organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­fluoro­phenyl (3R,4R,5R)-5-{[(3R,4R,5R)-5-azido­methyl-3,4-dimeth­­oxy-2,3,4,5-tetra­hydro­furan-3-carbonyl­amino]meth­yl}-3,4-dimeth­­oxy-2,3,4,5-tetra­hydro­furan-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, cDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and dBiological Chemistry, Division of Biomedical Sciences, Imperial College, London SW7 2AZ, England
*Correspondence e-mail: fpunzo@unict.it

(Received 12 December 2005; accepted 25 December 2005; online 7 January 2006)

The crystal structure of the title compound, C22H25F5N4O9, an important inter­mediate in the synthesis of novel biopolymers containing branched carbon chains, establishes the relative stereochemistry at all six chiral centres of the dipeptide. The structure may indicate a predisposition to the organization of secondary structure by novel dipeptide isosteres. An inter­molecular hydrogen bond between the NH group and one of the N atoms of the azide group contributes to the stabilization of the packing.

Comment

Sugar amino acids (SAAs) have been extensively studied as peptidomimetics (Chakraborty et al., 2005[Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2005). Glycoconjugate J. 22, 83-93.]). δ-Tetra­hydro­furan (THF) SAAs such as (1)[link] (Smith et al., 2003[Smith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647-3655.]; Chakraborty et al., 2004[Chakraborty, T. K., Reddy, V. R., Sudhakar, G., Kumar, S. U., Reddy, T. J., Kumar, S. K., Kunwar, A. C., Mathur, A., Sharma, R., Gupta, N. & Prasad, S. (2004). Tetrahedron, 60, 8329-8339.]) have become well established as dipeptide isosteres (Grotenberg et al., 2004[Grotenberg, G. M., Timmer, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Rajii, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444-3446.]). Such systems continue to provide an increased understanding of the factors inducing secondary structure and insight into the complex nature of protein folding (Billing & Nilsson, 2005[Billing, J. F. & Nilsson, U. (2005). Tetrahedron, 61, 863-874.]; Claridge et al., 2005[Claridge, T. D. W., Long, D. D., Baker, C. M., Odell, B., Grant, G. H., Edwards, A. A., Tranter, G. E., Fleet, G. W. J. & Smith, M. D. (2005). J. Org. Chem. 70, 2082-2090.]; Long et al., 1999[Long, D. D., Hungerford, N. L., Smith, M. D., Brittain, D. E. A., Marquess, D. G., Claridge, T. D. W. & Fleet, G. W. J. (1999). Tetrahedron Lett. 40, 2195-2198.]) with potential chemotherapeutic activities as integrin antagonists (van Well et al., 2004[Well, R. M. van, Overkleeft, H. S., van der Marel, G. A., Bruss, D., Thibault, G., de Groot, P. G., van Boom, J. H. & Overhand, M. (2004). Bioorg. Med. Chem. Lett. 13, 331-334.]), enkephalin analogues (Montero et al., 2004[Montero, A., Mann, E. & Herradon, B. (2004). Eur. J. Org. pp. 3063-3073.]) and somatastatin mimics (Gruner et al., 2002[Gruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491-514.]). In the past, almost all THF SAAs have contained linear carbon chains, since the only carbohydrate building blocks from which they can be derived have unbranched chains (Bols, 1996[Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.]). Knowledge of the predisposition of monomers to adopt particular secondary structural motif may allow the design of bioactive peptidomimetic libraries.

[Scheme 1]

However, new classes of branched carbohydrates suitable for short syntheses of branched carbon chain SAAs have recently become available by Kiliani or other procedures (Soengas et al., 2005[Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755-5759.]; Hotchkiss et al., 2004[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461-9464.],2006[Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, doi:10.1016/j.tetlet.2005.11.018. [Any update?]]). The Ho crossed aldol (Ho, 1979[Ho, P.-T. (1979). Can. J. Chem. 57, 381-381.], 1985[Ho, P.-T. (1985). Can. J. Chem. 63, 2221-2224.]) was the crucial step in the synthesis of branched SAAs such as (2) (Simone et al., 2005[Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761-5765.]). The azido­ester (2)[link] was converted by standard peptide procedures into the dimeric penta­fluoro­phenyl ester (3)[link] as a key inter­mediate for the generation of homooligomers having the branched trans-δ-SAA scaffold (2)[link] as a component.

The crystal structure reported in this paper firmly establishes the relative configuration of the six stereogenic centres in (3); the absolute configuration is consistent with the one determined by the use of D-ribose as the starting material for the synthesis. An inter­molecular hydrogen bond between the H atom connected to N10 and N28, the first nitro­gen of the azide chain, contributes to the stabilization of the packing.

[Figure 1]
Figure 1
The structure of (3), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2]
Figure 2
Packing diagram of (3), viewed down the a axis. Dashed lines indicate inter­molecular hydrogen bonds.

Experimental

Compound (3) was crystallized by dissolving it in dichloro­methane, adding a few drops of cyclo­hexane and allowing the slow competitive evaporation of the two solvents until clear colourless crystals formed.

Crystal data
  • C22H25F5N4O9

  • Mr = 584.45

  • Orthorhombic, P 21 21 21

  • a = 7.18471 (11) Å

  • b = 11.04142 (15) Å

  • c = 32.6727 (5) Å

  • V = 2591.91 (7) Å3

  • Z = 4

  • Dx = 1.498 Mg m−3

  • Cu Kα radiation

  • Cell parameters from 11003 reflections

  • θ = 4.2–69.3°

  • μ = 1.22 mm−1

  • T = 120 K

  • Lath, colourless

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • ω/2θ scans

  • Absorption correction: multi-scan(CrysAlis; Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis. Oxford Diffraction Ltd, Abingdon, Oxford, England.])Tmin = 0.783, Tmax = 0.885

  • 11003 measured reflections

  • 4281 independent reflections

  • 3387 reflections with I > 2σ(I)

  • Rint = 0.020

  • θmax = 69.3°

  • h = −6 → 8

  • k = −9 → 13

  • l = −39 → 33

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.081

  • S = 0.92

  • 4281 reflections

  • 362 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + (0.04P)2 + 0.55P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1237 Friedel pairs

  • Flack parameter: 0.00 (16)

Table 1
Selected geometric parameters (Å, °)[link]

O1—C17 1.425 (3)
O1—C40 1.418 (4)
O2—C24 1.431 (3)
O2—C25 1.424 (3)
F3—C34 1.334 (3)
F4—C26 1.342 (3)
O5—C18 1.390 (3)
O5—C32 1.387 (3)
O6—C30 1.411 (3)
O6—C38 1.421 (4)
O7—C20 1.222 (3)
O8—C23 1.404 (3)
O8—C36 1.434 (4)
O9—C19 1.409 (3)
O9—C39 1.437 (4)
N10—C20 1.336 (3)
N10—C21 1.450 (3)
F11—C33 1.338 (3)
F12—C35 1.333 (3)
O13—C32 1.180 (3)
F14—C37 1.342 (3)
O15—C22 1.422 (3)
O15—C31 1.403 (3)
N16—N28 1.183 (3)
N16—N29 1.146 (3)
C17—C20 1.537 (3)
C17—C30 1.532 (4)
C17—C31 1.515 (3)
C18—C26 1.383 (4)
C18—C34 1.376 (3)
C19—C23 1.540 (3)
C19—C25 1.532 (4)
C19—C32 1.522 (3)
C21—C24 1.514 (3)
C22—C27 1.502 (4)
C22—C30 1.546 (4)
C23—C24 1.517 (3)
C26—C37 1.355 (4)
C27—N28 1.495 (4)
C33—C34 1.382 (4)
C33—C35 1.364 (5)
C35—C37 1.369 (4)
C17—O1—C40 114.6 (2)
C24—O2—C25 110.12 (19)
C18—O5—C32 115.64 (19)
C30—O6—C38 113.3 (2)
C23—O8—C36 113.0 (2)
C19—O9—C39 114.5 (2)
C20—N10—C21 121.8 (2)
C22—O15—C31 109.17 (19)
N28—N16—N29 172.9 (3)
O1—C17—C20 111.3 (2)
O1—C17—C30 104.20 (19)
C20—C17—C30 113.26 (19)
O1—C17—C31 113.9 (2)
C20—C17—C31 112.2 (2)
C30—C17—C31 101.3 (2)
O5—C18—C26 118.8 (2)
O5—C18—C34 123.2 (3)
C26—C18—C34 118.0 (2)
O9—C19—C23 108.06 (19)
O9—C19—C25 113.9 (2)
C23—C19—C25 102.24 (19)
O9—C19—C32 107.94 (19)
C23—C19—C32 108.4 (2)
C25—C19—C32 115.9 (2)
C17—C20—N10 115.5 (2)
C17—C20—O7 121.0 (2)
N10—C20—O7 123.4 (2)
N10—C21—C24 114.3 (2)
O15—C22—C27 106.1 (2)
O15—C22—C30 106.8 (2)
C27—C22—C30 114.9 (2)
C19—C23—O8 115.53 (19)
C19—C23—C24 103.4 (2)
O8—C23—C24 109.2 (2)
C23—C24—C21 115.6 (2)
C23—C24—O2 104.3 (2)
C21—C24—O2 108.6 (2)
C19—C25—O2 107.9 (2)
C18—C26—F4 118.9 (2)
C18—C26—C37 121.6 (3)
F4—C26—C37 119.5 (3)
C22—C27—N28 112.0 (3)
C27—N28—N16 115.4 (2)
C22—C30—C17 103.0 (2)
C22—C30—O6 111.7 (2)
C17—C30—O6 108.6 (2)
C17—C31—O15 105.3 (2)
C19—C32—O5 111.3 (2)
C19—C32—O13 126.2 (3)
O5—C32—O13 122.4 (2)
F11—C33—C34 119.2 (3)
F11—C33—C35 120.1 (3)
C34—C33—C35 120.6 (3)
C33—C34—C18 120.2 (3)
C33—C34—F3 119.6 (3)
C18—C34—F3 120.2 (3)
F12—C35—C33 119.9 (3)
F12—C35—C37 120.7 (3)
C33—C35—C37 119.4 (3)
F14—C37—C35 119.6 (3)
F14—C37—C26 120.2 (3)
C35—C37—C26 120.2 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H1⋯N28i 0.94 2.23 3.120 (3) 158
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

