organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ampicillin trihydrate from synchrotron powder diffraction data

CROSSMARK_Color_square_no_text.svg

aUniversity Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England, bCambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England, and cDepartment of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3800, USA
*Correspondence e-mail: jb442@cam.ac.uk

(Received 7 December 2005; accepted 12 January 2006; online 27 January 2006)

The crystal structure of ampicillin trihydrate {systematic name: 6-[D(−)-α-amino­phenyl­acetamido]penicillanic acid trihydrate}, C16H19N3O4S·3H2O, a broad-spectrum β-lactam anti­biotic of the amino­penicillin type, has been determined from synchrotron X-ray powder diffraction data. The three water molecules form an infinite hydrogen-bonded chain through the crystal structure, with hydrogen bonds to the NH3+, COO, C=O and NH groups of the ampicillin molecules.

Comment

The title compound, (I)[link], has been used as a broad-spectrum anti­biotic since 1961. The crystal structure was reported in 1968 (James et al., 1968[James, M. N. G., Hall, D. & Hodgkin, D. C. (1968). Nature, 220, 168-170.]), but no atomic coordinates were given in the paper or deposited. Boles et al. (1978[Boles, M. O., Girven, R. J. & Gane, P. A. C. (1978). Acta Cryst. B34, 461-466.]) published the crystal structure of a related compound, amoxycillin tri­hydrate. They apparently had access to the atomic coordinates of the crystal structure of compound (I)[link], because in their paper they show that the two crystal structures are isostructural. However, the atomic coordinates of the title compound have not been published to date. We report the crystal structure here, determined from synchrotron X-ray powder diffraction.

[Scheme 1]

The structural model of compound (I)[link] obtained in the present work (Fig. 1[link]a) is both chemically reasonable and in accord with the figures given by James et al. (1968[James, M. N. G., Hall, D. & Hodgkin, D. C. (1968). Nature, 220, 168-170.]). Selected geometric parameters are given in Table 1[link]. We note, however, that the hydrogen bond O26′′′⋯O25′′′ in their Fig. 1[link], which appears to link four water mol­ecules together into a closed tetra­mer, is spurious, and instead should have formed a chain (Fig. 1[link]b). Both the pattern of hydrogen bonding, and the positions of the H atoms of the water mol­ecules in the structure, are chemically sensible and compare well with those from the crystal structure of the isostructural amoxycillin trihydrate (Boles et al., 1978[Boles, M. O., Girven, R. J. & Gane, P. A. C. (1978). Acta Cryst. B34, 461-466.]). Details of the O—H⋯O and N—H⋯O hydrogen bonds are given in Table 2[link] and Fig. 1[link].

[Figure 1]
Figure 1
(a) A view, along the c axis, of the crystal structure of compound (I)[link], showing the O—H⋯O and N—H⋯O hydrogen bonds as dashed lines (see Table 2[link] for details). (b) A view along the b axis of the hydrogen-bonded (dashed lines) water network in the crystal structure of compound (I)[link]. [A screw axis is present at ([{1 \over 4}], 0, z)].
[Figure 2]
Figure 2
Observed, calculated and difference X-ray powder diffraction profiles for compound (I)[link]. The region 25–42° in 2θ has been magnified 10 times.

Experimental

The sample of compound (I)[link] was a gift from Setauket Pharmacy, Setauket, New York, USA, in the form of a gelatin capsule of the compound. Some of the contents were loaded into a thin-walled glass capillary of 1.5 mm nominal diameter. Any excipients that might have been present were not crystalline. A diffraction pattern was collected at the X3B1 beamline of the National Synchrotron Light Source, Brookhaven National Laboratory. The wavelength of 0.7003 (1) Å was selected by a double Si(111) monochromator and the diffracted beam analyzed by a Ge(111) crystal before the detector. The beam on the sample had dimensions 2 mm × 8 mm. Data were collected from 2θ = 3–41.6° in steps of 0.005°, with counting time increasing quadratically from 1–8 s per point. The incident beam was monitored by an ion chamber, which was used to normalize the data for decay and fluctuations of the intensity.

Crystal data
  • C16H19N3O4S·3H2O

  • Mr = 403.06

  • Orthorhombic, P 21 21 21

  • a = 15.52275 (16) Å

  • b = 18.9256 (3) Å

  • c = 6.67375 (8) Å

  • V = 1960.60 (3) Å3

  • Z = 4

  • Dx = 1.367 Mg m−3

  • Synchrotron radiation

  • λ = 0.7003 Å

  • T = 290 K

  • Specimen shape: cylinder

  • 0.7 × 20 mm

  • Particle morphology: powder, white

Data collection
  • Huber 424 Q -2Q diffractometer on X3B1 beamline

  • Specimen mounting: Lindemann glass capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • T = 290 K

  • 2θmin = 3, 2θmax = 41.6°

  • Increment in 2θ = 0.005°

Refinement
  • Rp = 0.025

  • Rwp = 0.030

  • Rexp = 0.013

  • S = 2.37

  • 2θmin = 3, 2θmax = 41.6°

  • Increment in 2θ = 0.005°

  • Wavelength of incident radiation: 0.7003 Å

  • Excluded region(s): none

  • Profile function: CW profile function number 3 with 19 terms. Pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20,79-83.]). Asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]). Peak tails are ignored where the intensity is below 0.0010 times the peak

  • 10788 reflections

  • 143 parameters

  • H-atom parameters constrained

  • Weighting scheme based on measured s.u. values

  • (Δ/σ)max = 0.03

  • Preferred orientation correction: none

Table 1
Selected geometric parameters (Å, °)

S10—C11 1.859 (4)
S10—C14 1.797 (3)
O17—C16 1.201 (5)
O21—C20 1.222 (6)
O22—C20 1.273 (6)
O25—C24 1.213 (5)
N13—C12 1.473 (5)
N13—C14 1.506 (5)
N13—C16 1.384 (5)
N23—C15 1.433 (5)
N23—C24 1.348 (7)
N27—C26 1.475 (6)
C11—S10—C14 90.10 (18)
C12—N13—C14 117.0 (3)
C12—N13—C16 128.1 (3)
C14—N13—C16 93.1 (3)
C15—N23—C24 123.3 (3)
S10—C11—C19 107.5 (3)
S10—C11—C12 104.6 (2)
S10—C11—C18 110.0 (3)
N13—C12—C11 105.6 (3)
N13—C12—C20 112.8 (3)
N13—C14—C15 87.1 (2)
S10—C14—N13 103.6 (2)
S10—C14—C15 119.5 (2)
N23—C15—C16 115.5 (3)
N23—C15—C14 116.5 (3)
O17—C16—C15 135.4 (3)
O17—C16—N13 131.0 (4)
N13—C16—C15 93.0 (3)
O21—C20—C12 118.0 (4)
O21—C20—O22 126.3 (4)
O22—C20—C12 115.6 (4)
O25—C24—N23 124.5 (5)
O25—C24—C26 122.1 (5)
N23—C24—C26 113.2 (3)
N27—C26—C24 110.0 (3)
N27—C26—C28 112.9 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H3⋯O4 0.98 2.02 2.9968 180
O4—H5⋯O7i 0.98 1.80 2.7850 180
O4—H6⋯O7 0.98 1.82 2.7967 180
O7—H8⋯O17 0.98 1.84 2.8225 180
O7—H9⋯O22ii 0.98 1.74 2.7166 179
N27—H38⋯O4iii 1.001 (15) 1.86 2.8272 161
N27—H39⋯O21iv 1.00 (3) 1.83 (3) 2.742 (6) 151.1 (15)
N27—H40⋯O22v 1.00 (3) 1.80 (2) 2.688 (6) 147 (2)
N23—H51⋯O1 1.002 (10) 1.97 2.9161 156
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The starting model for Rietveld refinement was obtained by solving the crystal structure from the powder diffraction pattern. This also provided an independent check that the published crystal structure is correct. However, with the crystal structure being known, its determination from the powder pattern is mainly academic. The crystal structure was determined with the program DASH (David et al., 2004[David, W. I. F., Shankland, K., Van de Streek, J., Pidcock, E. & Motherwell, S. (2004). DASH. Version 3.0. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England..]). For the structure solution, the data were truncated at 22.855° in 2θ, corresponding to a real-space resolution of 1.767 Å. The background was subtracted with a Bayesian high-pass filter (David & Sivia, 2001[David, W. I. F. & Sivia, D. S. (2001). J. Appl. Cryst. 34, 318-324.]). Peak positions for indexing were obtained by fitting with an asymmetry-corrected Voigt function, followed by indexing with the program DICVOL (Boultif & Louer, 1991[Boultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987-993.]). An ortho­rhom­bic and several monoclinic unit cells were obtained. However, all the monoclinic unit cells were pseudo-ortho­rhom­bic with nearly the same parameters as the ortho­rhom­bic cell, indicating that the ortho­rhom­bic unit cell is the correct one. The figures of merit given by DICVOL were M(20) = 62.1 and F(20) = 337.1 (0.0014, 42). The space group reported for the single-crystal structure, P212121, gave an excellent Pawley fit.

Simulated annealing was used to solve the crystal structure of compound (I)[link] from the powder pattern in direct space. The starting mol­ecular geometry was taken from the anhydrate (Boles & Girven, 1976[Boles, M. O. & Girven, R. J. (1976). Acta Cryst. B32, 2279-2284.]), entry AMCILL in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The mol­ecule is a zwitterion, in agreement with the single-crystal study. Because H atoms do not contribute significantly to the powder diffraction pattern, due to their low X-ray scattering power, they were ignored during the structure solution process. Hence, the water mol­ecule can be reduced to an O atom, which reduces its number of degrees of freedom from six to three. The mol­ecule has five flexible torsion angles, which, when combined with the three water mol­ecules, give a total of 20 degrees of freedom. In ten simulated annealing runs, the correct crystal structure was found twice, with a profile χ2 = 81.7, 11 times the Pawley χ2. The next-best crystal structure had a profile χ2 = 240. The low success rate and high profile χ2 are caused by the high R factor of 10.6% of the crystal structure of AMCILL from which the starting model was taken; when the structure solution was repeated with a better starting model (obtained from Rietveld refinement against the powder data), the correct structure was found four times in ten runs, with a profile χ2 = 20, less than three times the Pawley χ2.

The background subtraction, peak fitting, indexing, Pawley refinement and simulated-annealing algorithms used are as implemented in the program DASH.

For the Rietveld refinement (Fig. 2[link]), H atoms were included in the initial model in calculated positions. Bond lengths, bond angles and planar groupings were subjected to suitable constraints, including bonds to H atoms. Data were included to 41.42° in 2θ, corresponding to a real-space resolution of 0.99 Å. The refinement was not particularly sensitive to the position of the water H atoms and these were included in calculated positions, with the water mol­ecules being fixed in position for the final refinement cycles. The refinement proceeded smoothly to reach a minimum characterized by an excellent fit to the diffraction profile (χ2 = 5.637, Rp = 0.0296, Rwp = 0.0296 and RBragg = 0.0295).

Data collection: local software; cell refinement: GSAS (Larson & Von Dreele, 2000[Larson, A. C. & Von Dreele, R. B. (2000). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]); data reduction: local software; program(s) used to solve structure: DASH (David et al., 2004[David, W. I. F., Shankland, K., Van de Streek, J., Pidcock, E. & Motherwell, S. (2004). DASH. Version 3.0. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England..]); program(s) used to refine structure: GSAS; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Computing details top

Data collection: local software; cell refinement: GSAS (Larson & Von Dreele, 2000); data reduction: local software; program(s) used to solve structure: DASH (David et al., 2004); program(s) used to refine structure: GSAS; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

6-[D(-)-α-Aminophenylacetamido]penicillanic acid trihydrate top
Crystal data top
C16H19N3O4S·3H2OZ = 4
Mr = 403.06Dx = 1.367 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.7003 Å
a = 15.52275 (16) ÅT = 290 K
b = 18.9256 (3) ÅParticle morphology: powder
c = 6.67375 (8) Åwhite
V = 1960.60 (3) Å3cylinder, 0.7 × 20 mm
Data collection top
Diffractometer x3b1Data collection mode: transmission
Radiation source: Brookhaven NSLSScan method: step
Specimen mounting: Lindemann glass capillary
Refinement top
Least-squares matrix: full143 parameters
Rp = 0.025136 restraints
Rwp = 0.030H-atom parameters constrained
Rexp = 0.013Weighting scheme based on measured s.u.'s
R(F2) = 0.02950(Δ/σ)max = 0.03
Excluded region(s): noneBackground function: GSAS Background function number 1 with 9 terms. Shifted Chebyshev function of 1st kind 1: 2261.50 2: -239.085 3: 47.0827 4: -155.949 5: 139.395 6: -237.334 7: 231.040 8: -74.9779 9: 19.4239 10: -0.402815
Profile function: CW Profile function number 3 with 19 terms Pseudovoigt profile coefficients as parameterized in Thompson et al. (1987). Asymmetry correction of Finger et al. (1994). #1(GU) = 0.000 #2(GV) = 0.000 #3(GW) = 0.000 #4(GP) = 0.000 #5(LX) = 2.213 #6(LY) = 33.715 #7(S/L) = 0.0130 #8(H/L) = 0.0130 #9(trns) = 0.00 #10(shft)= 0.0832 #11(stec)= 0.00 #12(ptec)= 0.00 #13(sfec)= 0.00 #14(L11) = 0.000 #15(L22) = 0.000 #16(L33) = 0.000 #17(L12) = 0.000 #18(L13) = 0.000 #19(L23) = 0.000 Peak tails are ignored where the intensity is below 0.0010 times the peak Aniso. broadening axis 0.0 0.0 1.0
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S100.33689 (14)0.46707 (11)0.2754 (3)0.0350 (4)*
O170.5429 (2)0.3613 (2)0.5525 (7)0.0350 (4)*
O210.3263 (3)0.2430 (2)0.6113 (6)0.0350 (4)*
O220.2965 (3)0.2156 (2)0.2943 (6)0.0350 (4)*
O250.5385 (3)0.5837 (2)0.7961 (5)0.0350 (4)*
N130.3923 (2)0.37247 (18)0.5272 (5)0.0350 (4)*
N230.4964 (3)0.5225 (2)0.5209 (5)0.0350 (4)*
N270.6573 (3)0.6581 (2)0.5579 (6)0.0350 (4)*
C110.2977 (2)0.37521 (15)0.2374 (5)0.0350 (4)*
C120.3623 (2)0.32784 (17)0.3604 (6)0.0350 (4)*
C140.3598 (2)0.4474 (2)0.5333 (4)0.0350 (4)*
C150.4496 (2)0.46826 (18)0.6238 (5)0.0350 (4)*
C160.4759 (2)0.39222 (19)0.5728 (8)0.0350 (4)*
C180.2064 (3)0.3683 (3)0.3136 (8)0.0350 (4)*
C190.3001 (3)0.3604 (3)0.0177 (6)0.0350 (4)*
C200.3239 (4)0.2563 (2)0.4322 (6)0.0350 (4)*
C240.5369 (4)0.5759 (3)0.6158 (5)0.0350 (4)*
C260.5768 (2)0.6298 (2)0.4722 (5)0.0350 (4)*
C280.5114 (3)0.6874 (3)0.4222 (6)0.0350 (4)*
C290.4704 (4)0.6867 (3)0.2375 (7)0.0350 (4)*
C300.4035 (3)0.7333 (3)0.2002 (7)0.0350 (4)*
C310.3851 (4)0.7862 (3)0.3350 (8)0.0350 (4)*
C320.4208 (4)0.7839 (3)0.5249 (7)0.0350 (4)*
C330.4853 (4)0.7355 (3)0.5675 (6)0.0350 (4)*
O10.559800.493500.117900.0350 (4)*
O40.744550.457500.198900.0350 (4)*
O70.716330.404650.584700.0350 (4)*
H340.4160 (4)0.3174 (3)0.2832 (9)0.0350 (4)*
H350.3068 (3)0.4564 (4)0.6142 (8)0.0350 (4)*
H360.4413 (5)0.4787 (4)0.7695 (7)0.0350 (4)*
H370.5926 (5)0.6037 (4)0.3330 (8)0.0350 (4)*
H380.6990 (11)0.6186 (5)0.581 (6)0.0350 (4)*
H390.6446 (7)0.682 (2)0.688 (3)0.0350 (4)*
H400.6835 (16)0.6927 (18)0.463 (3)0.0350 (4)*
H410.4940 (15)0.6530 (13)0.1193 (16)0.0350 (4)*
H420.3735 (13)0.7338 (9)0.0544 (16)0.0350 (4)*
H430.3981 (15)0.8194 (12)0.6399 (17)0.0350 (4)*
H440.5112 (14)0.7321 (11)0.7174 (14)0.0350 (4)*
H450.1765 (10)0.4198 (5)0.317 (6)0.0350 (4)*
H460.1705 (9)0.3342 (18)0.214 (4)0.0350 (4)*
H470.2068 (5)0.346 (2)0.463 (3)0.0350 (4)*
H480.3658 (5)0.364 (2)0.0353 (16)0.0350 (4)*
H490.275 (2)0.3082 (8)0.0102 (13)0.0350 (4)*
H500.261 (2)0.3986 (13)0.0597 (12)0.0350 (4)*
H510.503 (3)0.5188 (16)0.3719 (11)0.0350 (4)*
H520.3394 (16)0.8272 (10)0.297 (2)0.0350 (4)*
H20.552790.525561.003730.0350 (4)*
H30.620220.481730.144390.0350 (4)*
H50.758320.506010.158710.0350 (4)*
H60.734660.438980.334090.0350 (4)*
H80.656040.389780.573720.0350 (4)*
H90.745560.361290.627350.0350 (4)*
Geometric parameters (Å, º) top
S10—C111.859 (4)C14—C151.570 (4)
S10—C141.797 (3)C15—C161.534 (5)
O17—C161.201 (5)C24—C261.531 (6)
O21—C201.222 (6)C26—C281.527 (6)
O22—C201.273 (6)C28—C291.387 (7)
O25—C241.213 (5)C28—C331.390 (7)
O1—H30.9800C29—C301.385 (8)
O1—H2i0.9800C30—C311.376 (8)
O4—H50.9800C31—C321.384 (7)
O4—H60.9800C32—C331.387 (8)
O7—H90.9800C12—H341.000 (7)
O7—H80.9800C14—H350.999 (6)
N13—C121.473 (5)C15—H361.001 (6)
N13—C141.506 (5)C18—H471.08 (2)
N13—C161.384 (5)C18—H451.080 (12)
N23—C151.433 (5)C18—H461.08 (3)
N23—C241.348 (7)C19—H491.078 (18)
N27—C261.475 (6)C19—H481.082 (10)
N23—H511.002 (10)C19—H501.08 (2)
N27—H391.00 (3)C26—H371.080 (7)
N27—H381.001 (15)C29—H411.079 (19)
N27—H401.00 (3)C30—H421.079 (14)
C11—C181.511 (6)C31—H521.08 (2)
C11—C121.576 (5)C32—H431.079 (19)
C11—C191.493 (5)C33—H441.080 (13)
C12—C201.555 (5)
S10···N132.602 (4)H2···H362.5000
S10···N233.149 (5)H2···H51x2.5800
S10···H512.83 (4)H2···H3x1.6300
S10···H35ii2.869 (6)H2···O251.7800
S10···H50iii3.16 (2)H2···C242.7700
O1···O42.9968H3···O42.0200
O1···O25i2.7633H3···H512.4700
O1···N232.9161H3···H52.1900
O4···N27iv2.8272H3···H62.3300
O4···O7iv2.7850H5···O7iv1.8000
O4···O12.9968H5···H6iv2.4100
O4···O72.7967H5···H9iv2.5200
O7···O172.8225H5···H38iv2.5000
O7···O42.7967H5···H32.1900
O7···O4v2.7850H5···H8iv2.4500
O7···O22vi2.7166H6···O71.8200
O17···N233.142 (5)H6···H32.3300
O17···C31vii3.156 (7)H6···H92.4500
O17···C30vii3.067 (7)H6···H5v2.4100
O17···O72.8225H6···H82.2200
O17···C32viii3.228 (7)H6···H38iv2.2600
O21···N132.715 (5)H6···H52vii2.5600
O21···N27viii2.742 (6)H8···O171.8400
O22···C26vii3.109 (5)H8···H43viii2.4800
O22···O7ix2.7166H8···C162.8000
O22···C193.305 (6)H8···H62.2200
O22···C28vii3.356 (6)H8···H5v2.4500
O22···C183.213 (7)H9···H62.4500
O22···N27vii2.688 (6)H9···H5v2.5200
O25···C333.356 (7)H9···O21vi2.8300
O25···N272.813 (6)H9···C20vi2.5700
O25···O1x2.7633H9···O22vi1.7400
O1···H511.9700H34···H482.430 (18)
O1···H372.5800H34···O172.793 (7)
O4···H52vii2.7900H34···C28vii3.034 (8)
O4···H38iv1.8600H34···C29vii3.041 (8)
O4···H32.0200H35···C183.039 (8)
O7···H61.8200H35···S10iii2.869 (6)
O7···H5v1.8000H35···H50x2.537 (16)
O17···H81.8400H36···H22.5000
O17···H42vii2.831 (18)H36···O252.501 (9)
O17···H342.793 (7)H37···H512.14 (4)
O17···H43viii2.384 (16)H37···O12.5800
O21···H44viii2.78 (2)H37···H412.29 (2)
O21···H39viii1.83 (3)H37···O22xi2.858 (9)
O21···H9ix2.8300H38···H52xiii2.54 (3)
O21···H472.87 (3)H38···H5v2.5000
O22···H37vii2.858 (9)H38···H6v2.2600
O22···H40vii1.80 (2)H38···O4v1.8600
O22···H9ix1.7400H39···O252.59 (3)
O22···H492.704 (13)H39···C332.790 (19)
O25···H362.501 (9)H39···H442.29 (3)
O25···H392.59 (3)H39···O21xii1.83 (3)
O25···H41x2.617 (17)H39···C20xii2.94 (3)
O25···H442.89 (2)H40···H49xi2.30 (4)
O25···H21.7800H40···O22xi1.80 (2)
N13···S102.602 (4)H40···C20xi2.90 (2)
N13···O212.715 (5)H41···O25i2.617 (17)
N13···N233.267 (5)H41···H372.29 (2)
N23···O173.142 (5)H42···C18ii2.803 (17)
N23···O12.9161H42···O17xi2.831 (18)
N23···S103.149 (5)H42···H47ii2.05 (3)
N23···N133.267 (5)H43···C16xii3.07 (2)
N27···O4v2.8272H43···H8xii2.4800
N27···O22xi2.688 (6)H43···O17xii2.384 (16)
N27···O252.813 (6)H44···C243.06 (2)
N27···O21xii2.742 (6)H44···O252.89 (2)
N27···H442.87 (2)H44···N272.87 (2)
C18···O223.213 (7)H44···O21xii2.78 (2)
C19···O223.305 (6)H44···H392.29 (3)
C26···O22xi3.109 (5)H46···C32ii2.93 (3)
C28···O22xi3.356 (6)H46···H492.26 (3)
C30···O17xi3.067 (7)H46···C33ii2.92 (2)
C31···O17xi3.156 (7)H47···C143.09 (2)
C32···O17xii3.228 (7)H47···O212.87 (3)
C33···O253.356 (7)H47···H42iii2.05 (3)
C14···H473.09 (2)H47···C30iii2.77 (2)
C16···H43viii3.07 (2)H47···C202.50 (3)
C16···H82.8000H48···H342.430 (18)
C18···H42iii2.803 (17)H49···H40vii2.30 (4)
C18···H353.039 (8)H49···H462.26 (3)
C20···H472.50 (3)H49···O222.704 (13)
C20···H9ix2.5700H50···S10ii3.16 (3)
C20···H39viii2.94 (3)H50···H35i2.537 (16)
C20···H40vii2.90 (2)H51···S102.83 (4)
C24···H22.7700H51···O11.9700
C24···H443.06 (2)H51···H2i2.5800
C28···H34xi3.034 (8)H51···H32.4700
C29···H34xi3.041 (8)H51···H372.14 (4)
C30···H47ii2.77 (2)H52···O4xi2.7900
C32···H46iii2.93 (3)H52···H6xi2.5600
C33···H392.790 (19)H52···H38xiv2.54 (3)
C33···H46iii2.92 (2)
C11—S10—C1490.10 (18)C26—C28—C33120.6 (4)
H2i—O1—H3113.00C29—C28—C33119.5 (5)
H5—O4—H6128.00C26—C28—C29119.5 (4)
H8—O7—H9103.00C28—C29—C30119.8 (5)
C12—N13—C14117.0 (3)C29—C30—C31120.1 (5)
C12—N13—C16128.1 (3)C30—C31—C32119.5 (5)
C14—N13—C1693.1 (3)C31—C32—C33119.9 (5)
C15—N23—C24123.3 (3)C28—C33—C32120.0 (4)
C24—N23—H51118 (2)N13—C12—H34103.8 (4)
C15—N23—H51119 (2)C11—C12—H34112.0 (5)
H38—N27—H40109 (2)C20—C12—H34107.8 (5)
H38—N27—H39109 (3)C15—C14—H35118.7 (4)
C26—N27—H38109.7 (11)N13—C14—H35116.8 (5)
C26—N27—H40109.7 (14)S10—C14—H35108.6 (4)
H39—N27—H40110 (2)C16—C15—H36115.8 (5)
C26—N27—H39109.5 (9)C14—C15—H36108.0 (5)
S10—C11—C19107.5 (3)N23—C15—H36112.9 (5)
C12—C11—C18111.9 (3)C11—C18—H45109.4 (11)
S10—C11—C12104.6 (2)C11—C18—H46109.2 (11)
C12—C11—C19112.9 (3)C11—C18—H47109.8 (6)
C18—C11—C19109.7 (3)H46—C18—H47110 (2)
S10—C11—C18110.0 (3)H45—C18—H46109 (2)
C11—C12—C20114.3 (3)H45—C18—H47110 (3)
N13—C12—C11105.6 (3)C11—C19—H48109.4 (8)
N13—C12—C20112.8 (3)C11—C19—H49109.4 (6)
N13—C14—C1587.1 (2)C11—C19—H50109.3 (9)
S10—C14—N13103.6 (2)H48—C19—H49110 (2)
S10—C14—C15119.5 (2)H49—C19—H50109.2 (19)
N23—C15—C16115.5 (3)H48—C19—H50109 (2)
C14—C15—C1685.1 (3)C28—C26—H37106.8 (5)
N23—C15—C14116.5 (3)C24—C26—H37109.0 (5)
O17—C16—C15135.4 (3)N27—C26—H37107.9 (5)
O17—C16—N13131.0 (4)C28—C29—H41120.0 (12)
N13—C16—C1593.0 (3)C30—C29—H41120.0 (11)
O21—C20—C12118.0 (4)C29—C30—H42119.4 (11)
O21—C20—O22126.3 (4)C31—C30—H42119.6 (11)
O22—C20—C12115.6 (4)C32—C31—H52120.0 (9)
O25—C24—N23124.5 (5)C30—C31—H52120.3 (9)
O25—C24—C26122.1 (5)C31—C32—H43120.1 (11)
N23—C24—C26113.2 (3)C33—C32—H43120.1 (11)
C24—C26—C28110.1 (3)C28—C33—H44119.9 (12)
N27—C26—C24110.0 (3)C32—C33—H44119.9 (12)
N27—C26—C28112.9 (3)
C14—S10—C11—C1239.8 (2)C11—C12—C20—O21124.3 (5)
C14—S10—C11—C1880.5 (3)C11—C12—C20—O2259.0 (6)
C14—S10—C11—C19160.1 (3)N13—C12—C20—O213.6 (6)
C11—S10—C14—N1337.1 (2)S10—C14—C15—C1695.1 (3)
C11—S10—C14—C15131.6 (3)S10—C14—C15—N2321.1 (4)
C14—N13—C16—C1510.2 (3)N13—C14—C15—C169.0 (3)
C16—N13—C14—C1510.0 (3)N13—C14—C15—N23125.1 (3)
C14—N13—C12—C112.6 (4)N23—C15—C16—O1744.6 (8)
C12—N13—C14—C15146.1 (3)C14—C15—C16—O17161.7 (7)
C14—N13—C12—C20128.1 (4)C14—C15—C16—N139.8 (3)
C16—N13—C12—C20113.4 (5)N23—C15—C16—N13126.9 (3)
C16—N13—C12—C11121.1 (4)N23—C24—C26—C2889.1 (5)
C12—N13—C14—S1026.5 (3)O25—C24—C26—N2737.9 (7)
C16—N13—C14—S10109.7 (3)O25—C24—C26—C2887.2 (6)
C12—N13—C16—O1733.5 (8)N23—C24—C26—N27145.8 (4)
C12—N13—C16—C15138.6 (4)N27—C26—C28—C29132.8 (5)
C14—N13—C16—O17161.9 (6)N27—C26—C28—C3354.6 (6)
C15—N23—C24—O250.3 (9)C24—C26—C28—C3368.7 (6)
C15—N23—C24—C26175.9 (4)C24—C26—C28—C29103.8 (5)
C24—N23—C15—C14136.1 (5)C26—C28—C33—C32174.8 (5)
C24—N23—C15—C16126.3 (5)C26—C28—C29—C30172.0 (5)
S10—C11—C12—C20154.2 (3)C33—C28—C29—C300.6 (8)
S10—C11—C12—N1329.6 (3)C29—C28—C33—C322.2 (8)
C19—C11—C12—N13146.2 (3)C28—C29—C30—C318.5 (8)
C19—C11—C12—C2089.2 (4)C29—C30—C31—C3213.5 (8)
C18—C11—C12—C2035.1 (4)C30—C31—C32—C3310.6 (9)
C18—C11—C12—N1389.5 (4)C31—C32—C33—C282.8 (9)
N13—C12—C20—O22179.7 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1/2, y+1, z1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x+3/2, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1; (vii) x+1, y1/2, z+1/2; (viii) x+1, y1/2, z+3/2; (ix) x1/2, y+1/2, z+1; (x) x, y, z+1; (xi) x+1, y+1/2, z+1/2; (xii) x+1, y+1/2, z+3/2; (xiii) x+1/2, y+3/2, z+1; (xiv) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O40.982.022.9968180
O4—H5···O7iv0.981.802.7850180
O4—H6···O70.981.822.7967180
O7—H8···O170.981.842.8225180
O7—H9···O22vi0.981.742.7166179
N27—H38···O4v1.001 (15)1.862.8272161
N27—H39···O21xii1.00 (3)1.83 (3)2.742 (6)151.1 (15)
N27—H40···O22xi1.00 (3)1.80 (2)2.688 (6)147 (2)
N23—H51···O11.002 (10)1.972.9161156
C14—H35···S10iii0.999 (6)2.869 (6)3.815 (4)158.3 (6)
C26—H37···O11.080 (7)2.583.5092143
C32—H43···O17xii1.079 (19)2.384 (16)3.228 (7)134.0 (16)
Symmetry codes: (iii) x+1/2, y+1, z+1/2; (iv) x+3/2, y+1, z1/2; (v) x+3/2, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1; (xi) x+1, y+1/2, z+1/2; (xii) x+1, y+1/2, z+3/2.
 

Acknowledgements

JB thanks Jesus College, Cambridge, for the award of a Junior Research Fellowship. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. De-AC02-98CH10886.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoles, M. O. & Girven, R. J. (1976). Acta Cryst. B32, 2279–2284.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBoles, M. O., Girven, R. J. & Gane, P. A. C. (1978). Acta Cryst. B34, 461–466.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBoultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDavid, W. I. F., Shankland, K., Van de Streek, J., Pidcock, E. & Motherwell, S. (2004). DASH. Version 3.0. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England..  Google Scholar
First citationDavid, W. I. F. & Sivia, D. S. (2001). J. Appl. Cryst. 34, 318–324.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJames, M. N. G., Hall, D. & Hodgkin, D. C. (1968). Nature, 220, 168–170.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2000). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20,79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds