metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Li­thia­tion of the di­amino­pyridine protio-ligand MeC(2-C5H4N){CH2N(H)Mes}2 (Mes = 2,4,6-C6H2Me3)

CROSSMARK_Color_square_no_text.svg

aChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and bInstitut für Anorganische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
*Correspondence e-mail: philip.mountford@chem.ox.ac.uk

(Received 24 January 2006; accepted 2 February 2006; online 8 February 2006)

Reaction of the diamido­pyridine protio-ligand MeC(2-C5H4N){CH2N(H)Mes}2 (Mes = 2,4,6-C6H2Me3) with butyl­lithium in diethyl ether affords the compound (diethyl ether)(μ4-2-{6-[1,3-dimethyl-3-(2-pyrid­yl)-1,4-bis­(2,4,6-trimethyl­anilinio)but­yl]-2-pyrid­yl}-2-methyl-1,3-bis­(2,4,6-tri­methyl­anilinio)propane)tetra­lithium(I), [Li4(C55H64N6)(C4H10O)] or Li4[MeC(2-C5H4N){CH2N(Mes)}CHN(2,4,6-C6H2-Me2C(Me)(2,2′-C5H3N){C(Me)}(CH2NMes)2](OEt2), which shows the methyl­ation of the pyridyl ortho-position with a methyl group of one of the mesityl groups. The complex contains four Li atoms, each of which is chemically distinct. The tetra­anionic ligand contains two protio-ligand units which are fused together into a single entity. The structure contains two disordered mol­ecules of diethyl ether, one of which is coordinated to one of the Li atoms.

Comment

Diamido­pyridine ligands of the general formula [MeC(C5H4N)(CH2NR)2]2− (R = silyl or ar­yl) have found a variety of uses in early transition metal chemistry and catalysis over the last decade (Gade & Mountford, 2001[Gade, L. H. & Mountford, P. (2001). Coord. Chem. Rev. 216-217, 65-97.]; Mehrkhodavandi et al., 2000[Mehrkhodavandi, P., Bonitatebus, P. J. Jr & Schrock, R. R. (2000). J. Am. Chem. Soc. 122, 7841-7842.]). Whereas the silylated derivatives (R = SiMe3 or SiMe2tBu) are known as their dilithium salts (Friedrich et al., 1997[Friedrich, S., Schubart, M., Gade, L. H., Scowen, I. J., Edwards, A. J. & McPartlin, M. (1997). Chem. Ber./Recueil, 130, 1751-1759.]), the corresponding N-aryl­ated derivatives (R = 3,5-C6H3Cl2, 4-C6H4Me or 2,4,6-C6H2Me3) have remained elusive. In attempting to prepare such complexes in our laboratories, we have consistently observed degradation products, and we report here the structural characterization of a product, (I)[link], arising from the reaction of the mesityl protio-ligand (Mehrkhodavandi et al., 2000[Mehrkhodavandi, P., Bonitatebus, P. J. Jr & Schrock, R. R. (2000). J. Am. Chem. Soc. 122, 7841-7842.]) with butyl­lithium in diethyl ether.

[Scheme 1]

The tetra­lithium complex, (I)[link], crystallizes in space group P[\overline{1}], and contains four Li environments which each occupy chemically different sites within the mol­ecule. The Li atoms are arranged in two pairs, each occupying a bridging position between two amide N atoms. Each pair of Li atoms is capped at one end by a pyridyl group. At the other end, one pair of Li atoms is capped by one of the mesityl groups bonding in an η3 mode. The second pair is capped by a mol­ecule of diethyl ether coordinated to one of the Li centres; one of the ethyl groups of this ligand was found to be disordered over two sites. The disorder was modelled by using an occupancy of 0.5 for each atom within the ethyl group for each of the two sites.

The structure clearly does not represent a stoichiometric dimerization of the dilithium compound, since it contains an `extra' methyl group (C29). The presence of this methyl group suggests that the structure arises from the rearrangement of three diamido­pyridine units. The mechanistic details behind this rearrangement are not clear, and no other well defined product could be obtained from the reaction mixture. The structure also contains a disordered non-coordinated mol­ecule of diethyl ether.

[Figure 1]
Figure 1
A view of the mol­ecular structure of (I)[link]. Displacement ellipsoids are drawn at the 25% probability level and H atoms have been omitted for clarity. The solvent of crystallization has also been omitted for clarity and only a single orientation of the disordered coordinated diethyl ether mol­ecule is shown.

Experimental

The diamino­pyridine protio-ligand MeC(2-C5H4N){CH2N(H)Mes}2 (0.50 g, 1.25 mmol) was dissolved in diethyl ether (20 ml) and cooled to 195 K, followed by the dropwise addition of butyl­lithium (1.56 ml of a 1.6 M solution in hexa­nes, 2.50 mmol, 2 equivalents). The colourless solution immediately turned bright yellow, and the reaction was allowed to warm slowly to ambient temperature and stirred for 1 h. The reaction mixture was concentrated to 5 ml, and crystals of (I)[link] suitable for X-ray diffraction were formed on allowing the mixture to stand overnight.

Crystal data
  • [Li4(C55H64N6)(C4H10O)]

  • Mr = 911.04

  • Triclinic, [P \overline 1]

  • a = 11.607 (2) Å

  • b = 14.302 (3) Å

  • c = 17.477 (4) Å

  • α = 78.18 (3)°

  • β = 72.68 (3)°

  • γ = 80.31 (3)°

  • V = 2693.0 (11) Å3

  • Z = 2

  • Dx = 1.123 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 22654 reflections

  • θ = 5–28°

  • μ = 0.07 mm−1

  • T = 173 K

  • Block, yellow

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scanDENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.99, Tmax = 0.99

  • 22654 measured reflections

  • 12141 independent reflections

  • 4760 reflections with I > 3σ(I)

  • Rint = 0.026

  • θmax = 27.5°

  • h = −14 → 15

  • k = −17 → 18

  • l = 0 → 22

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.054

  • S = 1.09

  • 4760 reflections

  • 649 parameters

  • H-atom parameters constrained

  • w = [1 − (FoFc)2/36σ2(F)]2/[0.516To(x) + 0.342T1(x) + 0.252T2(x)], where Ti are the Chebychev polynomials and x = Fc/Fmax (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 80-82. New York, Heidelberg, Berlin: Springer-Verlag.]; Watkin, 1994[Watkin, D. (1994). Acta Cryst. A50, 411-437.])

  • (Δ/σ)max < 0.001

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.23 e Å−3

The crystal was a weak diffractor. Although sufficient data were collected, the number of data with I > 3σ(I) was low. It is therefore inappropriate to compare bond lengths and angles with structures of higher precision, although the connectivity is thought to be reliable. The Comment has been written to take this into account.

The structure contains a coordinated mol­ecule of diethyl ether, of which one ethyl group was disordered over two sites. The disorder was modelled with each C atom given 0.5 occupancy.

The asymmetric unit also contains a non-coordinated mol­ecule of diethyl ether lying close to a centre of symmetry. Attempts were made to model this using disordered ether mol­ecules. One model consisted of a mol­ecule of ether inter­penetrating its image in a mirror plane perpendicular to the medial axis of the mol­ecule, i.e. the central region of the difference electron density phased on all the non-ether atoms was occupied by a `split' O atom. This model needed geometric restraints and led to atoms falling on regions of relatively low electron density. Refinement of the unrestrained isotropic displacement parameters led to unacceptable values. A second model displaced the ether mol­ecule sideways along its longest axis, so that the central region of the difference-density map now contained a disordered O and C atom. This model also needed restraints, gave a similar R factor to the previous model, and also gave a poor (but different) fit to the difference density. An unrestrained model gave a good fit to the density, but unacceptable distances and angles. Based on this evidence, it was felt that an atomic model was unsuitable. The disordered region was modelled using SQUEEZE (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]) in its advanced mode, in which the A and B parts of the structure factor are passed back to CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) for inclusion in Fc (rather than the term being subtracted from Fo).

H atoms associated with the aryl-methyl groups were found in a difference Fourier map. All other H atoms were placed geometrically after each cycle of refinement, with C—H distances in the range 0.96–1.1 Å. All H atoms were treated with the riding model during the refinement, with Uiso(H) = 1.3Ueq(C).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985[Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

(diethyl ether)(µ4-2-{6-[1,3-dimethyl-3-(2-pyridyl)-1,4-bis(2,4,6- trimethylanilinio)butyl]-2-pyridyl}-2-methyl-1,3-bis(2,4,6- trimethylanilinio)propane)tetralithium(I) diethyl ether solvate top
Crystal data top
[Li4(C55H64N6)(C4H10O)]Z = 2
Mr = 911.04F(000) = 980
Triclinic, P1Dx = 1.123 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.607 (2) ÅCell parameters from 22654 reflections
b = 14.302 (3) Åθ = 5–28°
c = 17.477 (4) ŵ = 0.07 mm1
α = 78.18 (3)°T = 173 K
β = 72.68 (3)°Block, yellow
γ = 80.31 (3)°0.20 × 0.20 × 0.15 mm
V = 2693.0 (11) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4760 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.026
CCD scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 1415
Tmin = 0.99, Tmax = 0.99k = 1718
22654 measured reflectionsl = 022
12141 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.09 w = [1-(Fo-Fc)2/36σ2(F)]2/[0.516To(x) + 0.342T1(x) + 0.252T2(x)],
where Ti are the Chebychev polynomials and x = Fc/Fmax (Prince, 1982; Watkin, 1994)
4760 reflections(Δ/σ)max = 0.000236
649 parametersΔρmax = 0.33 e Å3
36 restraintsΔρmin = 0.23 e Å3
Special details top