The H atoms were located in a difference map, but those attached to C atoms were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–98 Å, N—H in the range 0.86–0.89 Å and Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom), after which their positions were refined with riding constraints.

Data collection: CrysAlis (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis. Oxford Diffraction Ltd, Abingdon, Oxford, England.]); cell refinement: CrysAlis; data reduction: CrysAlis; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: CrysAlis (Oxford Diffraction, 2005); cell refinement: CrysAlis; data reduction: CrysAlis; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Pentafluorophenyl (3R,4R,5R)-5-{[(3R,4R,5R)-5-azidomethyl-3,4-dimethoxy-2,3,4,5-tetrahydrofuran- 3-carbonylamino]methyl}-3,4-dimethoxy-2,3,4,5-tetrahydrofuran-3-carboxylate top
Crystal data top
C22H25F5N4O9F(000) = 1208
Mr = 584.45Dx = 1.498 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54248 Å
Hall symbol: P 2ac 2abCell parameters from 11003 reflections
a = 7.18471 (11) Åθ = 4.2–69.3°
b = 11.04142 (15) ŵ = 1.22 mm1
c = 32.6727 (5) ÅT = 120 K
V = 2591.91 (7) Å3Plate, colourless
Z = 40.50 × 0.20 × 0.10 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
3387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω/2θ scansθmax = 69.3°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis; Oxford Diffraction, 2005)
h = 68
Tmin = 0.783, Tmax = 0.885k = 913
11003 measured reflectionsl = 3933
4281 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(F2) + (0.04P)2 + 0.55P]
where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.081(Δ/σ)max = 0.001
S = 0.92Δρmax = 0.29 e Å3
4281 reflectionsΔρmin = 0.14 e Å3
362 parametersAbsolute structure: Flack (1983), 1237 Friedel pairs
0 restraintsAbsolute structure parameter: 0.00 (16)
Primary atom site location: structure-invariant direct methods
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2249 (3)0.58178 (16)0.76221 (5)0.0567
O20.1532 (3)0.66323 (16)0.60192 (5)0.0545
F30.0797 (3)0.46794 (18)0.43728 (5)0.0810
F40.3609 (2)0.65310 (16)0.52301 (5)0.0728
O50.0124 (3)0.56503 (15)0.51413 (5)0.0521
O60.3012 (2)0.35309 (18)0.68901 (5)0.0613
O70.1177 (2)0.43686 (17)0.70491 (5)0.0585
O80.1422 (3)0.40677 (17)0.59803 (5)0.0604
O90.2815 (3)0.37069 (16)0.57241 (5)0.0609
N100.0521 (3)0.59896 (18)0.68589 (6)0.0432
F110.1759 (3)0.45764 (19)0.37705 (5)0.1000
F120.5202 (3)0.5498 (2)0.38863 (6)0.1035
O130.0116 (4)0.36179 (17)0.51341 (6)0.0782
F140.6115 (3)0.64942 (19)0.46177 (7)0.0972
O150.2700 (3)0.3302 (2)0.78835 (7)0.0899
N160.5502 (3)0.2964 (2)0.84412 (7)0.0578
C170.1661 (3)0.4742 (2)0.74192 (7)0.0464
C180.1368 (4)0.5586 (2)0.48162 (7)0.0499
C190.1615 (4)0.4710 (2)0.56830 (7)0.0490
C200.0187 (3)0.5017 (2)0.70912 (7)0.0433
C210.0763 (3)0.6374 (2)0.65421 (7)0.0470
C220.4169 (4)0.3390 (3)0.75934 (8)0.0601
C230.0248 (4)0.4698 (2)0.60462 (7)0.0466
C240.0180 (4)0.6029 (2)0.61125 (7)0.0464
C250.2586 (4)0.5935 (3)0.57352 (7)0.0535
C260.3142 (4)0.6050 (3)0.48672 (8)0.0569
C270.5819 (4)0.3878 (3)0.78228 (8)0.0669
N280.6467 (3)0.3025 (3)0.81486 (8)0.0720
N290.4711 (4)0.2836 (3)0.87426 (8)0.0762
C300.3459 (4)0.4209 (3)0.72428 (7)0.0509
C310.1054 (4)0.3741 (3)0.77071 (9)0.0595
C320.0506 (4)0.4548 (2)0.52899 (7)0.0536
C330.2226 (6)0.5058 (3)0.41321 (8)0.0713
C340.0917 (4)0.5098 (3)0.44416 (8)0.0604
C350.3964 (5)0.5523 (3)0.41902 (9)0.0712
C360.1239 (5)0.2786 (3)0.60382 (10)0.0801
C370.4410 (4)0.6028 (3)0.45602 (10)0.0664
C380.4599 (5)0.3180 (4)0.66591 (10)0.0950
C390.4293 (5)0.3663 (3)0.54282 (11)0.0832
C400.0981 (6)0.6264 (3)0.79185 (10)0.0845
H2110.08990.72680.65630.0663*
H2120.19900.59810.65940.0663*
H2210.44130.25860.74840.0856*
H2310.08890.43870.62940.0651*
H2410.11210.63190.59090.0654*
H2510.26390.63690.54670.0765*
H2520.38250.58060.58450.0770*
H2710.68420.40000.76320.0950*
H2720.54870.46540.79550.0945*
H3010.43550.48550.71740.0725*
H3110.04050.30810.75610.0846*
H3120.02170.40380.79200.0855*
H3610.24490.24240.60200.1410*
H3620.04670.24550.58190.1409*
H3630.06680.26350.63060.1412*
H3810.41430.27620.64110.1746*
H3820.52640.39280.65880.1748*
H3830.53650.26370.68200.1748*
H3910.48880.28870.54470.1461*
H3920.38130.37730.51540.1463*
H3930.52060.42910.54870.1469*
H4010.13590.70890.79910.1511*
H4020.02780.63070.78150.1514*
H4030.10140.57610.81650.1516*
H10.15790.64620.69110.0652*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0701 (12)0.0580 (11)0.0418 (9)0.0085 (10)0.0070 (9)0.0026 (8)
O20.0681 (12)0.0481 (9)0.0473 (9)0.0010 (10)0.0122 (9)0.0067 (8)
F30.0903 (13)0.0974 (13)0.0553 (10)0.0168 (11)0.0111 (9)0.0099 (9)
F40.0689 (10)0.0816 (11)0.0678 (10)0.0014 (10)0.0106 (8)0.0130 (9)
O50.0641 (11)0.0503 (10)0.0419 (9)0.0025 (9)0.0037 (8)0.0026 (8)
O60.0581 (10)0.0781 (13)0.0477 (9)0.0127 (10)0.0068 (9)0.0090 (9)
O70.0490 (10)0.0670 (11)0.0596 (11)0.0138 (10)0.0093 (9)0.0138 (9)
O80.0615 (12)0.0573 (11)0.0623 (11)0.0055 (10)0.0018 (9)0.0073 (9)
O90.0726 (12)0.0576 (11)0.0525 (10)0.0174 (10)0.0026 (9)0.0050 (9)
N100.0485 (11)0.0456 (11)0.0356 (9)0.0024 (10)0.0001 (9)0.0003 (9)
F110.1528 (19)0.1045 (15)0.0428 (9)0.0021 (14)0.0053 (10)0.0136 (9)
F120.1182 (17)0.1082 (15)0.0839 (13)0.0086 (14)0.0500 (13)0.0019 (12)
O130.1300 (19)0.0507 (11)0.0540 (11)0.0005 (13)0.0259 (12)0.0108 (10)
F140.0682 (12)0.1017 (14)0.1216 (16)0.0050 (12)0.0194 (11)0.0081 (13)
O150.0483 (11)0.132 (2)0.0891 (15)0.0158 (13)0.0161 (11)0.0689 (15)
N160.0603 (14)0.0699 (16)0.0431 (13)0.0128 (13)0.0172 (12)0.0061 (12)
C170.0482 (14)0.0522 (14)0.0387 (12)0.0092 (13)0.0016 (11)0.0063 (11)
C180.0648 (17)0.0462 (13)0.0386 (12)0.0065 (13)0.0009 (12)0.0043 (11)
C190.0594 (15)0.0471 (13)0.0405 (12)0.0093 (13)0.0029 (12)0.0054 (11)
C200.0427 (13)0.0498 (14)0.0374 (12)0.0014 (13)0.0030 (10)0.0009 (11)
C210.0549 (15)0.0478 (14)0.0382 (12)0.0078 (12)0.0022 (11)0.0008 (11)
C220.0642 (17)0.0643 (17)0.0519 (15)0.0067 (15)0.0124 (13)0.0048 (14)
C230.0526 (15)0.0478 (13)0.0394 (12)0.0009 (13)0.0032 (11)0.0006 (11)
C240.0513 (15)0.0482 (14)0.0398 (12)0.0054 (13)0.0047 (11)0.0018 (11)
C250.0562 (15)0.0605 (15)0.0439 (13)0.0022 (14)0.0000 (12)0.0084 (12)
C260.0636 (17)0.0562 (15)0.0508 (15)0.0062 (15)0.0011 (13)0.0002 (13)
C270.0448 (15)0.107 (3)0.0484 (15)0.0027 (17)0.0036 (12)0.0122 (16)
N280.0496 (13)0.109 (2)0.0576 (14)0.0228 (15)0.0039 (12)0.0145 (15)
N290.0688 (16)0.102 (2)0.0578 (15)0.0032 (16)0.0082 (13)0.0114 (15)
C300.0470 (13)0.0645 (16)0.0412 (12)0.0043 (14)0.0078 (11)0.0056 (12)
C310.0491 (15)0.0683 (18)0.0611 (16)0.0084 (14)0.0060 (13)0.0204 (14)
C320.0702 (18)0.0486 (15)0.0420 (13)0.0041 (14)0.0014 (12)0.0027 (12)
C330.106 (3)0.070 (2)0.0379 (14)0.007 (2)0.0035 (16)0.0016 (13)
C340.0738 (19)0.0621 (17)0.0452 (14)0.0075 (15)0.0051 (13)0.0040 (13)
C350.085 (2)0.0665 (19)0.0619 (18)0.0048 (18)0.0220 (17)0.0082 (16)
C360.100 (3)0.0616 (19)0.079 (2)0.017 (2)0.007 (2)0.0011 (17)
C370.0646 (19)0.0568 (17)0.078 (2)0.0052 (16)0.0054 (16)0.0020 (16)
C380.074 (2)0.144 (4)0.067 (2)0.035 (2)0.0031 (17)0.027 (2)
C390.095 (2)0.077 (2)0.077 (2)0.0235 (19)0.0241 (19)0.0138 (19)
C400.125 (3)0.073 (2)0.0558 (17)0.016 (2)0.0076 (19)0.0088 (16)
Geometric parameters (Å, º) top
O1—C171.425 (3)C21—C241.514 (3)
O1—C401.418 (4)C21—H2110.994
O2—C241.431 (3)C21—H2120.997
O2—C251.424 (3)C22—C271.502 (4)
F3—C341.334 (3)C22—C301.546 (4)
F4—C261.342 (3)C22—H2210.973
O5—C181.390 (3)C23—C241.517 (3)
O5—C321.387 (3)C23—H2310.991
O6—C301.411 (3)C24—H2411.000
O6—C381.421 (4)C25—H2510.999
O7—C201.222 (3)C25—H2520.970
O8—C231.404 (3)C26—C371.355 (4)
O8—C361.434 (4)C27—N281.495 (4)
O9—C191.409 (3)C27—H2710.972
O9—C391.437 (4)C27—H2720.989
N10—C201.336 (3)C30—H3010.987
N10—C211.450 (3)C31—H3110.989
N10—H10.938C31—H3120.976
F11—C331.338 (3)C33—C341.382 (4)
F12—C351.333 (3)C33—C351.364 (5)
O13—C321.180 (3)C35—C371.369 (4)
F14—C371.342 (3)C36—H3610.959
O15—C221.422 (3)C36—H3620.976
O15—C311.403 (3)C36—H3630.980
N16—N281.183 (3)C38—H3810.989
N16—N291.146 (3)C38—H3820.982
C17—C201.537 (3)C38—H3830.969
C17—C301.532 (4)C39—H3910.960
C17—C311.515 (3)C39—H3920.968
C18—C261.383 (4)C39—H3930.974
C18—C341.376 (3)C40—H4010.980
C19—C231.540 (3)C40—H4020.967
C19—C251.532 (4)C40—H4030.978
C19—C321.522 (3)
C17—O1—C40114.6 (2)C18—C26—C37121.6 (3)
C24—O2—C25110.12 (19)F4—C26—C37119.5 (3)
C18—O5—C32115.64 (19)C22—C27—N28112.0 (3)
C30—O6—C38113.3 (2)C22—C27—H271109.1
C23—O8—C36113.0 (2)N28—C27—H271107.9
C19—O9—C39114.5 (2)C22—C27—H272109.8
C20—N10—C21121.8 (2)N28—C27—H272108.0
C20—N10—H1119.3H271—C27—H272110.0
C21—N10—H1118.8C27—N28—N16115.4 (2)
C22—O15—C31109.17 (19)C22—C30—C17103.0 (2)
N28—N16—N29172.9 (3)C22—C30—O6111.7 (2)
O1—C17—C20111.3 (2)C17—C30—O6108.6 (2)
O1—C17—C30104.20 (19)C22—C30—H301112.1
C20—C17—C30113.26 (19)C17—C30—H301111.0
O1—C17—C31113.9 (2)O6—C30—H301110.2
C20—C17—C31112.2 (2)C17—C31—O15105.3 (2)
C30—C17—C31101.3 (2)C17—C31—H311111.9
O5—C18—C26118.8 (2)O15—C31—H311109.9
O5—C18—C34123.2 (3)C17—C31—H312112.0
C26—C18—C34118.0 (2)O15—C31—H312110.0
O9—C19—C23108.06 (19)H311—C31—H312107.6
O9—C19—C25113.9 (2)C19—C32—O5111.3 (2)
C23—C19—C25102.24 (19)C19—C32—O13126.2 (3)
O9—C19—C32107.94 (19)O5—C32—O13122.4 (2)
C23—C19—C32108.4 (2)F11—C33—C34119.2 (3)
C25—C19—C32115.9 (2)F11—C33—C35120.1 (3)
C17—C20—N10115.5 (2)C34—C33—C35120.6 (3)
C17—C20—O7121.0 (2)C33—C34—C18120.2 (3)
N10—C20—O7123.4 (2)C33—C34—F3119.6 (3)
N10—C21—C24114.3 (2)C18—C34—F3120.2 (3)
N10—C21—H211107.7F12—C35—C33119.9 (3)
C24—C21—H211109.9F12—C35—C37120.7 (3)
N10—C21—H212108.2C33—C35—C37119.4 (3)
C24—C21—H212107.1O8—C36—H361108.7
H211—C21—H212109.4O8—C36—H362108.9
O15—C22—C27106.1 (2)H361—C36—H362108.3
O15—C22—C30106.8 (2)O8—C36—H363108.9
C27—C22—C30114.9 (2)H361—C36—H363111.4
O15—C22—H221108.4H362—C36—H363110.6
C27—C22—H221111.6F14—C37—C35119.6 (3)
C30—C22—H221108.7F14—C37—C26120.2 (3)
C19—C23—O8115.53 (19)C35—C37—C26120.2 (3)
C19—C23—C24103.4 (2)O6—C38—H381107.3
O8—C23—C24109.2 (2)O6—C38—H382106.6
C19—C23—H231109.6H381—C38—H382111.1
O8—C23—H231110.5O6—C38—H383109.6
C24—C23—H231108.2H381—C38—H383110.2
C23—C24—C21115.6 (2)H382—C38—H383111.8
C23—C24—O2104.3 (2)O9—C39—H391108.4
C21—C24—O2108.6 (2)O9—C39—H392110.8
C23—C24—H241110.6H391—C39—H392109.3
C21—C24—H241110.4O9—C39—H393110.0
O2—C24—H241106.9H391—C39—H393108.8
C19—C25—O2107.9 (2)H392—C39—H393109.5
C19—C25—H251110.1O1—C40—H401108.1
O2—C25—H251109.4O1—C40—H402112.3
C19—C25—H252109.3H401—C40—H402107.3
O2—C25—H252109.0O1—C40—H403110.4
H251—C25—H252111.1H401—C40—H403108.8
C18—C26—F4118.9 (2)H402—C40—H403109.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H1···N28i0.942.233.120 (3)158
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Footnotes

Visiting Scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England.

Acknowledgements

Financial support (to AAE) from the EPSRC (grant No. GR/S44105/01) and (to MIS) from the European Community's Human Potential Programme under contract HPRN-CT-2002-00173 is gratefully acknowledged. The authors thank Oxford Diffraction for use of the Gemini R X-ray system.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBilling, J. F. & Nilsson, U. (2005). Tetrahedron, 61, 863–874.  Web of Science CrossRef CAS Google Scholar
First citationBols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons.  Google Scholar
First citationChakraborty, T. K., Reddy, V. R., Sudhakar, G., Kumar, S. U., Reddy, T. J., Kumar, S. K., Kunwar, A. C., Mathur, A., Sharma, R., Gupta, N. & Prasad, S. (2004). Tetrahedron, 60, 8329–8339.  Web of Science CrossRef CAS Google Scholar
First citationChakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2005). Glycoconjugate J. 22, 83–93.  Web of Science CrossRef CAS Google Scholar
First citationClaridge, T. D. W., Long, D. D., Baker, C. M., Odell, B., Grant, G. H., Edwards, A. A., Tranter, G. E., Fleet, G. W. J. & Smith, M. D. (2005). J. Org. Chem. 70, 2082–2090.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrotenberg, G. M., Timmer, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Rajii, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444–3446.  Web of Science CSD CrossRef PubMed Google Scholar
First citationGruner, S. A. W., Locardi, E., Lohof, E. & Kessler, H. (2002). Chem. Rev. 102, 491–514.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHo, P.-T. (1979). Can. J. Chem. 57, 381–381.  CrossRef CAS Web of Science Google Scholar
First citationHo, P.-T. (1985). Can. J. Chem. 63, 2221–2224.  CrossRef CAS Web of Science Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464.  Web of Science CrossRef CAS Google Scholar
First citationHotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, doi:10.1016/j.tetlet.2005.11.018. [Any update?]  Google Scholar
First citationLong, D. D., Hungerford, N. L., Smith, M. D., Brittain, D. E. A., Marquess, D. G., Claridge, T. D. W. & Fleet, G. W. J. (1999). Tetrahedron Lett. 40, 2195–2198.  Web of Science CrossRef CAS Google Scholar
First citationMontero, A., Mann, E. & Herradon, B. (2004). Eur. J. Org. pp. 3063–3073.  CrossRef Google Scholar
First citationOxford Diffraction (2005). CrysAlis. Oxford Diffraction Ltd, Abingdon, Oxford, England.  Google Scholar
First citationSimone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765.  Web of Science CSD CrossRef CAS Google Scholar
First citationSmith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647–3655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSoengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759.  Web of Science CrossRef CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWell, R. M. van, Overkleeft, H. S., van der Marel, G. A., Bruss, D., Thibault, G., de Groot, P. G., van Boom, J. H. & Overhand, M. (2004). Bioorg. Med. Chem. Lett. 13, 331–334.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds