organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Iodo­benzene­sulfonyl chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: jdw3@st-and.ac.uk

(Received 13 January 2006; accepted 20 January 2006; online 25 January 2006)

In the mol­ecule of 2-iodo­benzene­sulfonyl chloride, C6H4IO2S+·Cl, the ortho substitution by large atoms causes angular distortions at the ring C atoms rather than significant displacement of the substituents out of the ring plane.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as an inter­mediate in the synthesis of dibenzo[ce][1,2]dithiine and its related oxides (Aucott et al., 2004[Aucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z., Walker, G. D. & Woollins, J. D. (2004). Chem. Eur. J. 10, 1666-1676.]; Aucott et al., 2004a[Aucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2004a). Heteroatom Chem., 15, 531-542.],b[Aucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2004b). Dalton Trans. pp. 3347-3352.]; Aucott, Kilian et al., 2005[Aucott, S. M., Kilian, P., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2005). Inorg. Chem. 44, 2710-2718.]; Aucott, Milton et al., 2005[Aucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2005). Heteroatom Chem., 16, 346-350.]) as part of a study of conformationally restricted mol­ecules.

[Scheme 1]

Compound (I)[link] crystallizes in the monoclinic space group P21/n. The aromatic ring is essentially planar, with atom S1 0.14 (1) Å and I1 −0.08 (1) Å from this plane. The SO2Cl group is oriented with O2 close to the aromatic plane [0.16 (1) Å] and O1 and Cl1 lying 1.13 (1) and −1.165 (1) Å above and below this plane, respectively. The ortho substi­tution of two heavy atoms results in enlargement of angles at carbon of the aromatic ring; C2—C1—I1 = 125.00 (18)° and S1—C2—C1 = 123.23 (19)°.

[Figure 1]
Figure 1
The structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level.

Experimental

2-Iodo­benzene­sulfonyl chloride was prepared as previously described (Chau & Kice, 1977[Chau, M. M. & Kice, J. L. (1977). J. Org. Chem. 42, 3265-3270.]) and was crystallized from chloro­form/hexane (1:1 v/v) to give well formed colourless blocks.

Crystal data
  • C6H4IO2S+·Cl

  • Mr = 302.50

  • Monoclinic, P 21 /n

  • a = 8.338 (3) Å

  • b = 12.741 (3) Å

  • c = 8.517 (2) Å

  • β = 109.797 (7)°

  • V = 851.3 (4) Å3

  • Z = 4

  • Dx = 2.360 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3111 reflections

  • θ = 2.5–25.4°

  • μ = 4.26 mm−1

  • T = 93 (2) K

  • Block, colourless

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Rigaku MM007/Mercury CCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2001[Bruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.600, Tmax = 0.710

  • 4840 measured reflections

  • 1496 independent reflections

  • 1457 reflections with I > 2σ(I)

  • Rint = 0.013

  • θmax = 25.4°

  • h = −10 → 9

  • k = −15 → 12

  • l = −8 → 10

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.033

  • S = 1.13

  • 1496 reflections

  • 101 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0044P)2 + 1.4521P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.46 e Å−3

All H atoms were included in calculated positions (C—H = 0.95 Å) and were refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Data collection: CrystalClear (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalClear. Version 1.3.6. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX77381-5209, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Aucott, Kilian.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

2-iodobenzenesulfonyl chloride top
Crystal data top
C6H4IO2S+·ClF(000) = 568
Mr = 302.50Dx = 2.360 Mg m3
Monoclinic, P21/nMelting point: 52 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.338 (3) ÅCell parameters from 3111 reflections
b = 12.741 (3) Åθ = 2.5–25.4°
c = 8.517 (2) ŵ = 4.27 mm1
β = 109.797 (7)°T = 93 K
V = 851.3 (4) Å3Block, colourless
Z = 40.10 × 0.10 × 0.08 mm
Data collection top
CCD
diffractometer
1496 independent reflections
Radiation source: rotating anode1457 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.013
Detector resolution: 0.83 pixels mm-1θmax = 25.4°, θmin = 3.0°
dtprofit.ref scansh = 109
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1512
Tmin = 0.600, Tmax = 0.710l = 810
4840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.033H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0044P)2 + 1.4521P]
where P = (Fo2 + 2Fc2)/3
1496 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.42383 (2)0.287007 (12)0.57459 (2)0.01844 (6)
Cl10.02906 (7)0.14086 (5)0.52384 (8)0.02264 (14)
S10.19229 (7)0.11930 (5)0.76112 (7)0.01317 (13)
O10.2205 (2)0.22062 (13)0.8354 (2)0.0182 (4)
O20.1205 (2)0.03818 (14)0.8311 (2)0.0202 (4)
C10.4827 (3)0.13418 (19)0.6674 (3)0.0139 (5)
C20.3799 (3)0.07205 (19)0.7313 (3)0.0136 (5)
C30.4261 (3)0.0310 (2)0.7824 (3)0.0166 (5)
H3A0.35380.07320.82180.020*
C40.5777 (3)0.0718 (2)0.7755 (3)0.0193 (5)
H4A0.61040.14160.81130.023*
C50.6816 (3)0.0095 (2)0.7156 (3)0.0195 (5)
H5A0.78630.03690.71200.023*
C60.6340 (3)0.0915 (2)0.6613 (3)0.0172 (5)
H6A0.70560.13240.61920.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02291 (10)0.01213 (9)0.02630 (10)0.00095 (6)0.01621 (7)0.00174 (6)
Cl10.0135 (3)0.0286 (3)0.0237 (3)0.0021 (3)0.0034 (2)0.0029 (3)
S10.0122 (3)0.0123 (3)0.0173 (3)0.0002 (2)0.0079 (2)0.0014 (2)
O10.0191 (9)0.0130 (9)0.0281 (10)0.0027 (7)0.0153 (8)0.0062 (7)
O20.0192 (9)0.0195 (9)0.0272 (10)0.0004 (8)0.0147 (8)0.0002 (8)
C10.0145 (12)0.0118 (12)0.0161 (11)0.0011 (9)0.0061 (9)0.0020 (10)
C20.0110 (12)0.0159 (12)0.0143 (11)0.0007 (9)0.0046 (9)0.0035 (10)
C30.0178 (12)0.0168 (13)0.0151 (12)0.0021 (10)0.0054 (10)0.0007 (10)
C40.0213 (13)0.0153 (13)0.0186 (12)0.0057 (10)0.0031 (10)0.0006 (10)
C50.0128 (12)0.0230 (14)0.0213 (13)0.0035 (10)0.0041 (10)0.0062 (11)
C60.0134 (12)0.0217 (14)0.0188 (12)0.0033 (10)0.0086 (10)0.0064 (10)
Geometric parameters (Å, º) top
I1—C12.096 (2)C3—C41.386 (4)
Cl1—S12.0368 (10)C3—H3A0.9500
S1—O11.4217 (18)C4—C51.392 (4)
S1—O21.4222 (18)C4—H4A0.9500
S1—C21.773 (2)C5—C61.379 (4)
C1—C61.390 (3)C5—H5A0.9500
C1—C21.405 (3)C6—H6A0.9500
C2—C31.396 (3)
O1—S1—O2120.22 (11)C4—C3—C2119.9 (2)
O1—S1—C2110.53 (11)C4—C3—H3A120.0
O2—S1—C2109.27 (11)C2—C3—H3A120.0
O1—S1—Cl1105.86 (8)C3—C4—C5119.4 (2)
O2—S1—Cl1106.21 (8)C3—C4—H4A120.3
C2—S1—Cl1103.26 (8)C5—C4—H4A120.3
C6—C1—C2118.3 (2)C6—C5—C4120.7 (2)
C6—C1—I1116.68 (18)C6—C5—H5A119.7
C2—C1—I1125.00 (18)C4—C5—H5A119.7
C3—C2—C1120.7 (2)C5—C6—C1120.9 (2)
C3—C2—S1116.03 (18)C5—C6—H6A119.5
C1—C2—S1123.23 (19)C1—C6—H6A119.5
C6—C1—C2—C32.0 (3)Cl1—S1—C2—C168.7 (2)
I1—C1—C2—C3176.66 (17)C1—C2—C3—C42.2 (4)
C6—C1—C2—S1175.12 (18)S1—C2—C3—C4175.14 (19)
I1—C1—C2—S16.2 (3)C2—C3—C4—C50.8 (4)
O1—S1—C2—C3133.11 (19)C3—C4—C5—C60.8 (4)
O2—S1—C2—C31.3 (2)C4—C5—C6—C11.0 (4)
Cl1—S1—C2—C3114.05 (18)C2—C1—C6—C50.4 (4)
O1—S1—C2—C144.1 (2)I1—C1—C6—C5178.36 (18)
O2—S1—C2—C1178.58 (19)
 

References

First citationAucott, S. M., Kilian, P., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2005). Inorg. Chem. 44, 2710–2718.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z., Walker, G. D. & Woollins, J. D. (2004). Chem. Eur. J. 10, 1666–1676.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2004a). Heteroatom Chem., 15, 531–542.  Web of Science CSD CrossRef Google Scholar
First citationAucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2004b). Dalton Trans. pp. 3347–3352.  Web of Science CSD CrossRef Google Scholar
First citationAucott, S. M., Milton, H. L., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2005). Heteroatom Chem., 16, 346–350.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChau, M. M. & Kice, J. L. (1977). J. Org. Chem. 42, 3265–3270.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2004). CrystalClear. Version 1.3.6. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX77381-5209, USA.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Aucott, Kilian.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds