organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzyl­­idene-3,4-di­hydro-1λ4-cyclo­penta­[2,1-b:3,4-b′]di­thio­phene at 120 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 11 January 2006; accepted 12 January 2006; online 18 January 2006)

The title compound, C16H10S2, is a further example of a 3,3′-bridged 2,2′-dithio­phene. As in comparable members of this series of compounds, the monoatomic 3,3′-bridge constrains the tricyclic heterocyclic ring system to be essentially planar with, in this case, an S—C—C—S torsion angle of 2.3 (4)°.

Comment

The title compound, (I)[link], was synthesized with a view to investigating its potential as a ligand. A search of the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), accessed by means of the Chemical Database Service of the EPSRC (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]), revealed, however, the presence of known structures for a number of 3,3′-bridged 2,2′-dithio­phenes, (II)–(VI)[link] (Koster et al., 1970[Koster, P. B., van Bolhuis, F. & Visser, G. J. (1970). Acta Cryst. B26, 1932-1939.]; Pilati, 1995[Pilati, T. (1995). Acta Cryst. C51, 690-697.]) analogous to (I)[link]. It is in relation to these, especially the series (II)–(VI) described by Pilati (1995[Pilati, T. (1995). Acta Cryst. C51, 690-697.]), that the structure of (I)[link] is discussed here.

[Scheme 1]

The mol­ecule of (I)[link] is shown in Fig. 1[link] and selected bond lengths and angles are given in Table 1[link]. In addition to the values given in the Table, and noting the C5—C6—C7 angle of 104.19 (19)°, the remaining inter­nal C—C—C angles of the five-membered rings are in the range 108.3 (2)–112.4 (2)°. The C—C—S inter­nal angles, in the range 112.15 (17)–113.09 (19)°, show less variation. The bond lengths and angles in the phenyl group in the ranges 1.380 (3)–1.395 (3) Å and 118.0 (2)–121.5 (2)°, respectively, are unexceptional. The torsion angles about the C1—C2 bond are a clear indication of the planar nature of the dithio­phene ring system. The torsion angles about the C10—C11 bond, on the other hand, indicate a tilt of the phenyl group relative to the dithio­phene group which amounts to a dihedral angle between their least squares planes of 44.38 (6)°.

A feature of the mol­ecule of (I)[link] is the difference between the S1—C1 and S2—C2 bond lengths [1.712 (2) and 1.711 (2) Å, respectively] and the S1—C9 and S2—C3 bond lengths [1.734 (3) and 1.727 (3) Å, respectively]. Pilati (1995[Pilati, T. (1995). Acta Cryst. C51, 690-697.]) has noted a similar disparity in S—C bond lengths, in the same sense for (II) and, although less marked, for (III) but in the opposite sense for (IV)–(VI) (see Table 2[link]). Also evident from the torsion-angle data given in Table 2[link] is the planarity of the dithio­phene ring system in the case of (II) and (III), now along with (I)[link], which is not the case for (IV)–(VI). It is clear, therefore, that the monoatomic 3,3′ bridge in (I)–(III) as opposed to the polyatomic bridges in (IV)–(VI) is the key factor in creating the structural differences between the two classes of compound and is largely independent of the nature of the species providing the monoatomic bridge.

The mol­ecules of (I)[link] are found in layers parallel to (100) (Fig. 2[link]) within which there are two significant inter­molecular contacts. The first of these is a ππ inter­action arising from the overlap of the dithio­phene ring systems in pairs, creating inter­actions involving the rings with centroid Cg1 defined by C1/C2/C5–C7. For this inter­action, Cg1⋯Cg1iii [symmetry code: (iii) −x, y, −z + [{1\over 2}]], the distance between the ring centroids, the perpendicular distance of the centroid of one ring to the least-squares plane of the other ring of the pair and the lateral displacement or slippage of the rings relative to one another are 3.829, 3.467 and 1.625 Å, respectively. The second inter­action is a C—H⋯π contact of the form C8—H8⋯Cg2i where Cg2 is the centroid of the ring defined by C2/S2/C3–C5 [symmetry code: (i) −x + [{1\over 2}], y[{1\over 2}], −z + [{1\over 2}]]. Here the C—H, H⋯Cg, the perpendicular distance of the H atom from the l.s. plane of the ring and the C⋯Cg distances are 0.95, 2.750, 2.706 and 3.650 Å, respectively, and the C—H⋯Cg angle is 158°. Stacking of these layers in the direction of a produces a further ππ inter­action between pairs of phenyl rings, C11–C16 with centroid Cg3, of the form Cg3⋯Cg3ii (Fig. 3[link]) [symmetry code: (ii) −x + [{1\over 2}], −y + [{1\over 2}], −z] for which the distance between the ring centroids, the perpen­dic­ular distance of the centroid of one ring to the least-squares plane of the other ring of the pair and the lateral displacement or slippage of the rings relative to one another are 3.617, 3.607 and 0.269 Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2]
Figure 2
A layer of mol­ecules of (I)[link] parallel to (100) and centred on x = ¼. For clarity, the phenyl group (C11–C16) is shown in thin line outline and only the H atoms involved in C—H⋯π contacts are shown as small spheres of arbitrary radii. Dashed lines represent inter­molecular contacts. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + [{1\over 2}], y[{1\over 2}], −z + [{1\over 2}]; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (v) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (vi) x, −y + 1, z + [{1\over 2}]; (vii) −x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (viii) x, y, z + 1.]
[Figure 3]
Figure 3
A section through the structure of (I)[link] parallel to (010) and centred on y = [1\over4], showing inter­layer ππ contacts (dashed lines). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted. [Symmetry codes: (iii) −x, y, −z + [{1\over 2}]; (v) −x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (ix) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}].]

Experimental

To a solution of 4H-cyclo­penta­[2,1-b:3,4-b′]dithio­phene (2.0 g, 11.2 mmol), (II) (Kraak et al., 1968[Kraak, A., Wiersema, A. K., Jordens, P. & Wynberg, H. (1968). Tetrahedron, 24, 3381-3398.]), in Et2O (25 ml) at 273 K was added dropwise by syringe a solution of BuLi (11.3 mmol) in hexane. The reaction mixture was stirred at 273 K for 1 h after addition was complete. A solution of PhCHO (1.3 g, 12 mmol) in Et2O (10 ml) was then slowly added. The reaction mixture was refluxed for 20 min., saturated aqueous NH4Cl solution (30 ml) added, the organic layer collected, washed with water and dried over MgSO4, and rotary evaporated. The residue was recrystallized successively from EtOH and MeCN. The orange-red crystals used in the X-ray crystal structure determination were grown slowly from MeCN solution (m.p. 408–410 K).

Crystal data
  • C16H10S2

  • Mr = 266.36

  • Monoclinic, C 2/c

  • a = 19.618 (2) Å

  • b = 10.4720 (8) Å

  • c = 12.0157 (12) Å

  • β = 91.525 (4)°

  • V = 2467.6 (4) Å3

  • Z = 8

  • Dx = 1.434 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2794 reflections

  • θ = 2.9–27.5°

  • μ = 0.41 mm−1

  • T = 120 (2) K

  • Plate, orange–red

  • 0.28 × 0.22 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.662, Tmax = 0.990

  • 11902 measured reflections

  • 2815 independent reflections

  • 1836 reflections with I > 2σ(I)

  • Rint = 0.056

  • θmax = 27.5°

  • h = −25 → 25

  • k = −13 → 12

  • l = −14 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.03

  • 2815 reflections

  • 163 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0487P)2 + 1.7202P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C1 1.712 (2)
S1—C9 1.734 (3)
S2—C2 1.711 (2)
S2—C3 1.727 (3)
C1—C7 1.386 (3)
C1—C2 1.449 (3)
C2—C5 1.383 (3)
C3—C4 1.367 (3)
C4—C5 1.426 (3)
C5—C6 1.488 (3)
C6—C10 1.348 (3)
C6—C7 1.479 (3)
C7—C8 1.420 (3)
C8—C9 1.356 (3)
C10—C11 1.465 (3)
C1—S1—C9 90.63 (12)
C2—S2—C3 90.72 (11)
C2—C1—S1 139.53 (18)
C1—C2—S2 137.92 (19)
C4—C5—C6 139.2 (2)
C7—C6—C5 104.19 (19)
C8—C7—C6 138.1 (2)
C6—C10—C11 127.7 (2)
C7—C1—C2—C5 −0.7 (3)
S1—C1—C2—S2 2.3 (4)
C6—C10—C11—C12 142.3 (2)
C6—C10—C11—C16 −40.9 (4)

Table 2
Summary of S—C distances (Å) and absolute values of selected torsion angles (°) for (I–VI)

For (II–IV), values and the associated su's have been averaged over all molecules in the asymmetric unit. In all cases S—C distances, according to type, have been averaged, in addition, over the two thiophene rings. Values for (II–VI) were obtained from the data of Pilati (1995[Pilati, T. (1995). Acta Cryst. C51, 690-697.]).

Compound S1—C1 S1—C9 S1—C1—C2—S2 C7—C1—C2—C5
(I) 1.712 (2) 1.730 (3) 2.3 (4) 0.7 (3)
(II) 1.713 (2) 1.726 (2) 4.4 (5) 0.2 (3)
(III) 1.709 (2) 1.716 (2) 2.6 (4) 0.9 (3)
(IV) 1.729 (1) 1.705 (2) 9.7 (2) 10.8 (3)
(V) 1.728 (1) 1.704 (2) 109.6 (1) 111.7 (2)
(VI) 1.728 (2) 1.708 (2) 56.8 (2) 61.3 (3)

In the final stages of refinement H atoms were placed in calculated positions, with C—H = 0.95 Å, and refined with a riding model, with Uiso(H) = 1.2Ueq(C)

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

4-Benzylidene-3,4-dihydro-1λ4-cyclopenta[2,1 - b:3,4 - b']dithiophene top
Crystal data top
C16H10S2F(000) = 1104
Mr = 266.36Dx = 1.434 Mg m3
Monoclinic, C2/cMelting point = 408–410 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 19.618 (2) ÅCell parameters from 2794 reflections
b = 10.4720 (8) Åθ = 2.9–27.5°
c = 12.0157 (12) ŵ = 0.41 mm1
β = 91.525 (4)°T = 120 K
V = 2467.6 (4) Å3Plate, orange–red
Z = 80.28 × 0.22 × 0.03 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2815 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.7°
φ and ω scansh = 2525
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1312
Tmin = 0.662, Tmax = 0.990l = 1415
11902 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0487P)2 + 1.7202P]
where P = (Fo2 + 2Fc2)/3
2815 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Experimental. Unit cell determined with DIRAX (Duisenberg, 1992; Duisenberg et al. 2000) but refined with the DENZO/COLLECT HKL package.

Refs as: Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

-4.5802 (74) x + 6.7513 (30) y + 8.8179 (28) z = 2.2432 (28)

* -0.0070 (0.0011) S1 * 0.0370 (0.0011) S2 * 0.0328 (0.0020) C1 * 0.0653 (0.0020) C2 * -0.0660 (0.0018) C3 * -0.0676 (0.0019) C4 * 0.0356 (0.0020) C5 * 0.0251 (0.0019) C6 * -0.0007 (0.0020) C7 * -0.0313 (0.0020) C8 * -0.0476 (0.0019) C9 * 0.0246 (0.0015) C10 0.1674 (0.0030) C11 - 0.5633 (0.0034) C12 1.0795 (0.0030) C16

Rms deviation of fitted atoms = 0.0423

-5.7121 (184) x - 0.7716 (114) y + 11.5500 (35) z = 0.8846 (33)

Angle to previous plane (with approximate e.s.d.) = 44.38 (0.06)

* -0.0118 (0.0017) C11 * 0.0129 (0.0018) C12 * -0.0036 (0.0019) C13 * -0.0067 (0.0018) C14 * 0.0076 (0.0018) C15 * 0.0017 (0.0017) C16

Rms deviation of fitted atoms = 0.0084

-4.3812 (169) x + 6.5423 (86) y + 9.0585 (91) z = 2.2968 (68)

Angle to previous plane (with approximate e.s.d.) = 42.89 (0.08)

* -0.0023 (0.0011) S1 * 0.0056 (0.0013) C1 * -0.0070 (0.0015) C7 * 0.0049 (0.0015) C8 * -0.0013 (0.0014) C9

Rms deviation of fitted atoms = 0.0047

-4.6361 (217) x + 6.5709 (91) y + 8.9870 (90) z = 2.2174 (71)

Angle to previous plane (with approximate e.s.d.) = 0.84 (0.16)

* 0.0002 (0.0014) C1 * 0.0076 (0.0014) C2 * -0.0117 (0.0014) C5 * 0.0111 (0.0013) C6 * -0.0072 (0.0014) C7

Rms deviation of fitted atoms = 0.0086

-5.5056 (169) x + 6.9517 (74) y + 8.4164 (95) z = 2.1095 (55)

Angle to previous plane (with approximate e.s.d.) = 4.31 (0.16)

* 0.0068 (0.0010) S2 * -0.0124 (0.0013) C2 * -0.0007 (0.0013) C3 * -0.0068 (0.0015) C4 * 0.0132 (0.0014) C5

Rms deviation of fitted atoms = 0.0092

-4.3812 (169) x + 6.5423 (86) y + 9.0585 (91) z = 2.2968 (68)

Angle to previous plane (with approximate e.s.d.) = 5.07 (0.15)

* -0.0023 (0.0011) S1 * 0.0056 (0.0013) C1 * -0.0070 (0.0015) C7 * 0.0049 (0.0015) C8 * -0.0013 (0.0014) C9

Rms deviation of fitted atoms = 0.0047

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41276 (3)0.34681 (6)0.20246 (6)0.0337 (2)
S20.30609 (3)0.56535 (6)0.01529 (6)0.0319 (2)
C10.33082 (12)0.3631 (2)0.1519 (2)0.0244 (5)
C20.29170 (12)0.4422 (2)0.07472 (19)0.0244 (5)
C30.22272 (12)0.5580 (2)0.0646 (2)0.0292 (6)
H30.20460.61240.12140.035*
C40.18543 (13)0.4658 (2)0.01358 (19)0.0273 (6)
H40.13890.44790.03120.033*
C50.22499 (12)0.3996 (2)0.06933 (19)0.0234 (5)
C60.21796 (12)0.2908 (2)0.14779 (18)0.0235 (5)
C70.28757 (12)0.2722 (2)0.19526 (19)0.0241 (5)
C80.32155 (13)0.1898 (2)0.2725 (2)0.0290 (6)
H80.29980.12300.31150.035*
C90.38882 (14)0.2184 (2)0.2837 (2)0.0339 (6)
H90.41970.17270.33130.041*
C100.16312 (12)0.2201 (2)0.17339 (19)0.0269 (6)
H100.17160.14870.22050.032*
C110.09204 (12)0.2404 (2)0.13714 (19)0.0265 (5)
C120.05003 (13)0.1370 (2)0.1116 (2)0.0329 (6)
H120.06780.05280.11720.039*
C130.01742 (14)0.1552 (2)0.0780 (2)0.0373 (6)
H130.04500.08360.05880.045*
C140.04489 (13)0.2764 (2)0.0723 (2)0.0350 (6)
H140.09110.28870.04920.042*
C150.00416 (14)0.3798 (2)0.1006 (2)0.0357 (6)
H150.02280.46350.09820.043*
C160.06354 (13)0.3624 (2)0.1324 (2)0.0318 (6)
H160.09090.43440.15120.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0298 (4)0.0324 (4)0.0383 (4)0.0003 (3)0.0080 (3)0.0038 (3)
S20.0299 (4)0.0273 (3)0.0384 (4)0.0003 (3)0.0000 (3)0.0092 (3)
C10.0238 (13)0.0228 (11)0.0264 (13)0.0026 (10)0.0042 (10)0.0029 (10)
C20.0290 (14)0.0195 (11)0.0247 (12)0.0005 (10)0.0008 (11)0.0015 (10)
C30.0311 (15)0.0261 (12)0.0303 (13)0.0063 (10)0.0019 (11)0.0067 (11)
C40.0291 (14)0.0270 (12)0.0257 (13)0.0020 (10)0.0004 (11)0.0024 (10)
C50.0252 (14)0.0204 (11)0.0244 (12)0.0015 (10)0.0001 (10)0.0030 (10)
C60.0292 (14)0.0200 (11)0.0211 (12)0.0023 (10)0.0025 (11)0.0030 (10)
C70.0295 (14)0.0208 (11)0.0220 (12)0.0001 (10)0.0022 (11)0.0032 (10)
C80.0352 (16)0.0245 (12)0.0270 (13)0.0006 (11)0.0029 (12)0.0001 (10)
C90.0411 (17)0.0270 (13)0.0332 (15)0.0042 (11)0.0081 (13)0.0015 (11)
C100.0337 (15)0.0220 (12)0.0248 (13)0.0013 (10)0.0008 (11)0.0010 (10)
C110.0290 (14)0.0289 (12)0.0217 (12)0.0010 (11)0.0011 (11)0.0050 (11)
C120.0324 (16)0.0287 (13)0.0375 (15)0.0017 (11)0.0010 (12)0.0067 (12)
C130.0299 (16)0.0389 (15)0.0432 (16)0.0067 (12)0.0002 (13)0.0042 (13)
C140.0305 (15)0.0448 (16)0.0296 (14)0.0020 (12)0.0012 (12)0.0048 (12)
C150.0340 (16)0.0348 (14)0.0386 (15)0.0079 (12)0.0077 (13)0.0038 (12)
C160.0331 (16)0.0290 (13)0.0336 (15)0.0013 (11)0.0065 (12)0.0007 (11)
Geometric parameters (Å, º) top
S1—C11.712 (2)C8—H80.9500
S1—C91.734 (3)C9—H90.9500
S2—C21.711 (2)C10—C111.465 (3)
S2—C31.727 (3)C10—H100.9500
C1—C71.386 (3)C11—C121.390 (3)
C1—C21.449 (3)C11—C161.395 (3)
C2—C51.383 (3)C12—C131.386 (4)
C3—C41.367 (3)C12—H120.9500
C3—H30.9500C13—C141.380 (3)
C4—C51.426 (3)C13—H130.9500
C4—H40.9500C14—C151.382 (4)
C5—C61.488 (3)C14—H140.9500
C6—C101.348 (3)C15—C161.384 (3)
C6—C71.479 (3)C15—H150.9500
C7—C81.420 (3)C16—H160.9500
C8—C91.356 (3)
C1—S1—C990.63 (12)C7—C8—H8124.1
C2—S2—C390.72 (11)C8—C9—S1113.09 (19)
C7—C1—C2108.3 (2)C8—C9—H9123.5
C7—C1—S1112.15 (17)S1—C9—H9123.5
C2—C1—S1139.53 (18)C6—C10—C11127.7 (2)
C5—C2—C1109.3 (2)C6—C10—H10116.1
C5—C2—S2112.67 (18)C11—C10—H10116.1
C1—C2—S2137.92 (19)C12—C11—C16118.0 (2)
C4—C3—S2113.02 (18)C12—C11—C10120.5 (2)
C4—C3—H3123.5C16—C11—C10121.5 (2)
S2—C3—H3123.5C13—C12—C11120.9 (2)
C3—C4—C5111.7 (2)C13—C12—H12119.6
C3—C4—H4124.2C11—C12—H12119.6
C5—C4—H4124.2C14—C13—C12120.6 (2)
C2—C5—C4111.9 (2)C14—C13—H13119.7
C2—C5—C6108.7 (2)C12—C13—H13119.7
C4—C5—C6139.2 (2)C13—C14—C15119.0 (3)
C10—C6—C7125.0 (2)C13—C14—H14120.5
C10—C6—C5130.8 (2)C15—C14—H14120.5
C7—C6—C5104.19 (19)C14—C15—C16120.6 (2)
C1—C7—C8112.4 (2)C14—C15—H15119.7
C1—C7—C6109.5 (2)C16—C15—H15119.7
C8—C7—C6138.1 (2)C15—C16—C11120.8 (2)
C9—C8—C7111.7 (2)C15—C16—H16119.6
C9—C8—H8124.1C11—C16—H16119.6
C7—C1—C2—C50.7 (3)C6—C10—C11—C12142.3 (2)
S1—C1—C2—S22.3 (4)C6—C10—C11—C1640.9 (4)
Summary of S—C distances (Å) and absolute values of selected torsion angles (°) for (I–VI). For (II–IV) values, and the associated su's, have been averaged over all molecules in the asymmetric unit. In all cases S—C distances, according to type, have been averaged, in addition, over the two thiophene rings. Values for (II-VI) obtained from the data of Pilati (1995). top
CompoundS1—C1S1—C9S1—C1—C2—S2C7—C1—C2—C5
(I)1.712 (2)1.730 (3)2.3 (4)0.7 (3)
(II)1.713 (2)1.726 (2)4.4 (5)0.2 (3)
(III)1.709 (2)1.716 (2)2.6 (4)0.9 (3)
(IV)1.729 (1)1.705 (2)9.7 (2)10.8 (3)
(V)1.728 (1)1.704 (2)109.6 (1)111.7 (2)
(VI)1.728 (2)1.708 (2)56.8 (2)61.3 (3)
 

Acknowledgements

The authors acknowledge the use of the Chemical Database Service at Daresbury and the X-ray crystallographic service at Southampton, England, both provided by the EPSRC.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKoster, P. B., van Bolhuis, F. & Visser, G. J. (1970). Acta Cryst. B26, 1932–1939.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKraak, A., Wiersema, A. K., Jordens, P. & Wynberg, H. (1968). Tetrahedron, 24, 3381–3398.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPilati, T. (1995). Acta Cryst. C51, 690–697.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds