addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1RS,4RS)-1-Meth­oxy­spiro­[bi­cyclo­[2.2.2]oct-5-ene-2,2′-[1′,3′]di­thiol­ane]. Corrigendum

CROSSMARK_Color_square_no_text.svg

aZonguldak Karaelmas University, Department of Chemistry, 067100 Zonguldak, Turkey, bUniversity of Sheffield, Department of Chemistry, Sheffield S3 7HF, England, and cHacettepe University, Department of Physics, 06532 Beytepe Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 20 January 2006; accepted 25 January 2006; online 31 January 2006)

In the paper by Gültekin, Adams & Hökelek [Acta Cryst. (2003), E59, o926–o928], the placement of H atoms bonded to C3, C4, C10 and C11 is wrong. C10=C11 is a double bond, but there are two H atoms on each C atom instead of one. On the other hand, C3—C4 is a single bond and there is one H atom on each C atom instead of two. The structure has now been rerefined with the correct assignment of H atoms and the structure is shown in Fig. 1[link].

[Figure 1]
Figure 1
A view of the mol­ecular structure, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

2. Experimental

2.1.3. Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.144

  • S = 1.02

  • 1983 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

S1—C7 1.802 (5)
S1—C2 1.823 (4)
S2—C8 1.774 (7)
S2—C2 1.844 (4)
O1—C1 1.416 (4)
O1—C9 1.420 (5)
C1—C10 1.506 (6)
C1—C3 1.516 (6)
C2—C1 1.558 (5)
C2—C6 1.566 (5)
C4—C3 1.511 (7)
C4—C5 1.529 (7)
C5—C6 1.536 (8)
C7—C8 1.467 (9)
C11—C10 1.332 (7)
C11—C5 1.502 (7)
C7—S1—C2 97.3 (2)
C8—S2—C2 99.3 (2)
C1—O1—C9 116.2 (3)
O1—C1—C10 114.9 (3)
O1—C1—C3 112.7 (3)
O1—C1—C2 106.6 (3)
C3—C1—C2 107.1 (3)
C1—C2—S1 113.8 (2)
C6—C2—S1 108.4 (3)
C1—C2—S2 110.7 (3)
C6—C2—S2 110.4 (3)
S1—C2—S2 106.1 (2)
C4—C3—C1 112.1 (3)
C4—C5—C6 106.0 (4)
C8—C7—S1 109.5 (4)
C7—C8—S2 114.0 (4)
C11—C10—C1 114.7 (4)
C10—C11—C5 114.0 (4)
C7—S1—C2—S2 30.0 (3)
C2—S1—C7—C8 −37.9 (5)
C2—S2—C8—C7 −9.2 (5)
C8—S2—C2—S1 −15.6 (3)
C9—O1—C1—C3 −70.9 (5)
S1—C2—C1—O1 56.8 (4)
S2—C2—C1—O1 −62.5 (3)
S1—C7—C8—S2 31.2 (6)

Atoms H10 and H11 were located in a difference map and refined isotropically [C—H = 0.96 (2)–0.99 (2) Å]. The other H atoms were positioned geometrically, with C—H = 0.96, 0.97 and 0.98 Å for methyl, methylene and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl H atoms and x = 1.2 for all others.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(1RS,4RS)-1-Methoxyspiro[bicyclo[2.2.2]oct-5-ene-2,2'-[1',3']dithiolane] top
Crystal data top
C11H16OS2Z = 2
Mr = 228.36F(000) = 244
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.748 (4) ÅCell parameters from 25 reflections
b = 7.870 (4) Åθ = 12–20°
c = 11.474 (7) ŵ = 0.44 mm1
α = 99.23 (4)°T = 293 K
β = 103.00 (5)°Block, colorless
γ = 102.69 (3)°0.55 × 0.34 × 0.28 mm
V = 564.9 (6) Å3
Data collection top
Siemens P4
diffractometer
Rint = 0.037
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.7°
Graphite monochromatorh = 18
non–profiled ω scansk = 99
2493 measured reflectionsl = 1313
1983 independent reflections3 standard reflections every 100 reflections
1040 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0805P)2]
where P = (Fo2 + 2Fc2)/3
1983 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.14528 (18)0.75241 (15)0.10473 (10)0.0530 (4)
S20.0295 (2)1.01482 (16)0.22939 (14)0.0668 (4)
O10.2275 (5)0.8109 (5)0.3843 (3)0.0615 (9)
C10.0184 (6)0.7119 (5)0.3203 (3)0.0403 (9)
C20.0367 (6)0.7759 (5)0.1983 (3)0.0389 (9)
C30.0041 (7)0.5130 (6)0.2860 (4)0.0540 (11)
C40.2285 (8)0.4089 (7)0.2191 (5)0.0670 (14)
C50.3620 (7)0.5409 (6)0.1991 (4)0.0589 (12)
C60.2629 (7)0.6603 (6)0.1225 (4)0.0571 (12)
C70.3242 (9)0.9721 (7)0.1652 (6)0.0780 (16)
C80.2042 (9)1.1024 (7)0.1882 (6)0.0796 (15)
C90.3010 (8)0.7912 (8)0.5062 (4)0.0679 (14)
C100.1471 (7)0.7445 (6)0.3834 (4)0.0524 (11)
C110.3444 (8)0.6569 (8)0.3204 (5)0.0657 (14)
H3A0.08760.49170.23430.065*
H3B0.04090.47070.35990.065*
H4A0.28390.32880.26710.080*
H4B0.23260.33800.14080.080*
H50.50950.47820.15660.071*
H6A0.35090.73790.09870.069*
H6B0.25420.58650.04840.069*
H7A0.42400.97330.24100.094*
H7B0.40271.00330.10710.094*
H8A0.16691.14820.11500.096*
H8B0.29401.20200.25350.096*
H9A0.44380.86290.54090.102*
H9B0.29570.66810.50550.102*
H9C0.21320.82930.55460.102*
H100.127 (8)0.869 (4)0.416 (5)0.097 (19)*
H110.438 (8)0.613 (10)0.371 (5)0.14 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0519 (7)0.0612 (7)0.0462 (6)0.0142 (5)0.0169 (5)0.0086 (5)
S20.0740.0470 (7)0.0913 (10)0.0230 (5)0.0366 (6)0.0178 (6)
O10.0422 (18)0.084 (2)0.0387 (15)0.0088 (15)0.0036 (13)0.0145 (15)
C10.0234 (18)0.053 (2)0.0344 (19)0.0040 (15)0.0018 (15)0.0045 (16)
C20.032 (2)0.0438 (19)0.0374 (18)0.0113 (16)0.0040 (15)0.0055 (16)
C30.044 (3)0.066 (3)0.055 (2)0.023 (2)0.009 (2)0.020 (2)
C40.072 (3)0.054 (3)0.060 (3)0.002 (2)0.012 (2)0.002 (2)
C50.035 (2)0.070 (3)0.053 (2)0.0014 (19)0.0009 (19)0.001 (2)
C60.038 (2)0.056 (2)0.056 (3)0.0066 (19)0.016 (2)0.003 (2)
C70.061 (3)0.068 (3)0.095 (4)0.004 (3)0.029 (3)0.008 (3)
C80.0710.058 (3)0.094 (4)0.009 (2)0.000 (3)0.014 (3)
C90.058 (3)0.093 (4)0.035 (2)0.000 (3)0.004 (2)0.015 (2)
C100.044 (2)0.053 (2)0.054 (2)0.0088 (19)0.012 (2)0.002 (2)
C110.045 (3)0.089 (4)0.068 (3)0.021 (2)0.022 (2)0.018 (3)
Geometric parameters (Å, º) top
S1—C71.802 (5)C5—C61.536 (8)
S1—C21.823 (4)C5—H50.9800
S2—C81.774 (7)C6—H6A0.9700
S2—C21.844 (4)C6—H6B0.9700
O1—C11.416 (4)C7—C81.467 (9)
O1—C91.420 (5)C7—H7A0.9700
C1—C101.506 (6)C7—H7B0.9700
C1—C31.516 (6)C8—H8A0.9700
C2—C11.558 (5)C8—H8B0.9700
C2—C61.566 (5)C9—H9A0.9600
C3—H3A0.9700C9—H9B0.9600
C3—H3B0.9700C9—H9C0.9600
C4—C31.511 (7)C10—H100.96 (2)
C4—C51.529 (7)C11—C101.332 (7)
C4—H4A0.9700C11—C51.502 (7)
C4—H4B0.9700C11—H110.99 (2)
C7—S1—C297.3 (2)C6—C5—H5111.1
C8—S2—C299.3 (2)C5—C6—C2110.2 (4)
C1—O1—C9116.2 (3)C5—C6—H6A109.6
O1—C1—C10114.9 (3)C2—C6—H6A109.6
O1—C1—C3112.7 (3)C5—C6—H6B109.6
C10—C1—C3109.7 (3)C2—C6—H6B109.6
O1—C1—C2106.6 (3)H6A—C6—H6B108.1
C10—C1—C2105.2 (3)C8—C7—S1109.5 (4)
C3—C1—C2107.1 (3)C8—C7—H7A109.8
C1—C2—C6107.5 (3)S1—C7—H7A109.8
C1—C2—S1113.8 (2)C8—C7—H7B109.8
C6—C2—S1108.4 (3)S1—C7—H7B109.8
C1—C2—S2110.7 (3)H7A—C7—H7B108.2
C6—C2—S2110.4 (3)C7—C8—S2114.0 (4)
S1—C2—S2106.1 (2)C7—C8—H8A108.8
C4—C3—C1112.1 (3)S2—C8—H8A108.8
C4—C3—H3A109.2C7—C8—H8B108.8
C1—C3—H3A109.2S2—C8—H8B108.8
C4—C3—H3B109.2H8A—C8—H8B107.7
C1—C3—H3B109.2O1—C9—H9A109.5
H3A—C3—H3B107.9O1—C9—H9B109.5
C3—C4—C5108.6 (4)H9A—C9—H9B109.5
C3—C4—H4A110.0O1—C9—H9C109.5
C5—C4—H4A110.0H9A—C9—H9C109.5
C3—C4—H4B110.0H9B—C9—H9C109.5
C5—C4—H4B110.0C11—C10—C1114.7 (4)
H4A—C4—H4B108.3C11—C10—H10114 (3)
C11—C5—C4109.5 (4)C1—C10—H10112 (4)
C11—C5—C6108.0 (4)C10—C11—C5114.0 (4)
C4—C5—C6106.0 (4)C10—C11—H11115 (4)
C11—C5—H5111.1C5—C11—H11119 (4)
C4—C5—H5111.1
C7—S1—C2—C191.9 (3)S2—C2—C1—O162.5 (3)
C7—S1—C2—C6148.6 (3)C6—C2—C1—C1060.7 (4)
C7—S1—C2—S230.0 (3)S1—C2—C1—C10179.3 (3)
C2—S1—C7—C837.9 (5)S2—C2—C1—C1060.0 (3)
C2—S2—C8—C79.2 (5)C6—C2—C1—C356.0 (4)
C8—S2—C2—C1108.2 (3)S1—C2—C1—C364.0 (4)
C8—S2—C2—C6132.9 (3)S2—C2—C1—C3176.7 (3)
C8—S2—C2—S115.6 (3)C1—C2—C6—C56.6 (4)
C9—O1—C1—C1055.7 (5)S1—C2—C6—C5129.9 (3)
C9—O1—C1—C370.9 (5)S2—C2—C6—C5114.3 (4)
C9—O1—C1—C2171.9 (4)C5—C4—C3—C13.8 (6)
O1—C1—C3—C4179.3 (4)C3—C4—C5—C1156.4 (5)
C10—C1—C3—C450.0 (5)C3—C4—C5—C659.8 (5)
C2—C1—C3—C463.8 (5)C11—C5—C6—C251.3 (5)
O1—C1—C10—C11177.3 (4)C4—C5—C6—C265.9 (4)
C3—C1—C10—C1154.6 (5)S1—C7—C8—S231.2 (6)
C2—C1—C10—C1160.3 (5)C5—C11—C10—C10.7 (7)
C6—C2—C1—O1176.8 (3)C10—C11—C5—C456.4 (6)
S1—C2—C1—O156.8 (4)C10—C11—C5—C658.6 (6)
 

References

First citationBruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds