organic compounds
2,5-Di-O-acetyl-3-C-methyl-D-lyxono-1,4-lactone
aChemical Crystallography, Central Chemistry Laboratory, University of Oxford, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, and cCMS Chemicals, 9 Milton Park, Abingdon, Oxfordshire OX14 4RR, England
*Correspondence e-mail: richard.bream@pmb.ox.ac.uk
The structures of both C-methyl-D-threose were defined by the of the title compound, C10H14O7. The structure consists of hydrogen-bonded ribbons of molecules.
derived from the Kiliani ascension of 2-Comment
The Kiliani reaction of et al., 2004; Soengas et al., 2005). Branched sugar bearing a C-2 methyl group may be accessed either by a Kiliani reaction on 1-deoxyketoses or by treatment of an Amadori ketose with aqueous calcium hydroxide (Hotchkiss et al., 2006). X-ray crystallographic analysis has been crucial in establishing the structures of the products in these reactions (Punzo et al., 2006; Watkin et al., 2005; Harding et al., 2005). Although these syntheses provide convenient access to C-2 carbon-branched there are very few reports of sugars with a carbon branch at C-3; a 3-C-methylpentonolactone of unknown stereochemistry has been isolated from cigarette smoke (Schumacher et al., 1977) and 3-C-methyl-D-mannose is one of the components of the trisaccharide repeating unit of the polysaccharide from Helicobacter Pylori (Kwon et al., 2004).
with cyanide, followed by acetonation, has provided a simple and environmentally friendly procedure for the generation of a set of carbohydrate scaffolds with a branched hydroxymethyl group at C-2 (Hotchkiss3-C-Methyl aldonolactones should be accessible through a Kiliani reaction on a branched 2-C-methyl aldose. Reaction of 2-C-methyl-D-threose (1) with aqueous sodium cyanide afforded an inseparable mixture of the C-3-methyl branched (2) and (5); the mixture was treated with an excess of acetic anhydride in pyridine to give a separable mixture of two triacetates (3) and (6) together with a crystalline diacetate (4) (Soengas & Fleet, 2006). Determination of the relative stereochemistry of the diacetate (4) as a lyxono-1,4-lactone by X-ray crystallographic analysis (Fig. 1) allowed unambiguous structural assigments of both the triacetates (3) and (6), and thus of the C-3 branched lyxono- (2) and xylono- (5) The use of 2-C-methyl-D-threose (1) as the starting material in the synthesis defines the of (4). Both C-2 and C-3 branched sugars are likely to increase significantly the range of carbohydrate chirons (Lichtenthaler & Peters, 2004) available for the efficient synthesis of complex homochiral targets (Simone et al., 2005) and also to provide material for the first time for the study of interactions of such unnatural with biological receptors.
The c axis (Fig. 2). Within each layer are interlocking zigzag ribbons of hydrogen-bonded molecules (Fig. 3).
consists of layers of molecules lying perpendicular to theExperimental
The material was prepared (Soengas & Fleet, 2006) using a Kiliani reaction. The diacetate (4) was crystallized from chloroform; m.p. 521–523 K, [α]D23 +60.0 (c, 1.7 in acetone).
Crystal data
|
The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 and O—H = 0.82 Å) and displacement parameters [Uiso(H) = 1.2–1.5Ueq of the parent atom], after which they were refined with riding constraints. In the absence of significant effects, Friedel pairs were averaged.
Data collection: COLLECT (Nonius, 2001).; cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536806004211/cf6489sup1.cif
contains datablocks 4, global. DOI:Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S1600536806004211/cf64894sup2.hkl
Data collection: COLLECT (Nonius, 2001).; cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C10H14O7 | Dx = 1.397 Mg m−3 |
Mr = 246.22 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 1560 reflections |
a = 8.8524 (1) Å | θ = 5–27° |
b = 10.0821 (2) Å | µ = 0.12 mm−1 |
c = 13.1198 (2) Å | T = 150 K |
V = 1170.95 (3) Å3 | Plate, colourless |
Z = 4 | 0.20 × 0.20 × 0.08 mm |
F(000) = 520 |
Nonius KappaCCD diffractometer | 1545 reflections with I > −3.0σ(I) |
Graphite monochromator | Rint = 0.009 |
ω scans | θmax = 27.5°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −11→11 |
Tmin = 0.869, Tmax = 0.990 | k = −13→13 |
2688 measured reflections | l = −16→16 |
1545 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.073 | Modified Chebychev polynomial (Watkin, 1994; Prince, 1982) with the coefficients 11.3, 16.9, 8.59, 2.51 |
S = 0.91 | (Δ/σ)max = 0.000247 |
1545 reflections | Δρmax = 0.27 e Å−3 |
154 parameters | Δρmin = −0.24 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
C2 | 0.86077 (18) | 0.77278 (17) | 0.32579 (13) | 0.0218 | |
C3 | 0.8007 (2) | 0.67351 (18) | 0.24961 (15) | 0.0246 | |
O4 | 0.66668 (14) | 0.71630 (12) | 0.21387 (10) | 0.0259 | |
C5 | 0.63200 (19) | 0.84694 (16) | 0.25745 (13) | 0.0220 | |
C6 | 0.5579 (2) | 0.93071 (18) | 0.17730 (14) | 0.0265 | |
O7 | 0.41613 (14) | 0.86863 (13) | 0.14924 (10) | 0.0273 | |
C18 | 0.3294 (2) | 0.94326 (18) | 0.08704 (14) | 0.0268 | |
O9 | 0.36545 (17) | 1.05300 (14) | 0.06062 (12) | 0.0388 | |
C10 | 0.1867 (2) | 0.8737 (2) | 0.05766 (17) | 0.0364 | |
O11 | 0.85646 (17) | 0.57035 (13) | 0.22296 (12) | 0.0339 | |
O12 | 1.02057 (13) | 0.78292 (13) | 0.31932 (9) | 0.0252 | |
C13 | 1.10358 (19) | 0.72849 (17) | 0.39600 (12) | 0.0213 | |
O14 | 1.04802 (15) | 0.66905 (14) | 0.46585 (9) | 0.0287 | |
C15 | 1.26726 (19) | 0.75652 (18) | 0.37875 (14) | 0.0268 | |
O16 | 0.85902 (15) | 0.95473 (13) | 0.20639 (10) | 0.0256 | |
C17 | 0.7718 (2) | 1.00576 (19) | 0.37796 (15) | 0.0293 | |
C8 | 0.78459 (19) | 0.90227 (16) | 0.29387 (14) | 0.0213 | |
H21 | 0.8338 | 0.7455 | 0.3966 | 0.0271* | |
H51 | 0.5629 | 0.8339 | 0.3181 | 0.0261* | |
H61 | 0.5387 | 1.0204 | 0.2023 | 0.0320* | |
H62 | 0.6196 | 0.9360 | 0.1157 | 0.0329* | |
H101 | 0.1203 | 0.9367 | 0.0301 | 0.0559* | |
H102 | 0.1382 | 0.8303 | 0.1174 | 0.0566* | |
H103 | 0.2129 | 0.8082 | 0.0082 | 0.0564* | |
H151 | 1.3294 | 0.6941 | 0.4221 | 0.0381* | |
H152 | 1.2888 | 0.8458 | 0.4011 | 0.0385* | |
H153 | 1.2896 | 0.7507 | 0.3076 | 0.0376* | |
H171 | 0.7183 | 1.0820 | 0.3511 | 0.0404* | |
H172 | 0.8737 | 1.0354 | 0.3990 | 0.0404* | |
H173 | 0.7197 | 0.9751 | 0.4386 | 0.0401* | |
H8 | 0.9435 | 0.9747 | 0.2287 | 0.0400* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C2 | 0.0173 (7) | 0.0227 (7) | 0.0255 (7) | −0.0016 (7) | −0.0011 (7) | 0.0038 (7) |
C3 | 0.0205 (8) | 0.0245 (8) | 0.0289 (8) | 0.0001 (7) | −0.0023 (7) | 0.0031 (7) |
O4 | 0.0213 (6) | 0.0218 (5) | 0.0345 (6) | 0.0015 (5) | −0.0067 (5) | −0.0018 (5) |
C5 | 0.0184 (7) | 0.0193 (7) | 0.0285 (8) | −0.0002 (6) | −0.0008 (7) | 0.0016 (6) |
C6 | 0.0195 (8) | 0.0249 (8) | 0.0351 (9) | 0.0000 (7) | −0.0038 (7) | 0.0059 (8) |
O7 | 0.0211 (6) | 0.0252 (6) | 0.0356 (7) | 0.0003 (5) | −0.0058 (5) | 0.0068 (6) |
C18 | 0.0248 (8) | 0.0275 (8) | 0.0282 (8) | 0.0058 (7) | −0.0021 (7) | 0.0025 (7) |
O9 | 0.0360 (8) | 0.0329 (7) | 0.0476 (8) | 0.0021 (6) | −0.0096 (7) | 0.0145 (7) |
C10 | 0.0300 (9) | 0.0390 (10) | 0.0401 (11) | 0.0025 (9) | −0.0114 (9) | 0.0041 (9) |
O11 | 0.0305 (7) | 0.0262 (6) | 0.0450 (8) | 0.0085 (6) | −0.0066 (7) | −0.0058 (6) |
O12 | 0.0160 (5) | 0.0312 (6) | 0.0284 (6) | −0.0025 (5) | −0.0012 (5) | 0.0072 (6) |
C13 | 0.0205 (7) | 0.0205 (7) | 0.0230 (7) | 0.0018 (7) | −0.0017 (6) | −0.0030 (7) |
O14 | 0.0258 (6) | 0.0351 (7) | 0.0254 (6) | 0.0045 (6) | 0.0011 (5) | 0.0060 (6) |
C15 | 0.0192 (8) | 0.0318 (9) | 0.0292 (8) | 0.0006 (7) | −0.0018 (7) | −0.0040 (8) |
O16 | 0.0216 (6) | 0.0282 (6) | 0.0270 (6) | −0.0028 (5) | 0.0012 (5) | 0.0085 (5) |
C17 | 0.0312 (10) | 0.0249 (8) | 0.0318 (9) | −0.0032 (8) | 0.0005 (8) | −0.0023 (8) |
C8 | 0.0195 (7) | 0.0208 (7) | 0.0236 (8) | −0.0022 (6) | 0.0012 (7) | 0.0044 (7) |
C2—C3 | 1.511 (2) | C10—H101 | 0.937 |
C2—O12 | 1.4208 (19) | C10—H102 | 0.995 |
C2—C8 | 1.528 (2) | C10—H103 | 0.955 |
C2—H21 | 0.997 | O12—C13 | 1.361 (2) |
C3—O4 | 1.347 (2) | C13—O14 | 1.200 (2) |
C3—O11 | 1.203 (2) | C13—C15 | 1.493 (2) |
O4—C5 | 1.468 (2) | C15—H151 | 1.012 |
C5—C6 | 1.500 (2) | C15—H152 | 0.966 |
C5—C8 | 1.538 (2) | C15—H153 | 0.956 |
C5—H51 | 1.012 | O16—C8 | 1.425 (2) |
C6—O7 | 1.450 (2) | O16—H8 | 0.828 |
C6—H61 | 0.977 | C17—C8 | 1.523 (3) |
C6—H62 | 0.977 | C17—H171 | 0.969 |
O7—C18 | 1.349 (2) | C17—H172 | 0.990 |
C18—O9 | 1.203 (2) | C17—H173 | 0.970 |
C18—C10 | 1.496 (3) | ||
C3—C2—O12 | 111.00 (14) | H101—C10—H102 | 109.3 |
C3—C2—C8 | 103.26 (14) | C18—C10—H103 | 107.1 |
O12—C2—C8 | 111.20 (14) | H101—C10—H103 | 111.1 |
C3—C2—H21 | 110.4 | H102—C10—H103 | 109.6 |
O12—C2—H21 | 108.3 | C2—O12—C13 | 117.67 (13) |
C8—C2—H21 | 112.7 | O12—C13—O14 | 122.97 (15) |
C2—C3—O4 | 109.15 (15) | O12—C13—C15 | 109.61 (14) |
C2—C3—O11 | 128.36 (17) | O14—C13—C15 | 127.42 (16) |
O4—C3—O11 | 122.47 (17) | C13—C15—H151 | 108.9 |
C3—O4—C5 | 109.63 (13) | C13—C15—H152 | 108.8 |
O4—C5—C6 | 108.88 (14) | H151—C15—H152 | 107.6 |
O4—C5—C8 | 105.23 (13) | C13—C15—H153 | 109.7 |
C6—C5—C8 | 113.44 (14) | H151—C15—H153 | 113.5 |
O4—C5—H51 | 108.4 | H152—C15—H153 | 108.2 |
C6—C5—H51 | 111.1 | C8—O16—H8 | 102.9 |
C8—C5—H51 | 109.5 | C8—C17—H171 | 108.5 |
C5—C6—O7 | 108.27 (14) | C8—C17—H172 | 109.9 |
C5—C6—H61 | 111.2 | H171—C17—H172 | 107.9 |
O7—C6—H61 | 109.5 | C8—C17—H173 | 114.3 |
C5—C6—H62 | 111.5 | H171—C17—H173 | 108.6 |
O7—C6—H62 | 107.3 | H172—C17—H173 | 107.5 |
H61—C6—H62 | 108.9 | C5—C8—C2 | 99.38 (12) |
C6—O7—C18 | 113.90 (14) | C5—C8—C17 | 114.10 (14) |
O7—C18—O9 | 122.45 (18) | C2—C8—C17 | 114.82 (15) |
O7—C18—C10 | 112.03 (16) | C5—C8—O16 | 106.89 (14) |
O9—C18—C10 | 125.51 (18) | C2—C8—O16 | 109.50 (14) |
C18—C10—H101 | 108.2 | C17—C8—O16 | 111.32 (14) |
C18—C10—H102 | 111.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H8···O11i | 0.83 | 2.11 | 2.926 (2) | 167 |
Symmetry code: (i) −x+2, y+1/2, −z+1/2. |
References
Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Harding, C. C., Watkin, D. J., Sawyer, N. K., Jenkinson, S. F. & Fleet, G. W. J. (2005). Acta Cryst. E61, o1472–o1474. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). Tetrahedron Lett. 47, 315–318. Web of Science CrossRef CAS Google Scholar
Hotchkiss, D., Soengas, R., Simone, M. I., van Ameijde, J., Hunter, S., Cowley, A. R. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 9461–9464. Web of Science CrossRef CAS Google Scholar
Kwon, Y. T., Lee, Y. J., Lee, K. & Kim, K. S. (2004). Org. Lett. 6, 3901–3904. Web of Science CrossRef PubMed CAS Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90. Web of Science CrossRef CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Punzo, F., Watkin, D. J., Hotchkiss, D. & Fleet, G. W. J. (2006). Acta Cryst. E62, o98–o100. Web of Science CSD CrossRef IUCr Journals Google Scholar
Schumacher, J. N., Green, C. R., Best, F. W. & Newell, M. P. (1977). J. Agric. Food. Chem. 25, 310–320. CrossRef CAS PubMed Web of Science Google Scholar
Simone, M. I., Soengas, R., Newton, C. R., Watkin, D. J. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5761–5765. Web of Science CSD CrossRef CAS Google Scholar
Soengas, R. & Fleet, G. W. J. (2006). Tetrahedron Lett. In preparation. Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Watkin, D. J. (1994). Acta Cryst. A50, 411–437. CrossRef CAS Web of Science IUCr Journals Google Scholar
Watkin, D. J., Parry, L. L., Hotchkiss, D. J., Eastwick-Field, V. & Fleet, G. W. J. (2005). Acta Cryst. E61, o3302–o3303. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.