organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Aza­bi­cyclo­[3.3.1]nonane-2,4-dione–acetic acid (1/1)

CROSSMARK_Color_square_no_text.svg

aChristopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, and bStrathclyde Institute for Biomedical Science, 27 Taylor Street, University of Strathclyde, Glasgow G4 0NR, Scotland
*Correspondence e-mail: a.hulme@ucl.ac.uk

(Received 23 December 2005; accepted 5 January 2006; online 11 January 2006)

3-Aza­bicyclo­[3.3.1]nonane-2,4-dione (cyclo­hexane-1,3-dicarboximide, C8H11NO2) forms a 1:1 solvate with acetic acid (C2H4O2). The crystal structure comprises hydrogen-bonded chains containing alternating cyclo­hexane-1,3-dicarboximide and acetic acid mol­ecules.

Comment

The title solvate, (I)[link], was first produced during an automated parallel crystallization screen on cyclo­hexane-1,3-dicarboximide. It was identified as a new crystal structure, different from the known unsolvated form (Howie & Skakle, 2001[Howie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, o822-o824.]), by examination of its powder diffraction pattern, collected on a multi-sample X-ray powder diffractometer (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). It was crystallized by crash cooling a subsaturated solution in glacial acetic acid from 383 to 288 K, and gave crystals of suitable size and quality for single-crystal X-ray diffraction.

[Scheme 1]

The asymmetric unit of (I)[link] contains one mol­ecule of cyclo­hexane-1,3-dicarboximide and one mol­ecule of acetic acid (Fig. 1[link]). The structure exhibits a chain hydrogen-bonding motif [graph set C22(8)], with cyclo­hexane-1,3-dicarboximide and acetic acid mol­ecules alternating in the chain. The pair of hydrogen bonds (Table 1[link]) to the acetic acid carboxyl group is in an anti configuration and only one of the carbonyl O atoms in the cyclo­hexane-1,3-dicarboximide molecule is used in the hydrogen bonding forming the chain (Fig. 2[link]). There are no hydrogen bonds between different chains, but the chains stack upon one another, forming a column parallel to [001]. The alkyl substituents of the cyclo­hexane-1,3-dicarboximide mol­ecules lie to the sides of the column, with the hydrogen-bonding substituents comprising the middle of the column (Fig. 3[link]). Adjacent chains in the column have the cyclo­hexane-1,3-dicarboximide alkyl groups on alternating sides of the column.

The chain motif in this structure is closely related to the chain motif observed in both the anhydrous form of cyclo­hexane-1,3-dicarboximide and in the crystal structure of acetic acid. Fig. 4[link] shows overlays of the chain motif of (I)[link] with the chain from the unsolvated cyclo­hexane-1,3-dicarboximide structure (Howie & Skakle, 2001[Howie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, o822-o824.]) and with the chain from the ortho­rhom­bic form of acetic acid (Boese et al., 1999[Boese, R., Blaser, D., Latz, R. & Baumen, A. (1999). Acta Cryst. C55, IUC9900001.]). From these overlays it can be seen that the basic hydrogen-bonded backbone is the same in each of these structures.

[Figure 1]
Figure 1
A view of the asymmetric unit of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres. The dashed line indicates an N—H⋯O hydrogen bond.
[Figure 2]
Figure 2
View perpendicular to the bc plane, showing the chain hydrogen-bonding motif present in (I)[link]. Dotted blue lines indicate hydrogen bonds.
[Figure 3]
Figure 3
View perpendicular to the ac plane, showing the stacking of hydrogen-bonded chains.
[Figure 4]
Figure 4
(a) Overlay of the chain present in (I)[link] (normal colours) with the chain from unsolvated cyclo­hexane-1,3-dicarboxylic acid (blue). Dotted lines indicate hydrogen bonds; (b) overlay of the chain present in (I)[link] with the chain from acetic acid (blue).

Experimental

3-Aza­bicyclo­[3.3.1]nonane-2,4-dione (100 mg) was dissolved in glacial acetic acid (2 ml) at 383 K and crash cooled to 288 K to obtain single crystals of (I)[link].

Crystal data
  • C8H11NO2·C2H4O2

  • Mr = 213.23

  • Triclinic, [P \overline 1]

  • a = 6.6224 (7) Å

  • b = 7.3580 (8) Å

  • c = 10.7995 (12) Å

  • α = 103.598 (2)°

  • β = 93.378 (2)°

  • γ = 97.272 (2)°

  • V = 505.22 (10) Å3

  • Z = 2

  • Dx = 1.402 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2712 reflections

  • θ = 3.1–28.3°

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.35 × 0.29 × 0.17 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Narrow-frame ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.963, Tmax = 0.982

  • 4424 measured reflections

  • 2313 independent reflections

  • 2121 reflections with I > 2σ(I)

  • Rint = 0.013

  • θmax = 28.3°

  • h = −8 → 8

  • k = −9 → 9

  • l = −14 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.098

  • S = 1.04

  • 2313 reflections

  • 196 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1277P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O50—H50⋯O1i 0.88 (2) 1.84 (2) 2.6849 (12) 160.2 (18)
N1—H1⋯O51 0.917 (16) 1.962 (16) 2.8752 (12) 174.0 (14)
Symmetry code: (i) x, y-1, z.

All H atoms were located in a difference map and were refined isotropically; C—H bond lengths range from 0.94 (2) to 1.00 (2) Å.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: MERCURY (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) and SHELXTL (Bruker, 1998[Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Bruno et al., 2002) and SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

