metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Caesium sodium bis­­(formate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Warwick, Coventry CV4 7AL, England
*Correspondence e-mail: msrbb@csv.warwick.ac.uk

(Received 18 January 2006; accepted 25 January 2006; online 31 January 2006)

The title compound, CsNa(CHO2)2, was obtained from the crystallization of caesium formate in a glass container. It has a complex structure, with sodium ions octa­hedrally coordinated and caesium ions irregularly eight-coordinated by the formate O atoms. One Cs cation and four formate C atoms have site symmetry m and one Na cation has site symmetry [\overline{1}], resulting in the unusual situation of Z = 12 for an ortho­rhom­bic structure.

Comment

During a study of the crystal structure of caesium formate (Wilson et al., 2006[Wilson, M. P., Alcock, N. W. & Rodger, P. M. (2006). Inorg. Chem. In the press.]), it was found that, if the crystallization of caesium formate by diffusion is carried out in a glass container, the crystals formed are of a mixed caesium sodium salt, CsNa(C2HO2)2, (I)[link].

[Scheme 1]

The sodium ions were identified from the crystal structure analysis. After initial location of the Cs atoms, the chemical identity of two medium height electron-density peaks was tested by refinement. Only the assignment of Na to the peaks both satisfied stoichiometric requirements and gave satisfactory displacement parameters (as well as providing much the best R value). It is inferred that their source is the glass vials used for crystallization, and it has been shown (Wilson et al., 2006[Wilson, M. P., Alcock, N. W. & Rodger, P. M. (2006). Inorg. Chem. In the press.]) that recrystallization from polythene vials gives unchanged caesium formate. Similar extraction of sodium cations by formate solutions has been reported by Robinet et al. (2004[Robinet, L., Eremin, K., del Arco, B. C. & Gibson, L. T. (2004). J. Raman Spectrosc. 35, 662-670.]).

In the structure of (I)[link] (Fig. 1[link]), both Na ions are octa­hedrally coordinated, with Na—O distances (Table 1[link]) in the range 2.243 (4)–2.678 (3) Å (Fig. 2[link]). The coordination of the Cs ions (Fig. 3[link]) is best regarded as eight-coordinate, with Cs1 having square-anti­prismatic geometry and Cs2 a less regular arrangement of ligand O atoms [Cs—O = 3.007 (3)–3.550 (4) Å], but with additional O atoms within 0.3 Å. The overall packing (Fig. 4[link]) can be described as including chains of cations bridged by formate ions.

[Figure 1]
Figure 1
View of the asymmetric unit of (I)[link] (with formate ions completed by symmetry), showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). Cs, H, Na and O atoms are green (large), green (small), blue and red, respectively. [Symmetry codes: x, −[{1\over 2}]y, z (for O2A and O4A); x, [{1\over 2}]y, z (for O3A and O5A)].
[Figure 2]
Figure 2
The structure with the Na ion coordination completed. Atom colouring as in Fig. 1[link]. [Symmetry codes: x, −[{1\over 2}]y, z (O2A and O4A); x, [{1\over 2}]y, z (O3A, O5A, O11A, O12A and C1A); 2 − x, −y, 1 − z (C4A, O4B, O5B and C5A); 2 − x, [{1\over 2}]y, 1 − z (O4AA and O5AA); [{1\over 2}] + x, y, [{3\over 2}]z (O11B, O12B and C1B)].
[Figure 3]
Figure 3
The structure with the Cs ion coordination completed. Atom colouring as in Fig. 1[link]. [Symmetry codes: x, −[{1\over 2}]y, z (O2A and O4A); x, [{1\over 2}]y, z (O3A and O5A); [{1\over 2}] + x, y, [{3\over 2}]z (O11A, C1, O12C, O12B, C1C, O11C, O2D and C2C); [{1\over 2}] + x, −1 + y, [{3\over 2}]z (O2C and C2B); [{3\over 2}]x, −y, −[{1\over 2}]z (O2B and C2A); 1 − x, −y, 1 − z (O3B and C3A); 2 − x, −y, 1 − z (O11B, C1B and O12A); [{3\over 2}]x, −y, −[{1\over 2}]z (O2AA); −[{1\over 2}] + x, −[{1\over 2}]y, [{3\over 2}]z (O2AB); [{1\over 2}] + x, −[{1\over 2}]y, [{3\over 2}]z (O2AC); [{1\over 2}] + x, [{3\over 2}]y, [{1\over 2}]z (O3AB); 1 − x, −[{1\over 2}] + y, 1 − z (O3AA); 1 + x, y, z (O3C and C3B)].
[Figure 4]
Figure 4
The packing, viewed down the b axis. Atom colouring as in Fig. 1[link].

Experimental

AR standard caesium formate (Aldrich) was dissolved in a minimum volume of methanol in a glass vial. This (open) container was then placed inside a larger vial containing a small amount of 1-butanol and the whole system sealed immediately. Crystallization proceeded with occasional swirling of the suspension over a two-week period.

Crystal data
  • CsNa(CHO2)2

  • Mr = 245.94

  • Orthorhombic, P n m a

  • a = 12.5812 (3) Å

  • b = 11.0509 (3) Å

  • c = 12.6024 (3) Å

  • V = 1752.16 (8) Å3

  • Z = 12

  • Dx = 2.797 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8192 reflections

  • θ = 3–25°

  • μ = 6.34 mm−1

  • T = 180 (2) K

  • Block, colourless

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Siemens SMART diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.202, Tmax = 0.387

  • 10798 measured reflections

  • 2324 independent reflections

  • 1867 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 29.1°

  • h = −15 → 16

  • k = −15 → 14

  • l = −14 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.090

  • S = 1.03

  • 2324 reflections

  • 119 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.055P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 1.59 e Å−3

  • Δρmin = −1.59 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0039 (3)

Table 1
Selected bond lengths (Å)

Cs1—O11 3.193 (3)
Cs1—O12 3.294 (4)
Cs1—O4i 3.389 (3)
Cs1—O3 3.441 (3)
Cs1—O2ii 3.642 (4)
Cs2—O4iii 3.007 (3)
Cs2—O5 3.015 (3)
Cs2—O3iv 3.027 (3)
Cs2—O12 3.206 (4)
Cs2—O4 3.386 (3)
Cs2—O5iii 3.510 (5)
Cs2—O12iv 3.516 (4)
Cs2—O2 3.550 (4)
Na1—O11 2.298 (3)
Na1—O2ii 2.350 (3)
Na1—O3 2.553 (3)
Na2—O12iv 2.243 (4)
Na2—O11iii 2.313 (3)
Na2—O5 2.354 (4)
Na2—O4 2.416 (3)
Na2—O2iv 2.443 (3)
Na2—O3v 2.678 (3)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+1; (iv) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (v) x+1, y, z.

H atoms were placed in calculated positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. The highest and lowest peaks on the difference map are all close to the Cs positions.

Data collection: SMART (Siemens, 1995[Siemens, (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens, (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

Caesium sodium bis(formate) top
Crystal data top
CsNa(CHO2)2F(000) = 1344
Mr = 245.94Dx = 2.797 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8192 reflections
a = 12.5812 (3) Åθ = 3–25°
b = 11.0509 (3) ŵ = 6.34 mm1
c = 12.6024 (3) ÅT = 180 K
V = 1752.16 (8) Å3Block, colourless
Z = 120.20 × 0.20 × 0.15 mm
Data collection top
Siemens SMART
diffractometer
2324 independent reflections
Radiation source: normal-focus sealed tube1867 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.192 pixels mm-1θmax = 29.1°, θmin = 2.3°
ω scansh = 1516
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1514
Tmin = 0.202, Tmax = 0.387l = 1416
10798 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
2324 reflectionsΔρmax = 1.59 e Å3
119 parametersΔρmin = 1.59 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (3)
Special details top

Experimental. The temperature of the crystal was controlled using the Oxford Cryosystems Cryostream Cooler (Cosier & Glazer, 1986). The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures with different φ angles for the crystal; each 10 s exposure covered 0.3° in ω. The crystal-to-detector distance was 5.0 cm. Coverage of the unique set is over 97% complete to at least 26° in θ. Crystal decay was found to be negligible by repeating the initial frames at t data collection and analyzing the duplicate reflections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.68069 (3)0.25000.66245 (3)0.03135 (14)
Cs20.95906 (2)0.00768 (2)0.66158 (2)0.02852 (12)
Na10.50000.00000.50000.0219 (4)
Na21.26514 (12)0.00181 (12)0.58246 (11)0.0216 (3)
C10.6791 (3)0.0706 (4)0.6696 (3)0.0272 (9)
H1A0.65700.15250.67620.033*
O110.6608 (3)0.0238 (3)0.5840 (2)0.0320 (7)
O120.7211 (3)0.0284 (4)0.7467 (3)0.0585 (11)
C20.8986 (5)0.25000.8641 (5)0.0286 (12)
H2A0.87830.25000.79140.034*
O20.9093 (2)0.1489 (3)0.9025 (3)0.0378 (8)
C30.4057 (4)0.25000.5962 (4)0.0237 (11)
H3A0.37420.25000.52770.028*
O30.4236 (3)0.1483 (3)0.6353 (2)0.0330 (7)
C41.1312 (5)0.25000.5582 (5)0.0300 (12)
H4A1.11650.25000.63210.036*
O41.1394 (2)0.1491 (3)0.5170 (3)0.0355 (7)
C51.1395 (5)0.25000.5225 (6)0.0334 (13)
H5A1.14580.25000.44740.040*
O51.1363 (3)0.1506 (3)0.5604 (4)0.0616 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0343 (2)0.0192 (2)0.0405 (2)0.0000.00677 (16)0.000
Cs20.03137 (19)0.02912 (18)0.02506 (18)0.00280 (10)0.00471 (10)0.00124 (9)
Na10.0216 (11)0.0223 (11)0.0217 (11)0.0020 (8)0.0006 (9)0.0033 (8)
Na20.0230 (8)0.0227 (8)0.0192 (8)0.0023 (6)0.0031 (6)0.0016 (5)
C10.040 (2)0.020 (2)0.0210 (19)0.0007 (16)0.0003 (16)0.0029 (14)
O110.0387 (18)0.0389 (17)0.0183 (14)0.0030 (13)0.0049 (12)0.0040 (12)
O120.077 (3)0.070 (3)0.0280 (19)0.007 (2)0.0244 (19)0.0006 (17)
C20.039 (3)0.025 (3)0.022 (3)0.0000.000 (2)0.000
O20.0317 (16)0.0254 (16)0.056 (2)0.0023 (12)0.0121 (14)0.0159 (14)
C30.028 (3)0.023 (3)0.020 (3)0.0000.002 (2)0.000
O30.0466 (18)0.0256 (16)0.0268 (15)0.0034 (13)0.0036 (13)0.0048 (12)
C40.037 (3)0.027 (3)0.026 (3)0.0000.001 (2)0.000
O40.0402 (16)0.0232 (15)0.0433 (17)0.0059 (12)0.0114 (14)0.0087 (13)
C50.024 (3)0.031 (3)0.046 (4)0.0000.004 (3)0.000
O50.0313 (18)0.0275 (18)0.126 (4)0.0071 (14)0.013 (2)0.028 (2)
Geometric parameters (Å, º) top
Cs1—O113.193 (3)Na2—O3viii2.678 (3)
Cs1—O11i3.193 (3)C1—O121.201 (5)
Cs1—O123.294 (4)C1—O111.217 (4)
Cs1—O12i3.294 (4)C1—H1A0.9500
Cs1—O4ii3.389 (3)O11—Na2iii2.313 (3)
Cs1—O4iii3.389 (3)O12—Na2vii2.243 (4)
Cs1—O33.441 (3)O12—Cs2vii3.516 (4)
Cs1—O3i3.441 (3)C2—O21.225 (4)
Cs1—O2iv3.642 (4)C2—O2ix1.225 (4)
Cs2—O4iii3.007 (3)C2—H2A0.9500
Cs2—O53.015 (3)O2—Na1x2.350 (3)
Cs2—O3v3.027 (3)O2—Na2vii2.443 (3)
Cs2—O123.206 (4)O2—Cs1x3.642 (4)
Cs2—O43.386 (3)C3—O3i1.248 (4)
Cs2—O5iii3.510 (5)C3—O31.248 (4)
Cs2—O12v3.516 (4)C3—H3A0.9500
Cs2—O23.550 (4)O3—Na2xi2.678 (3)
Na1—O11vi2.298 (3)O3—Cs2vii3.027 (3)
Na1—O112.298 (3)C4—O4ix1.233 (4)
Na1—O2vii2.350 (3)C4—O41.233 (4)
Na1—O2iv2.350 (3)C4—H4A0.9500
Na1—O3vi2.553 (3)O4—Cs2iii3.007 (3)
Na1—O32.553 (3)O4—Cs1iii3.389 (3)
Na2—O12v2.243 (4)C5—O5i1.199 (4)
Na2—O11iii2.313 (3)C5—O51.199 (4)
Na2—O52.354 (4)C5—H5A0.9500
Na2—O42.416 (3)O5—Cs2iii3.510 (5)
Na2—O2v2.443 (3)O5—Cs1v3.704 (5)
O11—Cs1—O11i142.76 (10)O11iii—Na2—O594.74 (14)
O11—Cs1—O1239.35 (8)O12v—Na2—O494.44 (14)
O11i—Cs1—O12175.52 (9)O11iii—Na2—O492.12 (12)
O11—Cs1—O12i175.52 (9)O5—Na2—O489.47 (13)
O11i—Cs1—O12i39.35 (8)O12v—Na2—O2v91.25 (14)
O12—Cs1—O12i138.13 (12)O11iii—Na2—O2v81.55 (11)
O11—Cs1—O4ii99.06 (7)O5—Na2—O2v175.20 (13)
O11i—Cs1—O4ii62.23 (8)O4—Na2—O2v93.69 (12)
O12—Cs1—O4ii114.79 (9)O12v—Na2—O3viii91.51 (14)
O12i—Cs1—O4ii78.75 (9)O11iii—Na2—O3viii81.36 (10)
O11—Cs1—O4iii62.23 (8)O5—Na2—O3viii95.68 (13)
O11i—Cs1—O4iii99.06 (7)O4—Na2—O3viii171.99 (12)
O12—Cs1—O4iii78.75 (9)O2v—Na2—O3viii80.80 (11)
O12i—Cs1—O4iii114.79 (9)O12—C1—O11129.4 (5)
O4ii—Cs1—O4iii38.40 (10)O12—C1—H1A115.3
O11—Cs1—O365.55 (8)O11—C1—H1A115.3
O11i—Cs1—O3101.84 (8)C1—O11—Na1128.5 (3)
O12—Cs1—O382.64 (8)C1—O11—Na2iii141.2 (3)
O12i—Cs1—O3118.82 (9)Na1—O11—Na2iii85.57 (10)
O4ii—Cs1—O3132.00 (7)C1—O11—Cs196.5 (2)
O4iii—Cs1—O3117.02 (7)Na1—O11—Cs195.91 (10)
O11—Cs1—O3i101.84 (8)Na2iii—O11—Cs197.64 (10)
O11i—Cs1—O3i65.55 (8)C1—O12—Na2vii159.5 (4)
O12—Cs1—O3i118.82 (9)C1—O12—Cs2100.8 (3)
O12i—Cs1—O3i82.64 (8)Na2vii—O12—Cs294.24 (12)
O4ii—Cs1—O3i117.02 (7)C1—O12—Cs192.0 (3)
O4iii—Cs1—O3i132.00 (7)Na2vii—O12—Cs1103.02 (15)
O3—Cs1—O3i38.13 (10)Cs2—O12—Cs185.41 (10)
O11—Cs1—O2iv53.60 (7)C1—O12—Cs2vii84.1 (3)
O11i—Cs1—O2iv89.30 (7)Na2vii—O12—Cs2vii84.34 (12)
O12—Cs1—O2iv92.95 (7)Cs2—O12—Cs2vii166.34 (15)
O12i—Cs1—O2iv128.64 (8)Cs1—O12—Cs2vii81.69 (10)
O4ii—Cs1—O2iv73.03 (7)O2—C2—O2ix131.5 (6)
O4iii—Cs1—O2iv60.42 (7)O2ix—C2—H2A114.2
O3—Cs1—O2iv61.21 (7)O2—C2—H2A114.2
O3i—Cs1—O2iv73.66 (7)C2—O2—Na1x154.0 (4)
C1—Cs1—O2iv73.40 (7)C2—O2—Na2vii123.8 (4)
C1i—Cs1—O2iv109.12 (7)Na1x—O2—Na2vii81.59 (10)
C3—Cs1—O2iv59.13 (9)C2—O2—Cs297.2 (3)
O4iii—Cs2—O573.48 (10)Na1x—O2—Cs291.15 (10)
O4iii—Cs2—O3v107.78 (9)Na2vii—O2—Cs282.70 (9)
O5—Cs2—O3v101.39 (11)C2—O2—Cs1x92.4 (3)
O4iii—Cs2—O1286.02 (9)Na1x—O2—Cs1x83.99 (9)
O5—Cs2—O12153.82 (10)Na2vii—O2—Cs1x84.46 (10)
O3v—Cs2—O1269.11 (9)Cs2—O2—Cs1x166.81 (9)
O4iii—Cs2—O498.00 (7)O3i—C3—O3128.5 (5)
O5—Cs2—O462.95 (9)O3i—C3—H3A115.8
O3v—Cs2—O4144.70 (8)O3—C3—H3A115.8
O12—Cs2—O4137.91 (9)C3—O3—Na1112.5 (3)
O4iii—Cs2—O5iii61.43 (8)C3—O3—Na2xi108.9 (3)
O5—Cs2—O5iii100.17 (9)Na1—O3—Na2xi73.52 (9)
O3v—Cs2—O5iii151.55 (8)C3—O3—Cs2vii145.4 (3)
O12—Cs2—O5iii83.43 (9)Na1—O3—Cs2vii100.36 (10)
O4—Cs2—O5iii62.95 (7)Na2xi—O3—Cs2vii90.11 (9)
O4iii—Cs2—O12v133.71 (8)C3—O3—Cs185.1 (3)
O5—Cs2—O12v60.34 (10)Na1—O3—Cs185.55 (9)
O3v—Cs2—O12v85.31 (8)Na2xi—O3—Cs1157.95 (12)
O12—Cs2—O12v138.74 (5)Cs2vii—O3—Cs186.87 (8)
O4—Cs2—O12v59.39 (8)O4ix—C4—O4129.3 (6)
O5iii—Cs2—O12v121.73 (8)O4ix—C4—H4A115.4
O4iii—Cs2—O2145.17 (8)O4—C4—H4A115.4
O5—Cs2—O2138.37 (9)C4—O4—Na2121.3 (3)
O3v—Cs2—O260.09 (8)C4—O4—Cs2iii138.6 (3)
O12—Cs2—O259.23 (8)Na2—O4—Cs2iii100.07 (10)
O4—Cs2—O2109.19 (7)C4—O4—Cs2100.4 (3)
O5iii—Cs2—O2112.23 (8)Na2—O4—Cs284.85 (10)
O12v—Cs2—O280.15 (7)Cs2iii—O4—Cs282.00 (7)
O11vi—Na1—O11180.0C4—O4—Cs1iii92.2 (3)
O11vi—Na1—O2vii83.90 (11)Na2—O4—Cs1iii90.68 (10)
O11—Na1—O2vii96.10 (11)Cs2iii—O4—Cs1iii86.93 (8)
O11vi—Na1—O2iv96.10 (11)Cs2—O4—Cs1iii167.13 (10)
O11—Na1—O2iv83.90 (11)O5i—C5—O5132.8 (8)
O2vii—Na1—O2iv180.0O5—C5—H5A113.6
O11vi—Na1—O3vi95.57 (10)O5i—C5—H5A113.6
O11—Na1—O3vi84.43 (10)C5—O5—Na2132.8 (4)
O2vii—Na1—O3vi94.74 (11)C5—O5—Cs2132.3 (4)
O2iv—Na1—O3vi85.26 (11)Na2—O5—Cs294.85 (12)
O11vi—Na1—O384.43 (10)C5—O5—Cs2iii98.7 (4)
O11—Na1—O395.57 (10)Na2—O5—Cs2iii88.45 (13)
O2vii—Na1—O385.27 (11)Cs2—O5—Cs2iii79.83 (9)
O2iv—Na1—O394.73 (11)C5—O5—Cs1v95.7 (4)
O3vi—Na1—O3180.0Na2—O5—Cs1v89.83 (13)
O12v—Na2—O11iii170.56 (15)Cs2—O5—Cs1v82.42 (10)
O12v—Na2—O592.11 (16)Cs2iii—O5—Cs1v161.95 (11)
Symmetry codes: (i) x, y+1/2, z; (ii) x+2, y+1/2, z+1; (iii) x+2, y, z+1; (iv) x+3/2, y, z1/2; (v) x+1/2, y, z+3/2; (vi) x+1, y, z+1; (vii) x1/2, y, z+3/2; (viii) x+1, y, z; (ix) x, y1/2, z; (x) x+3/2, y, z+1/2; (xi) x1, y, z.
 

Acknowledgements

We thank Cabot Specialty Fluids for support of this work. EPSRC and Siemens plc generously supported the purchase of the SMART diffractometer.

References

First citationRobinet, L., Eremin, K., del Arco, B. C. & Gibson, L. T. (2004). J. Raman Spectrosc. 35, 662–670.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens, (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWilson, M. P., Alcock, N. W. & Rodger, P. M. (2006). Inorg. Chem. In the press.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds