organic compounds
3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)aniline
aDepartment of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, bINRS–Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec, Canada J3X 1S2, and cGlaxoSmithKline Research and Development Ltd, Old Powder Mills, Leigh, Nr Tonbridge, Kent TN11 9AN, England
*Correspondence e-mail: a.s.batsanov@durham.ac.uk
In the title compound, C12H18BNO2, the amino group is less pyramidal than in aniline, only one of its H atoms forming a strong hydrogen bond.
Comment
In the course of our studies (Giles et al., 2003; Coghlan et al., 2005) into the potential catalytic utility of bifunctional compounds (Rowlands, 2001) containing both a nitrogen-based and a boron-based we turned to the title compound, (I), as a protected precursor for the synthesis of phenylguanidine-2-boronic acid derivatives, which we were interested in as bifunctional catalysts. Unfortunately, synthesis of such compounds proved unsuccessful, producing a complex mixture of products.
Compound (I) was prepared by a modified version of the procedure reported by Vogels et al. (1999), who synthesized it en route to various platinum complexes and (Vogels et al., 2001; King et al., 2002).
The 2 plane by 0.20 (2) and 0.27 (2) Å in opposite directions, with two equatorial (C9 and C11) and two axial (C10 and C12) methyl substituents. The amino group forms one strong intermolecular hydrogen bond (Table 2). The remaining amino hydrogen atom, H2N, points towards the pπ orbital of the benzene C4 atom of another molecule. The H2N⋯C4ii distance [2.61 (2) Å, corrected for the idealized N—H bond length of 1.01 Å; symmetry code: (ii) 1 − x, + y, − z], which is considerably shorter than the sum of van der Waals radii of 2.88 Å (Rowland & Taylor, 1996) and the N—H⋯C angle of 167 (2)° suggest that this contact is a weak hydrogen bond.
contains one molecule. The B atom has planar-trigonal coordination; the coordination plane is inclined by 10.4 (2)° to the benzene ring plane. The borolane ring adopts a twist conformation, the C7 and C8 atoms deviating from the BOThe N atom in (I) has a less pyramidal geometry than in unsubstituted aniline. The dihedral angle between the benzene ring and the NH2 group (so-called `inversion angle'), which equals 37–38° in both solid (Fukuyo et al., 1982) and gaseous (Lister et al., 1974) aniline, is reduced to 16 (2)° in (I). The C1—N bond in (I) [1.3790 (18) Å] is shorter than in aniline [solid: 1.392 (6) Å; gas: 1.402 (2) Å]. Both differences indicate that the boryl substituent enhances the interaction of the electron lone pair of N with the aromatic ring and hence sp2 of the N atom. It is noteworthy that, in the two complexes of Pd and Pt where molecule (I) acts as an N-ligand (Vogels et al., 1999), the C—N bond is lengthened to 1.438 (4) and 1.45 (1) Å, respectively, as the π-conjugation is disrupted, the lone pair being donated to the metal atom instead.
In (I), the N atom deviates by 0.081 (2) Å from the benzene ring plane, but its H atoms are situated on the other side of this plane, 0.04 (2) Å from it. A similar, but stronger, distortion is shown by the aniline molecule in its where the amino group both donates and accepts a hydrogen bond.
Experimental
3-Aminophenylboronic acid (1.00 g, 6.45 mmol) and pinacol (0.763 g, 6.45 mmol) were added to ethyl acetate (150 ml). After stirring for 20 h, the solution was dried (MgSO4), filtered and evaporated to yield a brown solid, which was dissolved in a minimal amount of ethyl acetate and absorbed on to silica gel. Purification was by silica gel (hexane/ethyl acetate, 1:1 as eluant), which gave an orange oil which crystallized on standing for 48 h to give large orange crystals of (I) [yield 1.31 g, 93%; m.p. 363 K, cf. 366 K according to Vogels et al. (1999)]. UV ∊, mol dm−3 cm−1 (MeCN) 215 (∊ 27410), 246 (∊ 7100), 311 (∊ 2560); MS (ES+) 220.1 (M+ + H). Found: C 65.77, H 8.31, N 6.31%; C12H19BNO2 requires: C 65.70, H 8.28, N 6.39%. All other spectroscopic and analytical details were identical to those reported by Vogels et al. (1999).
Crystal data
|
Data collection
|
Refinement
|
|
Amino H atoms were refined in an isotropic approximation, giving N—H distances of 0.92 (2) and 0.85 (2) Å. Phenyl H atoms were treated as riding in idealized positions with C—H bond lengths of 0.95 Å and Uiso(H) = 1.2Ueq(C). Methyl groups were refined as rigid bodies rotating around the C—C bonds, with C—H bond lengths of 0.98 Å and a common refined Uiso(H) for all three H atoms of each methyl group.
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536805043151/rz2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock 02srv156. DOI: https://doi.org/10.1107/S1600536805043151/rz2002Isup2.hkl
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.C12H18BNO2 | F(000) = 472 |
Mr = 219.08 | Dx = 1.172 Mg m−3 |
Monoclinic, P21/c | Melting point: 363 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 9.823 (1) Å | Cell parameters from 2346 reflections |
b = 10.658 (1) Å | θ = 2.6–27.0° |
c = 12.547 (1) Å | µ = 0.08 mm−1 |
β = 109.10 (1)° | T = 120 K |
V = 1241.3 (2) Å3 | Block, orange |
Z = 4 | 0.3 × 0.3 × 0.2 mm |
Bruker SMART 6K CCD area-detector diffractometer | 1905 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 27.0°, θmin = 2.2° |
Detector resolution: 8 pixels mm-1 | h = −12→12 |
ω scans | k = −13→11 |
7402 measured reflections | l = −16→13 |
2697 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0669P)2] where P = (Fo2 + 2Fc2)/3 |
2697 reflections | (Δ/σ)max < 0.001 |
161 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Experimental. The data collection nominally covered over a hemisphere of reciprocal Space, by a combination of 3 sets of ω scans each set at different φ and/or 2θ angles and each scan (10 s exposure) covering 0.3° in ω. Crystal to detector distance 4.85 cm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.15436 (10) | 0.04664 (8) | 0.16868 (7) | 0.0263 (3) | |
O2 | 0.22355 (11) | 0.03227 (9) | 0.36090 (8) | 0.0316 (3) | |
N | 0.36360 (17) | 0.49698 (14) | 0.11742 (11) | 0.0404 (4) | |
H1N | 0.315 (2) | 0.4675 (17) | 0.0457 (17) | 0.059 (6)* | |
H2N | 0.420 (2) | 0.5598 (18) | 0.1268 (14) | 0.053 (6)* | |
C1 | 0.38192 (15) | 0.41584 (13) | 0.20664 (11) | 0.0273 (3) | |
C2 | 0.31038 (15) | 0.30068 (13) | 0.19234 (11) | 0.0251 (3) | |
H2 | 0.2532 | 0.2755 | 0.1186 | 0.030* | |
C3 | 0.32043 (15) | 0.22174 (13) | 0.28355 (11) | 0.0245 (3) | |
C4 | 0.40955 (15) | 0.25901 (13) | 0.39138 (11) | 0.0275 (3) | |
H4 | 0.4179 | 0.2071 | 0.4548 | 0.033* | |
C5 | 0.48483 (16) | 0.37062 (13) | 0.40580 (12) | 0.0297 (3) | |
H5 | 0.5474 | 0.3934 | 0.4785 | 0.036* | |
C6 | 0.47049 (16) | 0.44930 (13) | 0.31530 (12) | 0.0287 (3) | |
H6 | 0.5207 | 0.5270 | 0.3268 | 0.034* | |
C7 | 0.06845 (15) | −0.05605 (13) | 0.19253 (11) | 0.0256 (3) | |
C8 | 0.15477 (16) | −0.08840 (13) | 0.31807 (12) | 0.0294 (3) | |
C9 | 0.06005 (18) | −0.16155 (14) | 0.11008 (13) | 0.0367 (4) | |
H91 | 0.0021 | −0.1346 | 0.0341 | 0.047 (3)* | |
H92 | 0.0152 | −0.2350 | 0.1317 | 0.047 (3)* | |
H93 | 0.1573 | −0.1833 | 0.1109 | 0.047 (3)* | |
C10 | −0.08028 (16) | −0.00340 (14) | 0.17633 (13) | 0.0350 (4) | |
H101 | −0.1204 | 0.0320 | 0.1002 | 0.049 (3)* | |
H102 | −0.0735 | 0.0627 | 0.2322 | 0.049 (3)* | |
H103 | −0.1436 | −0.0705 | 0.1861 | 0.049 (3)* | |
C11 | 0.06293 (18) | −0.12685 (15) | 0.38863 (12) | 0.0396 (4) | |
H111 | 0.1246 | −0.1416 | 0.4666 | 0.054 (3)* | |
H112 | 0.0103 | −0.2039 | 0.3579 | 0.054 (3)* | |
H113 | −0.0058 | −0.0596 | 0.3871 | 0.054 (3)* | |
C12 | 0.27576 (17) | −0.18112 (15) | 0.33107 (14) | 0.0414 (4) | |
H121 | 0.3375 | −0.1841 | 0.4103 | 0.051 (3)* | |
H122 | 0.3332 | −0.1550 | 0.2840 | 0.051 (3)* | |
H123 | 0.2353 | −0.2647 | 0.3074 | 0.051 (3)* | |
B | 0.23205 (17) | 0.09875 (15) | 0.26972 (13) | 0.0249 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0288 (6) | 0.0239 (5) | 0.0248 (5) | −0.0048 (4) | 0.0070 (4) | 0.0017 (4) |
O2 | 0.0373 (6) | 0.0275 (6) | 0.0252 (5) | −0.0099 (5) | 0.0036 (4) | 0.0013 (4) |
N | 0.0512 (9) | 0.0350 (8) | 0.0296 (7) | −0.0166 (7) | 0.0057 (6) | 0.0049 (6) |
C1 | 0.0271 (8) | 0.0276 (8) | 0.0280 (7) | −0.0006 (6) | 0.0101 (6) | 0.0010 (6) |
C2 | 0.0231 (7) | 0.0265 (8) | 0.0245 (7) | −0.0001 (6) | 0.0062 (6) | −0.0015 (5) |
C3 | 0.0232 (7) | 0.0225 (7) | 0.0277 (7) | 0.0007 (6) | 0.0081 (6) | −0.0012 (5) |
C4 | 0.0294 (8) | 0.0240 (8) | 0.0264 (7) | 0.0015 (6) | 0.0055 (6) | 0.0025 (6) |
C5 | 0.0296 (8) | 0.0288 (8) | 0.0266 (7) | −0.0013 (6) | 0.0035 (6) | −0.0034 (6) |
C6 | 0.0290 (8) | 0.0241 (8) | 0.0320 (8) | −0.0057 (6) | 0.0087 (6) | −0.0021 (6) |
C7 | 0.0285 (8) | 0.0219 (7) | 0.0247 (7) | −0.0038 (6) | 0.0067 (6) | 0.0027 (5) |
C8 | 0.0301 (8) | 0.0247 (8) | 0.0280 (7) | −0.0066 (6) | 0.0022 (6) | 0.0025 (6) |
C9 | 0.0457 (10) | 0.0310 (9) | 0.0311 (8) | −0.0061 (7) | 0.0092 (7) | −0.0033 (6) |
C10 | 0.0284 (8) | 0.0330 (9) | 0.0400 (9) | −0.0021 (7) | 0.0064 (7) | 0.0070 (7) |
C11 | 0.0448 (10) | 0.0404 (10) | 0.0300 (8) | −0.0143 (8) | 0.0073 (7) | 0.0049 (7) |
C12 | 0.0324 (9) | 0.0281 (9) | 0.0522 (10) | −0.0025 (7) | −0.0018 (7) | 0.0095 (7) |
B | 0.0244 (8) | 0.0221 (8) | 0.0268 (8) | 0.0022 (7) | 0.0066 (7) | 0.0024 (6) |
O1—B | 1.3657 (18) | C7—C9 | 1.5118 (19) |
O1—C7 | 1.4714 (16) | C7—C10 | 1.515 (2) |
O2—B | 1.3712 (18) | C7—C8 | 1.5636 (18) |
O2—C8 | 1.4703 (16) | C8—C12 | 1.513 (2) |
N—C1 | 1.3790 (18) | C8—C11 | 1.513 (2) |
N—H1N | 0.92 (2) | C9—H91 | 0.9800 |
N—H2N | 0.85 (2) | C9—H92 | 0.9800 |
C1—C2 | 1.3964 (19) | C9—H93 | 0.9800 |
C1—C6 | 1.4024 (19) | C10—H101 | 0.9811 |
C2—C3 | 1.3976 (19) | C10—H102 | 0.9811 |
C2—H2 | 0.9500 | C10—H103 | 0.9810 |
C3—C4 | 1.4070 (19) | C11—H111 | 0.9800 |
C3—B | 1.550 (2) | C11—H112 | 0.9800 |
C4—C5 | 1.3810 (19) | C11—H113 | 0.9800 |
C4—H4 | 0.9500 | C12—H121 | 0.9809 |
C5—C6 | 1.3812 (19) | C12—H122 | 0.9809 |
C5—H5 | 0.9501 | C12—H123 | 0.9808 |
C6—H6 | 0.9500 | ||
B—O1—C7 | 107.29 (10) | C12—C8—C11 | 110.97 (12) |
B—O2—C8 | 107.05 (11) | O2—C8—C7 | 102.01 (10) |
C1—N—H1N | 117.7 (12) | C12—C8—C7 | 113.62 (12) |
C1—N—H2N | 118.3 (12) | C11—C8—C7 | 114.74 (12) |
H1N—N—H2N | 120.4 (17) | C7—C9—H91 | 109.4 |
N—C1—C2 | 121.36 (13) | C7—C9—H92 | 109.5 |
N—C1—C6 | 120.29 (14) | H91—C9—H92 | 109.5 |
C2—C1—C6 | 118.32 (13) | C7—C9—H93 | 109.5 |
C1—C2—C3 | 121.75 (13) | H91—C9—H93 | 109.5 |
C1—C2—H2 | 119.0 | H92—C9—H93 | 109.5 |
C3—C2—H2 | 119.2 | C7—C10—H101 | 109.6 |
C2—C3—C4 | 118.19 (13) | C7—C10—H102 | 109.5 |
C2—C3—B | 122.04 (12) | H101—C10—H102 | 109.4 |
C4—C3—B | 119.72 (12) | C7—C10—H103 | 109.6 |
C5—C4—C3 | 120.48 (13) | H101—C10—H103 | 109.4 |
C5—C4—H4 | 119.7 | H102—C10—H103 | 109.4 |
C3—C4—H4 | 119.8 | C8—C11—H111 | 109.6 |
C4—C5—C6 | 120.60 (13) | C8—C11—H112 | 109.6 |
C4—C5—H5 | 119.8 | H111—C11—H112 | 109.5 |
C6—C5—H5 | 119.6 | C8—C11—H113 | 109.3 |
C5—C6—C1 | 120.58 (13) | H111—C11—H113 | 109.5 |
C5—C6—H6 | 119.7 | H112—C11—H113 | 109.5 |
C1—C6—H6 | 119.7 | C8—C12—H121 | 109.5 |
O1—C7—C9 | 108.69 (11) | C8—C12—H122 | 109.6 |
O1—C7—C10 | 106.81 (11) | H121—C12—H122 | 109.4 |
C9—C7—C10 | 110.44 (13) | C8—C12—H123 | 109.5 |
O1—C7—C8 | 102.17 (10) | H121—C12—H123 | 109.4 |
C9—C7—C8 | 114.55 (12) | H122—C12—H123 | 109.4 |
C10—C7—C8 | 113.46 (12) | O1—B—O2 | 113.35 (13) |
O2—C8—C12 | 106.33 (11) | O1—B—C3 | 124.76 (13) |
O2—C8—C11 | 108.28 (12) | O2—B—C3 | 121.89 (13) |
N—C1—C2—C3 | −175.49 (14) | C9—C7—C8—O2 | 145.12 (12) |
C6—C1—C2—C3 | 2.7 (2) | C10—C7—C8—O2 | −86.79 (13) |
C1—C2—C3—C4 | −2.2 (2) | O1—C7—C8—C12 | −86.21 (13) |
C1—C2—C3—B | 175.13 (13) | C9—C7—C8—C12 | 31.12 (17) |
C2—C3—C4—C5 | −0.1 (2) | C10—C7—C8—C12 | 159.20 (12) |
B—C3—C4—C5 | −177.57 (13) | O1—C7—C8—C11 | 144.62 (12) |
C3—C4—C5—C6 | 2.0 (2) | C9—C7—C8—C11 | −98.05 (16) |
C4—C5—C6—C1 | −1.6 (2) | C10—C7—C8—C11 | 30.03 (18) |
N—C1—C6—C5 | 177.44 (15) | C7—O1—B—O2 | 8.34 (16) |
C2—C1—C6—C5 | −0.8 (2) | C7—O1—B—C3 | −170.73 (13) |
B—O1—C7—C9 | −143.96 (13) | C8—O2—B—O1 | 11.01 (16) |
B—O1—C7—C10 | 96.87 (13) | C8—O2—B—C3 | −169.88 (13) |
B—O1—C7—C8 | −22.51 (14) | C2—C3—B—O1 | 9.9 (2) |
B—O2—C8—C12 | 95.31 (13) | C4—C3—B—O1 | −172.73 (13) |
B—O2—C8—C11 | −145.38 (13) | C2—C3—B—O2 | −169.06 (13) |
B—O2—C8—C7 | −23.98 (14) | C4—C3—B—O2 | 8.3 (2) |
O1—C7—C8—O2 | 27.80 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
N—H1N···O2i | 0.92 (2) | 2.20 (2) | 3.0743 (17) | 158.4 (16) |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
We thank the EPSRC for a DTA studentship (for RG), GlaxoSmithKline for CASE funding (RG) and the EPSRC National
Service Centre at Swansea.References
Bruker (2001). SMART (Version 5.625), SAINT (Version 6.02A) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coghlan, S. W., Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2005). J. Organomet. Chem. 690, 4784–4793. Web of Science CSD CrossRef CAS Google Scholar
Fukuyo, M., Hirotsu, K. & Higuchi, T. (1982). Acta Cryst. B38, 640–643. CSD CrossRef CAS IUCr Journals Google Scholar
Giles, R. L., Howard, J. A. K., Patrick, L. G. F., Probert, M. R., Smith, G. E. & Whiting, A. (2003). J. Organomet. Chem. 680, 257–262. Web of Science CSD CrossRef CAS Google Scholar
King, A. S., Nikolcheva, L. G., Graves, R. G., Kaminski, A., Vogels, C. M., Hudson, R. H. E., Ireland, R. J., Duffy, S. J. & Westcott, S. A. (2002). Can. J. Chem. 80, 1217–1222. Web of Science CrossRef CAS Google Scholar
Lister, D. G., Tyler, J. K., Hog, J. H. & Wessel Larsen, N. (1974). J. Mol. Struct. 23, 253–264. CrossRef CAS Web of Science Google Scholar
Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391. CSD CrossRef CAS Web of Science Google Scholar
Rowlands, G. J. (2001). Tetrahedron, 57, 1865–1882. Web of Science CrossRef CAS Google Scholar
Vogels, C. M., Nikolcheva, L. G., Norman, D. W., Spinney, H. A., Decken, A., Baerlocher, M. O., Baerlocher, F. J. & Westcott, S. A. (2001). Can. J. Chem. 79, 1115–1123. Web of Science CSD CrossRef CAS Google Scholar
Vogels, C. M., Wellwood, H. L., Biradha, K., Zaworotko, M. J. & Westcott, S. A. (1999). Can. J. Chem. 77, 1196–1207. Web of Science CSD CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.