3-azabicyclo[3.3.1]nonane-2,4-dione–acetic acid (1/1) top
Crystal data top
C8H11NO2·C2H4O2Z = 2
Mr = 213.23F(000) = 228
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Melting point = 462–467 K
a = 6.6224 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3580 (8) ÅCell parameters from 2712 reflections
c = 10.7995 (12) Åθ = 3.1–28.3°
α = 103.598 (2)°µ = 0.11 mm1
β = 93.378 (2)°T = 150 K
γ = 97.272 (2)°Block, colourless
V = 505.22 (10) Å30.35 × 0.29 × 0.17 mm
Data collection top
Bruker SMART APEX
diffractometer
2313 independent reflections
Radiation source: fine-focus sealed tube2121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω rotation with narrow frames scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.963, Tmax = 0.982k = 99
4424 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.098All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1277P]
where P = (Fo2 + 2Fc2)/3
2313 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.19 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O510.24026 (16)0.08875 (12)0.46398 (8)0.0339 (2)
O500.21208 (13)0.22994 (11)0.62416 (8)0.0249 (2)
C510.2222 (2)0.10010 (16)0.67523 (11)0.0274 (3)
H51A0.102 (3)0.087 (3)0.7168 (18)0.049 (5)*
H51B0.333 (3)0.116 (3)0.7374 (18)0.052 (5)*
H51C0.223 (2)0.207 (2)0.6374 (16)0.039 (4)*
C500.22593 (16)0.07895 (15)0.57639 (10)0.0206 (2)
H500.216 (3)0.330 (3)0.5621 (18)0.047 (5)*
O20.33694 (14)0.05870 (11)0.15566 (8)0.0301 (2)
O10.24571 (12)0.42653 (11)0.47939 (7)0.02418 (19)
N10.29922 (14)0.18908 (12)0.31657 (9)0.0207 (2)
H10.280 (2)0.107 (2)0.3685 (15)0.034 (4)*
C80.10302 (17)0.51372 (15)0.21090 (10)0.0231 (2)
H8A0.006 (2)0.551 (2)0.2742 (14)0.030 (4)*
H8B0.127 (2)0.613 (2)0.1658 (14)0.026 (3)*
C70.01654 (17)0.32663 (16)0.11624 (10)0.0238 (2)
H7A0.032 (2)0.233 (2)0.1632 (13)0.026 (3)*
H7B0.102 (2)0.344 (2)0.0648 (14)0.032 (4)*
C60.17583 (17)0.24951 (16)0.02883 (10)0.0237 (2)
H6A0.207 (2)0.329 (2)0.0312 (14)0.029 (4)*
H6B0.120 (2)0.121 (2)0.0245 (14)0.030 (4)*
C50.33876 (16)0.11110 (15)0.19154 (10)0.0216 (2)
C40.37781 (16)0.24459 (15)0.10551 (10)0.0219 (2)
H40.473 (2)0.194 (2)0.0481 (14)0.026 (3)*
C30.46373 (17)0.44298 (15)0.18455 (11)0.0226 (2)
H3A0.599 (2)0.445 (2)0.2288 (14)0.029 (3)*
H3B0.481 (2)0.529 (2)0.1269 (13)0.024 (3)*
C20.31151 (16)0.50773 (14)0.28069 (10)0.0199 (2)
H20.361 (2)0.629 (2)0.3366 (13)0.023 (3)*
C10.28424 (15)0.37591 (14)0.36779 (10)0.0189 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O510.0602 (6)0.0212 (4)0.0231 (4)0.0102 (4)0.0106 (4)0.0071 (3)
O500.0346 (4)0.0192 (4)0.0213 (4)0.0040 (3)0.0055 (3)0.0052 (3)
C510.0358 (6)0.0203 (5)0.0246 (6)0.0054 (4)0.0021 (5)0.0019 (4)
C500.0201 (5)0.0191 (5)0.0228 (5)0.0028 (4)0.0022 (4)0.0053 (4)
O20.0410 (5)0.0172 (4)0.0324 (4)0.0074 (3)0.0093 (4)0.0035 (3)
O10.0325 (4)0.0207 (4)0.0198 (4)0.0045 (3)0.0057 (3)0.0046 (3)
N10.0255 (5)0.0165 (4)0.0215 (4)0.0045 (3)0.0051 (3)0.0063 (3)
C80.0276 (5)0.0207 (5)0.0240 (5)0.0084 (4)0.0064 (4)0.0080 (4)
C70.0235 (5)0.0266 (6)0.0221 (5)0.0034 (4)0.0023 (4)0.0078 (4)
C60.0299 (6)0.0214 (5)0.0186 (5)0.0006 (4)0.0045 (4)0.0039 (4)
C50.0209 (5)0.0186 (5)0.0251 (5)0.0047 (4)0.0048 (4)0.0036 (4)
C40.0246 (5)0.0188 (5)0.0224 (5)0.0034 (4)0.0101 (4)0.0031 (4)
C30.0230 (5)0.0193 (5)0.0253 (5)0.0002 (4)0.0082 (4)0.0053 (4)
C20.0242 (5)0.0145 (5)0.0206 (5)0.0011 (4)0.0047 (4)0.0033 (4)
C10.0174 (5)0.0177 (5)0.0209 (5)0.0022 (4)0.0018 (4)0.0037 (4)
Geometric parameters (Å, º) top
O51—C501.2092 (14)C8—H8B0.971 (15)
O50—C501.3259 (13)C7—C61.5306 (15)
O50—H500.88 (2)C7—H7A0.982 (14)
C51—C501.4919 (15)C7—H7B0.971 (15)
C51—H51A0.944 (19)C6—C41.5402 (16)
C51—H51B0.943 (19)C6—H6A0.984 (15)
C51—H51C0.970 (17)C6—H6B0.995 (15)
O2—C51.2163 (14)C5—C41.5126 (15)
O1—C11.2271 (13)C4—C31.5264 (15)
N1—C11.3744 (13)C4—H40.960 (14)
N1—C51.3916 (14)C3—C21.5275 (14)
N1—H10.917 (16)C3—H3A0.989 (15)
C8—C71.5290 (16)C3—H3B0.989 (14)
C8—C21.5443 (15)C2—C11.5043 (14)
C8—H8A0.982 (15)C2—H20.960 (14)
C50—O50—H50108.9 (12)C7—C6—H6B110.0 (8)
C50—C51—H51A108.4 (11)C4—C6—H6B110.4 (9)
C50—C51—H51B108.5 (12)H6A—C6—H6B106.3 (12)
H51A—C51—H51B107.1 (16)O2—C5—N1119.51 (10)
C50—C51—H51C111.6 (10)O2—C5—C4123.15 (10)
H51A—C51—H51C108.6 (14)N1—C5—C4117.33 (9)
H51B—C51—H51C112.4 (15)C5—C4—C3110.52 (9)
O51—C50—O50122.45 (10)C5—C4—C6109.11 (9)
O51—C50—C51124.54 (10)C3—C4—C6109.86 (9)
O50—C50—C51113.01 (9)C5—C4—H4106.4 (9)
C1—N1—C5125.83 (9)C3—C4—H4111.2 (8)
C1—N1—H1117.6 (10)C6—C4—H4109.6 (8)
C5—N1—H1116.5 (10)C4—C3—C2108.09 (8)
C7—C8—C2112.96 (9)C4—C3—H3A111.1 (8)
C7—C8—H8A110.6 (9)C2—C3—H3A110.9 (8)
C2—C8—H8A109.4 (8)C4—C3—H3B109.1 (8)
C7—C8—H8B110.0 (8)C2—C3—H3B109.9 (8)
C2—C8—H8B105.8 (8)H3A—C3—H3B107.8 (12)
H8A—C8—H8B107.9 (12)C1—C2—C3109.90 (9)
C8—C7—C6111.94 (9)C1—C2—C8109.72 (8)
C8—C7—H7A109.7 (8)C3—C2—C8110.67 (9)
C6—C7—H7A109.1 (8)C1—C2—H2104.9 (8)
C8—C7—H7B109.7 (9)C3—C2—H2111.7 (8)
C6—C7—H7B109.7 (9)C8—C2—H2109.8 (8)
H7A—C7—H7B106.6 (12)O1—C1—N1119.50 (10)
C7—C6—C4111.82 (9)O1—C1—C2123.37 (9)
C7—C6—H6A110.7 (9)N1—C1—C2117.12 (9)
C4—C6—H6A107.5 (9)
C2—C8—C7—C648.40 (12)C6—C4—C3—C262.97 (11)
C8—C7—C6—C450.44 (12)C4—C3—C2—C160.65 (11)
C1—N1—C5—O2175.89 (10)C4—C3—C2—C860.69 (11)
C1—N1—C5—C42.79 (16)C7—C8—C2—C167.27 (11)
O2—C5—C4—C3154.70 (11)C7—C8—C2—C354.18 (11)
N1—C5—C4—C326.67 (13)C5—N1—C1—O1178.96 (10)
O2—C5—C4—C684.40 (13)C5—N1—C1—C20.47 (15)
N1—C5—C4—C694.23 (11)C3—C2—C1—O1148.81 (10)
C7—C6—C4—C562.82 (11)C8—C2—C1—O189.28 (12)
C7—C6—C4—C358.48 (11)C3—C2—C1—N132.76 (12)
C5—C4—C3—C257.48 (12)C8—C2—C1—N189.15 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O50—H50···O1i0.88 (2)1.84 (2)2.6849 (12)160.2 (18)
N1—H1···O510.917 (16)1.962 (16)2.8752 (12)174.0 (14)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State' (URL: www.cposs.org.uk). The authors also thank the Cambridge Crystallographic Data Centre for financial support of this work.

References

First citationBoese, R., Blaser, D., Latz, R. & Baumen, A. (1999). Acta Cryst. C55, IUC9900001.  CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHowie, R. A. & Skakle, J. M. S. (2001). Acta Cryst. E57, o822–o824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds