metal-organic compounds
Caesium sodium bis(formate)
aDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, England
*Correspondence e-mail: msrbb@csv.warwick.ac.uk
The title compound, CsNa(CHO2)2, was obtained from the crystallization of caesium formate in a glass container. It has a complex structure, with sodium ions octahedrally coordinated and caesium ions irregularly eight-coordinated by the formate O atoms. One Cs cation and four formate C atoms have m and one Na cation has , resulting in the unusual situation of Z = 12 for an orthorhombic structure.
Comment
During a study of the et al., 2006), it was found that, if the crystallization of caesium formate by diffusion is carried out in a glass container, the crystals formed are of a mixed caesium sodium salt, CsNa(C2HO2)2, (I).
of caesium formate (WilsonThe sodium ions were identified from the R value). It is inferred that their source is the glass vials used for crystallization, and it has been shown (Wilson et al., 2006) that recrystallization from polythene vials gives unchanged caesium formate. Similar extraction of sodium cations by formate solutions has been reported by Robinet et al. (2004).
analysis. After initial location of the Cs atoms, the chemical identity of two medium height electron-density peaks was tested by Only the assignment of Na to the peaks both satisfied stoichiometric requirements and gave satisfactory displacement parameters (as well as providing much the bestIn the structure of (I) (Fig. 1), both Na ions are octahedrally coordinated, with Na—O distances (Table 1) in the range 2.243 (4)–2.678 (3) Å (Fig. 2). The coordination of the Cs ions (Fig. 3) is best regarded as eight-coordinate, with Cs1 having square-antiprismatic geometry and Cs2 a less regular arrangement of ligand O atoms [Cs—O = 3.007 (3)–3.550 (4) Å], but with additional O atoms within 0.3 Å. The overall packing (Fig. 4) can be described as including chains of cations bridged by formate ions.
Experimental
AR standard caesium formate (Aldrich) was dissolved in a minimum volume of methanol in a glass vial. This (open) container was then placed inside a larger vial containing a small amount of 1-butanol and the whole system sealed immediately. Crystallization proceeded with occasional swirling of the suspension over a two-week period.
Crystal data
|
Refinement
|
H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest and lowest peaks on the difference map are all close to the Cs positions.
Data collection: SMART (Siemens, 1995); cell SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536806003047/hb6315sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536806003047/hb6315Isup2.hkl
Data collection: SMART (Siemens, 1995); cell
SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.CsNa(CHO2)2 | F(000) = 1344 |
Mr = 245.94 | Dx = 2.797 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 8192 reflections |
a = 12.5812 (3) Å | θ = 3–25° |
b = 11.0509 (3) Å | µ = 6.34 mm−1 |
c = 12.6024 (3) Å | T = 180 K |
V = 1752.16 (8) Å3 | Block, colourless |
Z = 12 | 0.20 × 0.20 × 0.15 mm |
Siemens SMART diffractometer | 2324 independent reflections |
Radiation source: normal-focus sealed tube | 1867 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
Detector resolution: 8.192 pixels mm-1 | θmax = 29.1°, θmin = 2.3° |
ω scans | h = −15→16 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −15→14 |
Tmin = 0.202, Tmax = 0.387 | l = −14→16 |
10798 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.003 |
2324 reflections | Δρmax = 1.59 e Å−3 |
119 parameters | Δρmin = −1.59 e Å−3 |
0 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0039 (3) |
Experimental. The temperature of the crystal was controlled using the Oxford Cryosystems Cryostream Cooler (Cosier & Glazer, 1986). The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures with different φ angles for the crystal; each 10 s exposure covered 0.3° in ω. The crystal-to-detector distance was 5.0 cm. Coverage of the unique set is over 97% complete to at least 26° in θ. Crystal decay was found to be negligible by repeating the initial frames at t data collection and analyzing the duplicate reflections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.68069 (3) | 0.2500 | 0.66245 (3) | 0.03135 (14) | |
Cs2 | 0.95906 (2) | 0.00768 (2) | 0.66158 (2) | 0.02852 (12) | |
Na1 | 0.5000 | 0.0000 | 0.5000 | 0.0219 (4) | |
Na2 | 1.26514 (12) | −0.00181 (12) | 0.58246 (11) | 0.0216 (3) | |
C1 | 0.6791 (3) | −0.0706 (4) | 0.6696 (3) | 0.0272 (9) | |
H1A | 0.6570 | −0.1525 | 0.6762 | 0.033* | |
O11 | 0.6608 (3) | −0.0238 (3) | 0.5840 (2) | 0.0320 (7) | |
O12 | 0.7211 (3) | −0.0284 (4) | 0.7467 (3) | 0.0585 (11) | |
C2 | 0.8986 (5) | −0.2500 | 0.8641 (5) | 0.0286 (12) | |
H2A | 0.8783 | −0.2500 | 0.7914 | 0.034* | |
O2 | 0.9093 (2) | −0.1489 (3) | 0.9025 (3) | 0.0378 (8) | |
C3 | 0.4057 (4) | 0.2500 | 0.5962 (4) | 0.0237 (11) | |
H3A | 0.3742 | 0.2500 | 0.5277 | 0.028* | |
O3 | 0.4236 (3) | 0.1483 (3) | 0.6353 (2) | 0.0330 (7) | |
C4 | 1.1312 (5) | −0.2500 | 0.5582 (5) | 0.0300 (12) | |
H4A | 1.1165 | −0.2500 | 0.6321 | 0.036* | |
O4 | 1.1394 (2) | −0.1491 (3) | 0.5170 (3) | 0.0355 (7) | |
C5 | 1.1395 (5) | 0.2500 | 0.5225 (6) | 0.0334 (13) | |
H5A | 1.1458 | 0.2500 | 0.4474 | 0.040* | |
O5 | 1.1363 (3) | 0.1506 (3) | 0.5604 (4) | 0.0616 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0343 (2) | 0.0192 (2) | 0.0405 (2) | 0.000 | 0.00677 (16) | 0.000 |
Cs2 | 0.03137 (19) | 0.02912 (18) | 0.02506 (18) | 0.00280 (10) | 0.00471 (10) | −0.00124 (9) |
Na1 | 0.0216 (11) | 0.0223 (11) | 0.0217 (11) | −0.0020 (8) | −0.0006 (9) | 0.0033 (8) |
Na2 | 0.0230 (8) | 0.0227 (8) | 0.0192 (8) | 0.0023 (6) | 0.0031 (6) | 0.0016 (5) |
C1 | 0.040 (2) | 0.020 (2) | 0.0210 (19) | 0.0007 (16) | −0.0003 (16) | 0.0029 (14) |
O11 | 0.0387 (18) | 0.0389 (17) | 0.0183 (14) | −0.0030 (13) | −0.0049 (12) | 0.0040 (12) |
O12 | 0.077 (3) | 0.070 (3) | 0.0280 (19) | −0.007 (2) | −0.0244 (19) | −0.0006 (17) |
C2 | 0.039 (3) | 0.025 (3) | 0.022 (3) | 0.000 | 0.000 (2) | 0.000 |
O2 | 0.0317 (16) | 0.0254 (16) | 0.056 (2) | 0.0023 (12) | −0.0121 (14) | −0.0159 (14) |
C3 | 0.028 (3) | 0.023 (3) | 0.020 (3) | 0.000 | −0.002 (2) | 0.000 |
O3 | 0.0466 (18) | 0.0256 (16) | 0.0268 (15) | 0.0034 (13) | −0.0036 (13) | 0.0048 (12) |
C4 | 0.037 (3) | 0.027 (3) | 0.026 (3) | 0.000 | −0.001 (2) | 0.000 |
O4 | 0.0402 (16) | 0.0232 (15) | 0.0433 (17) | −0.0059 (12) | −0.0114 (14) | 0.0087 (13) |
C5 | 0.024 (3) | 0.031 (3) | 0.046 (4) | 0.000 | 0.004 (3) | 0.000 |
O5 | 0.0313 (18) | 0.0275 (18) | 0.126 (4) | 0.0071 (14) | 0.013 (2) | 0.028 (2) |
Cs1—O11 | 3.193 (3) | Na2—O3viii | 2.678 (3) |
Cs1—O11i | 3.193 (3) | C1—O12 | 1.201 (5) |
Cs1—O12 | 3.294 (4) | C1—O11 | 1.217 (4) |
Cs1—O12i | 3.294 (4) | C1—H1A | 0.9500 |
Cs1—O4ii | 3.389 (3) | O11—Na2iii | 2.313 (3) |
Cs1—O4iii | 3.389 (3) | O12—Na2vii | 2.243 (4) |
Cs1—O3 | 3.441 (3) | O12—Cs2vii | 3.516 (4) |
Cs1—O3i | 3.441 (3) | C2—O2 | 1.225 (4) |
Cs1—O2iv | 3.642 (4) | C2—O2ix | 1.225 (4) |
Cs2—O4iii | 3.007 (3) | C2—H2A | 0.9500 |
Cs2—O5 | 3.015 (3) | O2—Na1x | 2.350 (3) |
Cs2—O3v | 3.027 (3) | O2—Na2vii | 2.443 (3) |
Cs2—O12 | 3.206 (4) | O2—Cs1x | 3.642 (4) |
Cs2—O4 | 3.386 (3) | C3—O3i | 1.248 (4) |
Cs2—O5iii | 3.510 (5) | C3—O3 | 1.248 (4) |
Cs2—O12v | 3.516 (4) | C3—H3A | 0.9500 |
Cs2—O2 | 3.550 (4) | O3—Na2xi | 2.678 (3) |
Na1—O11vi | 2.298 (3) | O3—Cs2vii | 3.027 (3) |
Na1—O11 | 2.298 (3) | C4—O4ix | 1.233 (4) |
Na1—O2vii | 2.350 (3) | C4—O4 | 1.233 (4) |
Na1—O2iv | 2.350 (3) | C4—H4A | 0.9500 |
Na1—O3vi | 2.553 (3) | O4—Cs2iii | 3.007 (3) |
Na1—O3 | 2.553 (3) | O4—Cs1iii | 3.389 (3) |
Na2—O12v | 2.243 (4) | C5—O5i | 1.199 (4) |
Na2—O11iii | 2.313 (3) | C5—O5 | 1.199 (4) |
Na2—O5 | 2.354 (4) | C5—H5A | 0.9500 |
Na2—O4 | 2.416 (3) | O5—Cs2iii | 3.510 (5) |
Na2—O2v | 2.443 (3) | O5—Cs1v | 3.704 (5) |
O11—Cs1—O11i | 142.76 (10) | O11iii—Na2—O5 | 94.74 (14) |
O11—Cs1—O12 | 39.35 (8) | O12v—Na2—O4 | 94.44 (14) |
O11i—Cs1—O12 | 175.52 (9) | O11iii—Na2—O4 | 92.12 (12) |
O11—Cs1—O12i | 175.52 (9) | O5—Na2—O4 | 89.47 (13) |
O11i—Cs1—O12i | 39.35 (8) | O12v—Na2—O2v | 91.25 (14) |
O12—Cs1—O12i | 138.13 (12) | O11iii—Na2—O2v | 81.55 (11) |
O11—Cs1—O4ii | 99.06 (7) | O5—Na2—O2v | 175.20 (13) |
O11i—Cs1—O4ii | 62.23 (8) | O4—Na2—O2v | 93.69 (12) |
O12—Cs1—O4ii | 114.79 (9) | O12v—Na2—O3viii | 91.51 (14) |
O12i—Cs1—O4ii | 78.75 (9) | O11iii—Na2—O3viii | 81.36 (10) |
O11—Cs1—O4iii | 62.23 (8) | O5—Na2—O3viii | 95.68 (13) |
O11i—Cs1—O4iii | 99.06 (7) | O4—Na2—O3viii | 171.99 (12) |
O12—Cs1—O4iii | 78.75 (9) | O2v—Na2—O3viii | 80.80 (11) |
O12i—Cs1—O4iii | 114.79 (9) | O12—C1—O11 | 129.4 (5) |
O4ii—Cs1—O4iii | 38.40 (10) | O12—C1—H1A | 115.3 |
O11—Cs1—O3 | 65.55 (8) | O11—C1—H1A | 115.3 |
O11i—Cs1—O3 | 101.84 (8) | C1—O11—Na1 | 128.5 (3) |
O12—Cs1—O3 | 82.64 (8) | C1—O11—Na2iii | 141.2 (3) |
O12i—Cs1—O3 | 118.82 (9) | Na1—O11—Na2iii | 85.57 (10) |
O4ii—Cs1—O3 | 132.00 (7) | C1—O11—Cs1 | 96.5 (2) |
O4iii—Cs1—O3 | 117.02 (7) | Na1—O11—Cs1 | 95.91 (10) |
O11—Cs1—O3i | 101.84 (8) | Na2iii—O11—Cs1 | 97.64 (10) |
O11i—Cs1—O3i | 65.55 (8) | C1—O12—Na2vii | 159.5 (4) |
O12—Cs1—O3i | 118.82 (9) | C1—O12—Cs2 | 100.8 (3) |
O12i—Cs1—O3i | 82.64 (8) | Na2vii—O12—Cs2 | 94.24 (12) |
O4ii—Cs1—O3i | 117.02 (7) | C1—O12—Cs1 | 92.0 (3) |
O4iii—Cs1—O3i | 132.00 (7) | Na2vii—O12—Cs1 | 103.02 (15) |
O3—Cs1—O3i | 38.13 (10) | Cs2—O12—Cs1 | 85.41 (10) |
O11—Cs1—O2iv | 53.60 (7) | C1—O12—Cs2vii | 84.1 (3) |
O11i—Cs1—O2iv | 89.30 (7) | Na2vii—O12—Cs2vii | 84.34 (12) |
O12—Cs1—O2iv | 92.95 (7) | Cs2—O12—Cs2vii | 166.34 (15) |
O12i—Cs1—O2iv | 128.64 (8) | Cs1—O12—Cs2vii | 81.69 (10) |
O4ii—Cs1—O2iv | 73.03 (7) | O2—C2—O2ix | 131.5 (6) |
O4iii—Cs1—O2iv | 60.42 (7) | O2ix—C2—H2A | 114.2 |
O3—Cs1—O2iv | 61.21 (7) | O2—C2—H2A | 114.2 |
O3i—Cs1—O2iv | 73.66 (7) | C2—O2—Na1x | 154.0 (4) |
C1—Cs1—O2iv | 73.40 (7) | C2—O2—Na2vii | 123.8 (4) |
C1i—Cs1—O2iv | 109.12 (7) | Na1x—O2—Na2vii | 81.59 (10) |
C3—Cs1—O2iv | 59.13 (9) | C2—O2—Cs2 | 97.2 (3) |
O4iii—Cs2—O5 | 73.48 (10) | Na1x—O2—Cs2 | 91.15 (10) |
O4iii—Cs2—O3v | 107.78 (9) | Na2vii—O2—Cs2 | 82.70 (9) |
O5—Cs2—O3v | 101.39 (11) | C2—O2—Cs1x | 92.4 (3) |
O4iii—Cs2—O12 | 86.02 (9) | Na1x—O2—Cs1x | 83.99 (9) |
O5—Cs2—O12 | 153.82 (10) | Na2vii—O2—Cs1x | 84.46 (10) |
O3v—Cs2—O12 | 69.11 (9) | Cs2—O2—Cs1x | 166.81 (9) |
O4iii—Cs2—O4 | 98.00 (7) | O3i—C3—O3 | 128.5 (5) |
O5—Cs2—O4 | 62.95 (9) | O3i—C3—H3A | 115.8 |
O3v—Cs2—O4 | 144.70 (8) | O3—C3—H3A | 115.8 |
O12—Cs2—O4 | 137.91 (9) | C3—O3—Na1 | 112.5 (3) |
O4iii—Cs2—O5iii | 61.43 (8) | C3—O3—Na2xi | 108.9 (3) |
O5—Cs2—O5iii | 100.17 (9) | Na1—O3—Na2xi | 73.52 (9) |
O3v—Cs2—O5iii | 151.55 (8) | C3—O3—Cs2vii | 145.4 (3) |
O12—Cs2—O5iii | 83.43 (9) | Na1—O3—Cs2vii | 100.36 (10) |
O4—Cs2—O5iii | 62.95 (7) | Na2xi—O3—Cs2vii | 90.11 (9) |
O4iii—Cs2—O12v | 133.71 (8) | C3—O3—Cs1 | 85.1 (3) |
O5—Cs2—O12v | 60.34 (10) | Na1—O3—Cs1 | 85.55 (9) |
O3v—Cs2—O12v | 85.31 (8) | Na2xi—O3—Cs1 | 157.95 (12) |
O12—Cs2—O12v | 138.74 (5) | Cs2vii—O3—Cs1 | 86.87 (8) |
O4—Cs2—O12v | 59.39 (8) | O4ix—C4—O4 | 129.3 (6) |
O5iii—Cs2—O12v | 121.73 (8) | O4ix—C4—H4A | 115.4 |
O4iii—Cs2—O2 | 145.17 (8) | O4—C4—H4A | 115.4 |
O5—Cs2—O2 | 138.37 (9) | C4—O4—Na2 | 121.3 (3) |
O3v—Cs2—O2 | 60.09 (8) | C4—O4—Cs2iii | 138.6 (3) |
O12—Cs2—O2 | 59.23 (8) | Na2—O4—Cs2iii | 100.07 (10) |
O4—Cs2—O2 | 109.19 (7) | C4—O4—Cs2 | 100.4 (3) |
O5iii—Cs2—O2 | 112.23 (8) | Na2—O4—Cs2 | 84.85 (10) |
O12v—Cs2—O2 | 80.15 (7) | Cs2iii—O4—Cs2 | 82.00 (7) |
O11vi—Na1—O11 | 180.0 | C4—O4—Cs1iii | 92.2 (3) |
O11vi—Na1—O2vii | 83.90 (11) | Na2—O4—Cs1iii | 90.68 (10) |
O11—Na1—O2vii | 96.10 (11) | Cs2iii—O4—Cs1iii | 86.93 (8) |
O11vi—Na1—O2iv | 96.10 (11) | Cs2—O4—Cs1iii | 167.13 (10) |
O11—Na1—O2iv | 83.90 (11) | O5i—C5—O5 | 132.8 (8) |
O2vii—Na1—O2iv | 180.0 | O5—C5—H5A | 113.6 |
O11vi—Na1—O3vi | 95.57 (10) | O5i—C5—H5A | 113.6 |
O11—Na1—O3vi | 84.43 (10) | C5—O5—Na2 | 132.8 (4) |
O2vii—Na1—O3vi | 94.74 (11) | C5—O5—Cs2 | 132.3 (4) |
O2iv—Na1—O3vi | 85.26 (11) | Na2—O5—Cs2 | 94.85 (12) |
O11vi—Na1—O3 | 84.43 (10) | C5—O5—Cs2iii | 98.7 (4) |
O11—Na1—O3 | 95.57 (10) | Na2—O5—Cs2iii | 88.45 (13) |
O2vii—Na1—O3 | 85.27 (11) | Cs2—O5—Cs2iii | 79.83 (9) |
O2iv—Na1—O3 | 94.73 (11) | C5—O5—Cs1v | 95.7 (4) |
O3vi—Na1—O3 | 180.0 | Na2—O5—Cs1v | 89.83 (13) |
O12v—Na2—O11iii | 170.56 (15) | Cs2—O5—Cs1v | 82.42 (10) |
O12v—Na2—O5 | 92.11 (16) | Cs2iii—O5—Cs1v | 161.95 (11) |
Symmetry codes: (i) x, −y+1/2, z; (ii) −x+2, y+1/2, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+3/2, −y, z−1/2; (v) x+1/2, y, −z+3/2; (vi) −x+1, −y, −z+1; (vii) x−1/2, y, −z+3/2; (viii) x+1, y, z; (ix) x, −y−1/2, z; (x) −x+3/2, −y, z+1/2; (xi) x−1, y, z. |
Acknowledgements
We thank Cabot Specialty Fluids for support of this work. EPSRC and Siemens plc generously supported the purchase of the SMART diffractometer.
References
Robinet, L., Eremin, K., del Arco, B. C. & Gibson, L. T. (2004). J. Raman Spectrosc. 35, 662–670. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Siemens, (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Wilson, M. P., Alcock, N. W. & Rodger, P. M. (2006). Inorg. Chem. In the press. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.