—H14B0.990
C4—H4B0.990C15—C161.530 (3)
C5—N1i1.463 (3)C15—H15A0.990
C5—H5A0.990C15—H15B0.990
C5—H5B0.990C16—H16A0.990
C6—C71.509 (3)C16—H16B0.990
C6—H6A0.990C17—H17A0.980
C6—H6B0.990C17—H17B0.980
C7—C81.386 (3)C17—H17C0.980
C5i—N1—C6110.47 (15)C9—C8—C7120.7 (2)
C5i—N1—C1113.92 (15)C9—C8—H8119.7
C6—N1—C1113.44 (15)C7—C8—H8119.7
C2—N2—C3116.53 (16)C8—C9—C10120.4 (2)
C2—N2—H2N112.9 (14)C8—C9—H9119.8
C3—N2—H2N107.0 (14)C10—C9—H9119.8
N1—C1—C13115.25 (16)C11—C10—C9119.5 (2)
N1—C1—C2113.08 (16)C11—C10—H10120.2
C13—C1—C2108.70 (16)C9—C10—H10120.2
N1—C1—H1106.4C10—C11—C12120.3 (2)
C13—C1—H1106.4C10—C11—H11119.8
C2—C1—H1106.4C12—C11—H11119.8
N2—C2—C1110.90 (16)C11—C12—C7120.5 (2)
N2—C2—C16114.93 (17)C11—C12—H12119.8
C1—C2—C16108.23 (16)C7—C12—H12119.8
N2—C2—H2107.5C14—C13—C1110.68 (17)
C1—C2—H2107.5C14—C13—H13A109.5
C16—C2—H2107.5C1—C13—H13A109.5
N2—C3—C17110.22 (17)C14—C13—H13B109.5
N2—C3—C4109.32 (16)C1—C13—H13B109.5
C17—C3—C4110.73 (17)H13A—C13—H13B108.1
N2—C3—H3108.8C15—C14—C13110.71 (18)
C17—C3—H3108.8C15—C14—H14A109.5
C4—C3—H3108.8C13—C14—H14A109.5
C3—C4—C5114.91 (16)C15—C14—H14B109.5
C3—C4—H4A108.5C13—C14—H14B109.5
C5—C4—H4A108.5H14A—C14—H14B108.1
C3—C4—H4B108.5C14—C15—C16111.85 (18)
C5—C4—H4B108.5C14—C15—H15A109.2
H4A—C4—H4B107.5C16—C15—H15A109.2
N1i—C5—C4115.19 (16)C14—C15—H15B109.2
N1i—C5—H5A108.5C16—C15—H15B109.2
C4—C5—H5A108.5H15A—C15—H15B107.9
N1i—C5—H5B108.5C15—C16—C2112.86 (18)
C4—C5—H5B108.5C15—C16—H16A109.0
H5A—C5—H5B107.5C2—C16—H16A109.0
N1—C6—C7111.16 (16)C15—C16—H16B109.0
N1—C6—H6A109.4C2—C16—H16B109.0
C7—C6—H6A109.4H16A—C16—H16B107.8
N1—C6—H6B109.4C3—C17—H17A109.5
C7—C6—H6B109.4C3—C17—H17B109.5
H6A—C6—H6B108.0H17A—C17—H17B109.5
C8—C7—C12118.6 (2)C3—C17—H17C109.5
C8—C7—C6119.49 (19)H17A—C17—H17C109.5
C12—C7—C6121.91 (19)H17B—C17—H17C109.5
C5i—N1—C1—C1366.6 (2)N1—C6—C7—C869.6 (2)
C6—N1—C1—C1361.0 (2)N1—C6—C7—C12109.4 (2)
C5i—N1—C1—C2167.55 (16)C12—C7—C8—C90.5 (3)
C6—N1—C1—C264.9 (2)C6—C7—C8—C9179.55 (19)
C3—N2—C2—C1176.19 (16)C7—C8—C9—C100.3 (3)
C3—N2—C2—C1653.0 (2)C8—C9—C10—C110.3 (3)
N1—C1—C2—N243.0 (2)C9—C10—C11—C120.6 (3)
C13—C1—C2—N2172.36 (16)C10—C11—C12—C70.4 (3)
N1—C1—C2—C16169.96 (16)C8—C7—C12—C110.1 (3)
C13—C1—C2—C1660.7 (2)C6—C7—C12—C11179.18 (19)
C2—N2—C3—C1761.3 (2)N1—C1—C13—C14169.24 (17)
C2—N2—C3—C4176.72 (16)C2—C1—C13—C1462.7 (2)
N2—C3—C4—C569.9 (2)C1—C13—C14—C1557.7 (2)
C17—C3—C4—C5168.49 (17)C13—C14—C15—C1652.0 (3)
C3—C4—C5—N1i71.9 (2)C14—C15—C16—C252.8 (2)
C5i—N1—C6—C777.4 (2)N2—C2—C16—C15178.66 (17)
C1—N1—C6—C7153.27 (17)C1—C2—C16—C1556.8 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N1i0.86 (2)2.32 (2)3.025 (2)139.9 (19)
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Permanent address: Department of Chemistry, Andong National University, Andong 760-749, South Korea. E-mail: jhchoi@andong.ac.kr

Acknowledgements

We thank G. S. Nichol for helpful discussions. This work was supported by a Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund, KRF-2005-013-C00027).

References

First citationBernhardt, P. V. & Riley, M. J. (2002). Inorg. Chem. 41, 3025–3031.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, J. H. (2000a). Chem. Phys. 256, 29–35.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J. H. (2000b). Spectrochim. Acta A, 58, 1599–1606.  CrossRef Google Scholar
First citationChoi, J. H., Clegg, W., Harrington, R. W., Yoon, H.-M. & Hong, Y. P. (2006). Acta Cryst. C. In preparation.  Google Scholar
First citationChoi, J. H., Oh, I. G., Lim, W. T. & Park, K. M. (2004). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J. H., Oh, I. G., Linder, R. & Schönherr, T. (2004). Chem. Phys. 297, 7–12.  Web of Science CrossRef CAS Google Scholar
First citationChoi, J. H., Oh, I. G., Suzuki, T. & Kaizaki, S. (2004). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, Y. & Lindoy, L. F. (2001). Aust J. Chem. 54, 291–297.  Web of Science CrossRef CAS Google Scholar
First citationKang, S. G. & Jeong, J. H. (2003). Bull. Korean Chem. Soc. 24, 393–396.  CAS Google Scholar
First citationKang, S. G. & Kim, S. J. (2003). Bull. Korean Chem. Soc. 24, 269–273.  CAS Google Scholar
First citationKang, S. G., Kweon, J. K. & Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483–487.  CAS Google Scholar
First citationMeyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178–180, 1313–1405.  Web of Science CrossRef CAS Google Scholar
First citationMunakata, M., Dai, J. Maekawa, M., Takayoshi, K. S. & Fukui, J. (1994). J. Chem. Soc. Chem. Commun. pp. 2231–2332.  Google Scholar
First citationPoon, C. K., & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds