organic compounds
3-Azabicyclo[3.3.1]nonane-2,4-dione–acetic acid (1/1)
aChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and bStrathclyde Institute for Biomedical Science, 27 Taylor Street, University of Strathclyde, Glasgow G4 0NR, Scotland
*Correspondence e-mail: a.hulme@ucl.ac.uk
3-Azabicyclo[3.3.1]nonane-2,4-dione (cyclohexane-1,3-dicarboximide, C8H11NO2) forms a 1:1 solvate with acetic acid (C2H4O2). The comprises hydrogen-bonded chains containing alternating cyclohexane-1,3-dicarboximide and acetic acid molecules.
Comment
The title solvate, (I), was first produced during an automated parallel crystallization screen on cyclohexane-1,3-dicarboximide. It was identified as a new different from the known unsolvated form (Howie & Skakle, 2001), by examination of its powder diffraction pattern, collected on a multi-sample X-ray powder diffractometer (Florence et al., 2003). It was crystallized by crash cooling a subsaturated solution in glacial acetic acid from 383 to 288 K, and gave crystals of suitable size and quality for single-crystal X-ray diffraction.
The contains one molecule of cyclohexane-1,3-dicarboximide and one molecule of acetic acid (Fig. 1). The structure exhibits a chain hydrogen-bonding motif [graph set C22(8)], with cyclohexane-1,3-dicarboximide and acetic acid molecules alternating in the chain. The pair of hydrogen bonds (Table 1) to the acetic acid carboxyl group is in an anti configuration and only one of the carbonyl O atoms in the cyclohexane-1,3-dicarboximide molecule is used in the hydrogen bonding forming the chain (Fig. 2). There are no hydrogen bonds between different chains, but the chains stack upon one another, forming a column parallel to [001]. The alkyl substituents of the cyclohexane-1,3-dicarboximide molecules lie to the sides of the column, with the hydrogen-bonding substituents comprising the middle of the column (Fig. 3). Adjacent chains in the column have the cyclohexane-1,3-dicarboximide on alternating sides of the column.
of (I)The chain motif in this structure is closely related to the chain motif observed in both the anhydrous form of cyclohexane-1,3-dicarboximide and in the shows overlays of the chain motif of (I) with the chain from the unsolvated cyclohexane-1,3-dicarboximide structure (Howie & Skakle, 2001) and with the chain from the orthorhombic form of acetic acid (Boese et al., 1999). From these overlays it can be seen that the basic hydrogen-bonded backbone is the same in each of these structures.
of acetic acid. Fig. 4Experimental
3-Azabicyclo[3.3.1]nonane-2,4-dione (100 mg) was dissolved in glacial acetic acid (2 ml) at 383 K and crash cooled to 288 K to obtain single crystals of (I).
Crystal data
|
Refinement
|
All H atoms were located in a difference map and were refined isotropically; C—H bond lengths range from 0.94 (2) to 1.00 (2) Å.
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: MERCURY (Bruno et al., 2002) and SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536806000602/ci6743sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806000602/ci6743Isup2.hkl
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Bruno et al., 2002) and SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.C8H11NO2·C2H4O2 | Z = 2 |
Mr = 213.23 | F(000) = 228 |
Triclinic, P1 | Dx = 1.402 Mg m−3 |
Hall symbol: -P 1 | Melting point = 462–467 K |
a = 6.6224 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.3580 (8) Å | Cell parameters from 2712 reflections |
c = 10.7995 (12) Å | θ = 3.1–28.3° |
α = 103.598 (2)° | µ = 0.11 mm−1 |
β = 93.378 (2)° | T = 150 K |
γ = 97.272 (2)° | Block, colourless |
V = 505.22 (10) Å3 | 0.35 × 0.29 × 0.17 mm |
Bruker SMART APEX diffractometer | 2313 independent reflections |
Radiation source: fine-focus sealed tube | 2121 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.013 |
ω rotation with narrow frames scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→8 |
Tmin = 0.963, Tmax = 0.982 | k = −9→9 |
4424 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.098 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1277P] where P = (Fo2 + 2Fc2)/3 |
2313 reflections | (Δ/σ)max = 0.001 |
196 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O51 | 0.24026 (16) | −0.08875 (12) | 0.46398 (8) | 0.0339 (2) | |
O50 | 0.21208 (13) | −0.22994 (11) | 0.62416 (8) | 0.0249 (2) | |
C51 | 0.2222 (2) | 0.10010 (16) | 0.67523 (11) | 0.0274 (3) | |
H51A | 0.102 (3) | 0.087 (3) | 0.7168 (18) | 0.049 (5)* | |
H51B | 0.333 (3) | 0.116 (3) | 0.7374 (18) | 0.052 (5)* | |
H51C | 0.223 (2) | 0.207 (2) | 0.6374 (16) | 0.039 (4)* | |
C50 | 0.22593 (16) | −0.07895 (15) | 0.57639 (10) | 0.0206 (2) | |
H50 | 0.216 (3) | −0.330 (3) | 0.5621 (18) | 0.047 (5)* | |
O2 | 0.33694 (14) | −0.05870 (11) | 0.15566 (8) | 0.0301 (2) | |
O1 | 0.24571 (12) | 0.42653 (11) | 0.47939 (7) | 0.02418 (19) | |
N1 | 0.29922 (14) | 0.18908 (12) | 0.31657 (9) | 0.0207 (2) | |
H1 | 0.280 (2) | 0.107 (2) | 0.3685 (15) | 0.034 (4)* | |
C8 | 0.10302 (17) | 0.51372 (15) | 0.21090 (10) | 0.0231 (2) | |
H8A | 0.006 (2) | 0.551 (2) | 0.2742 (14) | 0.030 (4)* | |
H8B | 0.127 (2) | 0.613 (2) | 0.1658 (14) | 0.026 (3)* | |
C7 | 0.01654 (17) | 0.32663 (16) | 0.11624 (10) | 0.0238 (2) | |
H7A | −0.032 (2) | 0.233 (2) | 0.1632 (13) | 0.026 (3)* | |
H7B | −0.102 (2) | 0.344 (2) | 0.0648 (14) | 0.032 (4)* | |
C6 | 0.17583 (17) | 0.24951 (16) | 0.02883 (10) | 0.0237 (2) | |
H6A | 0.207 (2) | 0.329 (2) | −0.0312 (14) | 0.029 (4)* | |
H6B | 0.120 (2) | 0.121 (2) | −0.0245 (14) | 0.030 (4)* | |
C5 | 0.33876 (16) | 0.11110 (15) | 0.19154 (10) | 0.0216 (2) | |
C4 | 0.37781 (16) | 0.24459 (15) | 0.10551 (10) | 0.0219 (2) | |
H4 | 0.473 (2) | 0.194 (2) | 0.0481 (14) | 0.026 (3)* | |
C3 | 0.46373 (17) | 0.44298 (15) | 0.18455 (11) | 0.0226 (2) | |
H3A | 0.599 (2) | 0.445 (2) | 0.2288 (14) | 0.029 (3)* | |
H3B | 0.481 (2) | 0.529 (2) | 0.1269 (13) | 0.024 (3)* | |
C2 | 0.31151 (16) | 0.50773 (14) | 0.28069 (10) | 0.0199 (2) | |
H2 | 0.361 (2) | 0.629 (2) | 0.3366 (13) | 0.023 (3)* | |
C1 | 0.28424 (15) | 0.37591 (14) | 0.36779 (10) | 0.0189 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O51 | 0.0602 (6) | 0.0212 (4) | 0.0231 (4) | 0.0102 (4) | 0.0106 (4) | 0.0071 (3) |
O50 | 0.0346 (4) | 0.0192 (4) | 0.0213 (4) | 0.0040 (3) | 0.0055 (3) | 0.0052 (3) |
C51 | 0.0358 (6) | 0.0203 (5) | 0.0246 (6) | 0.0054 (4) | 0.0021 (5) | 0.0019 (4) |
C50 | 0.0201 (5) | 0.0191 (5) | 0.0228 (5) | 0.0028 (4) | 0.0022 (4) | 0.0053 (4) |
O2 | 0.0410 (5) | 0.0172 (4) | 0.0324 (4) | 0.0074 (3) | 0.0093 (4) | 0.0035 (3) |
O1 | 0.0325 (4) | 0.0207 (4) | 0.0198 (4) | 0.0045 (3) | 0.0057 (3) | 0.0046 (3) |
N1 | 0.0255 (5) | 0.0165 (4) | 0.0215 (4) | 0.0045 (3) | 0.0051 (3) | 0.0063 (3) |
C8 | 0.0276 (5) | 0.0207 (5) | 0.0240 (5) | 0.0084 (4) | 0.0064 (4) | 0.0080 (4) |
C7 | 0.0235 (5) | 0.0266 (6) | 0.0221 (5) | 0.0034 (4) | 0.0023 (4) | 0.0078 (4) |
C6 | 0.0299 (6) | 0.0214 (5) | 0.0186 (5) | 0.0006 (4) | 0.0045 (4) | 0.0039 (4) |
C5 | 0.0209 (5) | 0.0186 (5) | 0.0251 (5) | 0.0047 (4) | 0.0048 (4) | 0.0036 (4) |
C4 | 0.0246 (5) | 0.0188 (5) | 0.0224 (5) | 0.0034 (4) | 0.0101 (4) | 0.0031 (4) |
C3 | 0.0230 (5) | 0.0193 (5) | 0.0253 (5) | 0.0002 (4) | 0.0082 (4) | 0.0053 (4) |
C2 | 0.0242 (5) | 0.0145 (5) | 0.0206 (5) | 0.0011 (4) | 0.0047 (4) | 0.0033 (4) |
C1 | 0.0174 (5) | 0.0177 (5) | 0.0209 (5) | 0.0022 (4) | 0.0018 (4) | 0.0037 (4) |
O51—C50 | 1.2092 (14) | C8—H8B | 0.971 (15) |
O50—C50 | 1.3259 (13) | C7—C6 | 1.5306 (15) |
O50—H50 | 0.88 (2) | C7—H7A | 0.982 (14) |
C51—C50 | 1.4919 (15) | C7—H7B | 0.971 (15) |
C51—H51A | 0.944 (19) | C6—C4 | 1.5402 (16) |
C51—H51B | 0.943 (19) | C6—H6A | 0.984 (15) |
C51—H51C | 0.970 (17) | C6—H6B | 0.995 (15) |
O2—C5 | 1.2163 (14) | C5—C4 | 1.5126 (15) |
O1—C1 | 1.2271 (13) | C4—C3 | 1.5264 (15) |
N1—C1 | 1.3744 (13) | C4—H4 | 0.960 (14) |
N1—C5 | 1.3916 (14) | C3—C2 | 1.5275 (14) |
N1—H1 | 0.917 (16) | C3—H3A | 0.989 (15) |
C8—C7 | 1.5290 (16) | C3—H3B | 0.989 (14) |
C8—C2 | 1.5443 (15) | C2—C1 | 1.5043 (14) |
C8—H8A | 0.982 (15) | C2—H2 | 0.960 (14) |
C50—O50—H50 | 108.9 (12) | C7—C6—H6B | 110.0 (8) |
C50—C51—H51A | 108.4 (11) | C4—C6—H6B | 110.4 (9) |
C50—C51—H51B | 108.5 (12) | H6A—C6—H6B | 106.3 (12) |
H51A—C51—H51B | 107.1 (16) | O2—C5—N1 | 119.51 (10) |
C50—C51—H51C | 111.6 (10) | O2—C5—C4 | 123.15 (10) |
H51A—C51—H51C | 108.6 (14) | N1—C5—C4 | 117.33 (9) |
H51B—C51—H51C | 112.4 (15) | C5—C4—C3 | 110.52 (9) |
O51—C50—O50 | 122.45 (10) | C5—C4—C6 | 109.11 (9) |
O51—C50—C51 | 124.54 (10) | C3—C4—C6 | 109.86 (9) |
O50—C50—C51 | 113.01 (9) | C5—C4—H4 | 106.4 (9) |
C1—N1—C5 | 125.83 (9) | C3—C4—H4 | 111.2 (8) |
C1—N1—H1 | 117.6 (10) | C6—C4—H4 | 109.6 (8) |
C5—N1—H1 | 116.5 (10) | C4—C3—C2 | 108.09 (8) |
C7—C8—C2 | 112.96 (9) | C4—C3—H3A | 111.1 (8) |
C7—C8—H8A | 110.6 (9) | C2—C3—H3A | 110.9 (8) |
C2—C8—H8A | 109.4 (8) | C4—C3—H3B | 109.1 (8) |
C7—C8—H8B | 110.0 (8) | C2—C3—H3B | 109.9 (8) |
C2—C8—H8B | 105.8 (8) | H3A—C3—H3B | 107.8 (12) |
H8A—C8—H8B | 107.9 (12) | C1—C2—C3 | 109.90 (9) |
C8—C7—C6 | 111.94 (9) | C1—C2—C8 | 109.72 (8) |
C8—C7—H7A | 109.7 (8) | C3—C2—C8 | 110.67 (9) |
C6—C7—H7A | 109.1 (8) | C1—C2—H2 | 104.9 (8) |
C8—C7—H7B | 109.7 (9) | C3—C2—H2 | 111.7 (8) |
C6—C7—H7B | 109.7 (9) | C8—C2—H2 | 109.8 (8) |
H7A—C7—H7B | 106.6 (12) | O1—C1—N1 | 119.50 (10) |
C7—C6—C4 | 111.82 (9) | O1—C1—C2 | 123.37 (9) |
C7—C6—H6A | 110.7 (9) | N1—C1—C2 | 117.12 (9) |
C4—C6—H6A | 107.5 (9) | ||
C2—C8—C7—C6 | −48.40 (12) | C6—C4—C3—C2 | 62.97 (11) |
C8—C7—C6—C4 | 50.44 (12) | C4—C3—C2—C1 | 60.65 (11) |
C1—N1—C5—O2 | −175.89 (10) | C4—C3—C2—C8 | −60.69 (11) |
C1—N1—C5—C4 | 2.79 (16) | C7—C8—C2—C1 | −67.27 (11) |
O2—C5—C4—C3 | −154.70 (11) | C7—C8—C2—C3 | 54.18 (11) |
N1—C5—C4—C3 | 26.67 (13) | C5—N1—C1—O1 | 178.96 (10) |
O2—C5—C4—C6 | 84.40 (13) | C5—N1—C1—C2 | 0.47 (15) |
N1—C5—C4—C6 | −94.23 (11) | C3—C2—C1—O1 | 148.81 (10) |
C7—C6—C4—C5 | 62.82 (11) | C8—C2—C1—O1 | −89.28 (12) |
C7—C6—C4—C3 | −58.48 (11) | C3—C2—C1—N1 | −32.76 (12) |
C5—C4—C3—C2 | −57.48 (12) | C8—C2—C1—N1 | 89.15 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O50—H50···O1i | 0.88 (2) | 1.84 (2) | 2.6849 (12) | 160.2 (18) |
N1—H1···O51 | 0.917 (16) | 1.962 (16) | 2.8752 (12) | 174.0 (14) |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk). The authors also thank the Cambridge Crystallographic Data Centre for financial support of this work.
References
Boese, R., Blaser, D., Latz, R. & Baumen, A. (1999). Acta Cryst. C55, IUC9900001. CrossRef IUCr Journals Google Scholar
Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS Google Scholar
Howie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, o822–o824. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.