Refinement. Loose vibration and thermal similarity restraints were applied to the coordinated molecule of diethyl ether.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.7451 (4)0.2096 (3)0.7821 (3)0.0324
Li20.6433 (5)0.0889 (3)0.7436 (3)0.0391
Li30.6008 (5)0.6041 (3)0.8068 (3)0.0353
Li40.5436 (5)0.4873 (3)0.7342 (3)0.0360
N10.7888 (2)0.06762 (15)0.78459 (15)0.0304
N20.6711 (2)0.22286 (16)0.68750 (15)0.0306
N30.8956 (2)0.26499 (15)0.71481 (15)0.0310
N40.6483 (2)0.46919 (15)0.81021 (14)0.0298
N50.7514 (2)0.65913 (16)0.79263 (16)0.0350
N60.5895 (2)0.62457 (16)0.69496 (15)0.0310
O10.5815 (2)0.00686 (18)0.69246 (15)0.0554
C10.9679 (3)0.1061 (2)0.5593 (2)0.0429
C20.8928 (3)0.1430 (2)0.63835 (19)0.0347
C30.8734 (3)0.05210 (19)0.70595 (18)0.0326
C40.8107 (3)0.00375 (18)0.85267 (18)0.0295
C50.7140 (3)0.04321 (19)0.90868 (18)0.0303
C60.7307 (3)0.1085 (2)0.97646 (19)0.0343
C70.8424 (3)0.1300 (2)0.99362 (19)0.0364
C80.9358 (3)0.0813 (2)0.9414 (2)0.0369
C90.9243 (3)0.01446 (19)0.87250 (19)0.0331
C100.5890 (3)0.0244 (2)0.8962 (2)0.0404
C110.8586 (3)0.2023 (3)1.0674 (2)0.0517
C121.0298 (3)0.0404 (2)0.8250 (2)0.0408
C130.7737 (3)0.1982 (2)0.61890 (19)0.0389
C140.5879 (2)0.30074 (18)0.67972 (17)0.0261
C150.4828 (3)0.30696 (19)0.74838 (18)0.0308
C160.3866 (3)0.37940 (19)0.74953 (19)0.0315
C170.3853 (2)0.45402 (19)0.68461 (18)0.0294
C180.4878 (3)0.45240 (19)0.61887 (18)0.0305
C190.5878 (3)0.3806 (2)0.61350 (17)0.0295
C200.4723 (3)0.2288 (2)0.82212 (19)0.0388
C210.2785 (3)0.5309 (2)0.6854 (2)0.0379
C220.6898 (3)0.3941 (2)0.5356 (2)0.0408
C230.9626 (3)0.20880 (19)0.66114 (19)0.0333
C241.0893 (3)0.2105 (2)0.6328 (2)0.0423
C251.1430 (3)0.2677 (2)0.6633 (2)0.0464
C261.0729 (3)0.3261 (2)0.7180 (2)0.0412
C270.9478 (3)0.32595 (19)0.74035 (19)0.0325
C280.8583 (3)0.39146 (19)0.79394 (19)0.0313
C290.9203 (3)0.4466 (2)0.8343 (2)0.0383
C300.7659 (3)0.33536 (19)0.86184 (18)0.0298
C310.7846 (3)0.2525 (2)0.91553 (19)0.0333
C320.6893 (3)0.2212 (2)0.98112 (19)0.0345
C330.5763 (3)0.2774 (2)0.99052 (19)0.0342
C340.5541 (3)0.3617 (2)0.93692 (19)0.0336
C350.6509 (3)0.39003 (19)0.87025 (18)0.0289
C360.7091 (3)0.1318 (2)1.0415 (2)0.0418
C370.4317 (3)0.4200 (2)0.9504 (2)0.0406
C380.7665 (3)0.45829 (18)0.74766 (18)0.0294
C390.8086 (3)0.55284 (19)0.68906 (18)0.0311
C400.8384 (3)0.62864 (19)0.72886 (19)0.0329
C410.9478 (3)0.6686 (2)0.6995 (2)0.0428
C420.9702 (3)0.7369 (2)0.7376 (3)0.0536
C430.8824 (3)0.7654 (2)0.8041 (2)0.0528
C440.7749 (3)0.7260 (2)0.8286 (2)0.0429
C450.9204 (3)0.5227 (2)0.62126 (19)0.0372
C460.7103 (3)0.6012 (2)0.64285 (18)0.0323
C470.5060 (3)0.69239 (19)0.66532 (18)0.0307
C480.4053 (3)0.72876 (19)0.72614 (19)0.0328
C490.3128 (3)0.7954 (2)0.7067 (2)0.0366
C500.3128 (3)0.8325 (2)0.6266 (2)0.0386
C510.4093 (3)0.7973 (2)0.5678 (2)0.0403
C520.5054 (3)0.7288 (2)0.58290 (19)0.0331
C530.4016 (3)0.6961 (2)0.8141 (2)0.0441
C540.2146 (3)0.9079 (3)0.6061 (3)0.0564
C550.5987 (3)0.6981 (2)0.50957 (19)0.0419
C560.7084 (6)0.1091 (4)0.6073 (4)0.1115
C570.6320 (6)0.0917 (3)0.6879 (3)0.1025
C580.4671 (12)0.0682 (10)0.6657 (6)0.05160.5000
C590.3535 (8)0.0419 (6)0.7316 (7)0.06330.5000
C620.4962 (9)0.0113 (9)0.6502 (7)0.06540.5000
C630.4024 (17)0.0866 (12)0.6824 (13)0.09710.5000
O21.03390.48140.00720.0500*0.0000
C601.09440.54820.07280.0500*0.0000
C611.07430.65580.06640.0500*0.0000
C640.90680.47600.02020.0500*0.0000
C650.88490.39080.09070.0500*0.0000
H20.77840.39790.54450.0500*
H30.13930.91360.65240.0500*
H40.62300.62460.51970.0500*
H50.56410.71500.45900.0500*
H60.67380.73080.49650.0500*
H70.65500.45790.50330.0500*
H80.23480.51830.65310.0500*
H90.30370.59160.65780.0500*
H110.92100.06270.54510.0536*
H121.04620.06970.56710.0536*
H130.98530.16200.51440.0536*
H140.37260.38580.99840.0500*
H150.81730.18221.12520.0500*
H161.08590.04510.86210.0500*
H170.38400.42910.90270.0500*
H181.08340.00260.78190.0500*
H191.00120.11680.80260.0500*
H200.69700.33520.50560.0500*
H210.53600.06500.94670.0500*
H220.22700.52830.74600.0500*
H230.94680.21571.06490.0500*
H240.44150.49580.95060.0500*
H250.63070.12331.08880.0500*
H270.84260.27031.06040.0500*
H280.55850.04560.89360.0500*
H290.59070.04190.83920.0500*
H300.74380.06981.01400.0500*
H310.95410.02510.71560.0406*
H320.84230.00410.68510.0406*
H330.40320.24990.87270.0500*
H340.48210.71520.82790.0500*
H350.40660.62650.82860.0500*
H360.45870.16340.80220.0500*
H370.54680.21990.84090.0500*
H380.32460.71500.85020.0500*
H610.66010.14141.01360.0449*
H811.01670.09480.95320.0460*
H1310.79490.25960.58150.0489*
H1320.74460.15680.59050.0489*
H1610.31540.37780.79890.0422*
H1810.49090.50570.57150.0431*
H2411.13910.17080.59100.0527*
H2511.23330.26730.64510.0562*
H2611.11130.36710.74120.0508*
H2910.85720.48890.86860.0517*
H2920.96580.40000.86910.0517*
H2930.97810.48700.79140.0517*
H3110.86720.21530.90750.0452*
H3310.50750.25651.03800.0456*
H3610.77620.14431.06700.0499*
H3810.75290.41770.71160.0368*
H4111.00980.64820.65050.0570*
H4211.04920.76490.71740.0701*
H4310.89720.81330.83350.0671*
H4410.71030.74760.87600.0630*
H4510.89970.47330.59590.0473*
H4520.98980.49480.64480.0473*
H4530.94380.58000.57900.0473*
H4610.73890.66180.60750.0432*
H4620.70420.55560.60820.0432*
H4910.24380.81750.75170.0476*
H5110.41170.82280.50970.0507*
H5410.24960.97520.58740.0673*
H5420.18970.89030.55570.0673*
H5610.74100.17860.60820.1308*
H5620.77750.06920.59050.1308*
H5630.65840.08960.56760.1308*
H5710.68280.11200.72700.1343*
H5720.56370.13240.70410.1343*
H5810.47350.13870.65660.0638*0.5000
H5820.45930.05020.61530.0638*0.5000
H5910.27660.07720.72050.0995*0.5000
H5920.36380.05960.78140.0995*0.5000
H5930.34960.02890.74020.0995*0.5000
H6210.46810.05270.65550.0938*0.5000
H6220.52820.03790.59140.0938*0.5000
H6310.33330.09740.65730.1803*0.5000
H6320.37370.05870.74120.1803*0.5000
H6330.43380.14930.67710.1803*0.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.032 (3)0.027 (2)0.038 (3)0.0029 (19)0.009 (2)0.006 (2)
Li20.041 (3)0.028 (2)0.051 (3)0.001 (2)0.022 (3)0.005 (2)
Li30.036 (3)0.037 (3)0.034 (3)0.003 (2)0.011 (2)0.008 (2)
Li40.037 (3)0.033 (2)0.039 (3)0.006 (2)0.011 (2)0.005 (2)
N10.0310 (14)0.0261 (12)0.0344 (14)0.0009 (10)0.0110 (11)0.0045 (10)
N20.0271 (13)0.0293 (12)0.0337 (14)0.0035 (10)0.0085 (11)0.0066 (10)
N30.0288 (13)0.0233 (11)0.0394 (15)0.0019 (10)0.0083 (11)0.0045 (10)
N40.0287 (13)0.0277 (12)0.0314 (14)0.0026 (10)0.0084 (11)0.0018 (10)
N50.0372 (15)0.0293 (12)0.0420 (16)0.0036 (10)0.0147 (13)0.0082 (11)
N60.0296 (14)0.0301 (12)0.0312 (14)0.0012 (10)0.0065 (11)0.0047 (10)
O10.0483 (15)0.0715 (16)0.0548 (15)0.0224 (12)0.0179 (12)0.0106 (12)
C10.0414 (19)0.0418 (18)0.0404 (19)0.0116 (14)0.0080 (15)0.0138 (15)
C20.0333 (17)0.0318 (15)0.0331 (17)0.0064 (12)0.0036 (14)0.0085 (13)
C30.0353 (17)0.0281 (14)0.0353 (17)0.0014 (12)0.0109 (14)0.0095 (12)
C40.0344 (17)0.0192 (13)0.0368 (17)0.0005 (11)0.0132 (14)0.0061 (12)
C50.0296 (16)0.0282 (14)0.0348 (17)0.0026 (12)0.0130 (13)0.0034 (13)
C60.0330 (17)0.0324 (15)0.0381 (18)0.0073 (12)0.0091 (14)0.0048 (13)
C70.0394 (19)0.0337 (16)0.0384 (18)0.0050 (13)0.0177 (15)0.0004 (13)
C80.0328 (17)0.0354 (16)0.046 (2)0.0019 (13)0.0200 (15)0.0066 (14)
C90.0334 (17)0.0266 (14)0.0402 (18)0.0013 (12)0.0114 (14)0.0075 (13)
C100.0349 (18)0.0439 (18)0.0414 (19)0.0086 (14)0.0158 (15)0.0066 (14)
C110.041 (2)0.054 (2)0.059 (2)0.0085 (16)0.0257 (18)0.0129 (17)
C120.0335 (18)0.0427 (17)0.049 (2)0.0081 (14)0.0136 (15)0.0076 (15)
C130.0383 (18)0.0425 (17)0.0333 (18)0.0077 (14)0.0114 (15)0.0079 (14)
C140.0244 (15)0.0296 (14)0.0271 (15)0.0028 (11)0.0091 (13)0.0079 (12)
C150.0278 (16)0.0297 (14)0.0352 (17)0.0028 (12)0.0112 (13)0.0027 (12)
C160.0234 (15)0.0339 (15)0.0350 (17)0.0051 (12)0.0035 (13)0.0063 (13)
C170.0258 (16)0.0299 (14)0.0351 (17)0.0009 (11)0.0130 (13)0.0061 (13)
C180.0332 (17)0.0302 (14)0.0317 (17)0.0024 (12)0.0156 (14)0.0042 (12)
C190.0266 (15)0.0341 (15)0.0297 (17)0.0053 (12)0.0069 (13)0.0090 (12)
C200.0326 (17)0.0383 (16)0.0370 (18)0.0008 (13)0.0040 (14)0.0008 (14)
C210.0319 (17)0.0364 (16)0.0452 (19)0.0013 (13)0.0137 (15)0.0040 (14)
C220.0410 (19)0.0354 (16)0.0403 (19)0.0015 (13)0.0070 (15)0.0042 (14)
C230.0320 (17)0.0266 (14)0.0343 (17)0.0003 (12)0.0020 (13)0.0024 (12)
C240.0308 (18)0.0443 (18)0.045 (2)0.0000 (14)0.0007 (15)0.0099 (15)
C250.0266 (17)0.0456 (19)0.059 (2)0.0045 (14)0.0026 (16)0.0038 (16)
C260.0297 (18)0.0354 (16)0.054 (2)0.0060 (13)0.0084 (15)0.0003 (15)
C270.0263 (16)0.0259 (14)0.0416 (18)0.0018 (11)0.0069 (13)0.0015 (12)
C280.0271 (16)0.0297 (15)0.0396 (18)0.0029 (11)0.0123 (13)0.0071 (12)
C290.0381 (18)0.0344 (16)0.050 (2)0.0056 (13)0.0214 (15)0.0078 (14)
C300.0330 (17)0.0286 (14)0.0300 (16)0.0047 (12)0.0105 (13)0.0060 (12)
C310.0325 (17)0.0314 (15)0.0398 (18)0.0006 (12)0.0162 (14)0.0088 (13)
C320.0400 (18)0.0309 (15)0.0343 (18)0.0066 (13)0.0135 (14)0.0023 (13)
C330.0326 (17)0.0389 (16)0.0305 (17)0.0032 (13)0.0078 (14)0.0060 (13)
C340.0292 (16)0.0345 (16)0.0373 (18)0.0029 (12)0.0104 (14)0.0050 (13)
C350.0288 (16)0.0291 (14)0.0315 (16)0.0020 (12)0.0118 (13)0.0069 (12)
C360.047 (2)0.0354 (16)0.0431 (19)0.0047 (14)0.0140 (16)0.0038 (14)
C370.0318 (17)0.0447 (17)0.0382 (19)0.0004 (13)0.0059 (15)0.0001 (14)
C380.0301 (16)0.0250 (14)0.0354 (17)0.0021 (11)0.0107 (13)0.0083 (12)
C390.0272 (16)0.0314 (15)0.0341 (17)0.0045 (12)0.0065 (13)0.0064 (12)
C400.0323 (17)0.0269 (14)0.0395 (18)0.0039 (12)0.0107 (15)0.0037 (13)
C410.0385 (19)0.0363 (17)0.052 (2)0.0099 (14)0.0085 (16)0.0059 (15)
C420.051 (2)0.0421 (18)0.075 (3)0.0195 (16)0.019 (2)0.0118 (18)
C430.061 (2)0.0404 (19)0.067 (3)0.0123 (16)0.021 (2)0.0205 (17)
C440.052 (2)0.0334 (16)0.050 (2)0.0039 (14)0.0206 (17)0.0133 (14)
C450.0362 (18)0.0362 (16)0.0382 (18)0.0042 (13)0.0079 (14)0.0070 (13)
C460.0360 (17)0.0303 (15)0.0309 (16)0.0041 (12)0.0092 (14)0.0057 (12)
C470.0340 (17)0.0254 (14)0.0353 (17)0.0077 (12)0.0120 (14)0.0037 (12)
C480.0338 (17)0.0289 (14)0.0360 (18)0.0036 (12)0.0106 (14)0.0047 (12)
C490.0308 (17)0.0328 (15)0.044 (2)0.0011 (12)0.0072 (14)0.0072 (14)
C500.0370 (18)0.0355 (16)0.043 (2)0.0035 (13)0.0144 (16)0.0021 (14)
C510.046 (2)0.0411 (17)0.0356 (19)0.0091 (14)0.0176 (16)0.0027 (14)
C520.0317 (17)0.0326 (15)0.0347 (18)0.0049 (12)0.0111 (14)0.0011 (13)
C530.0426 (19)0.0457 (18)0.0372 (19)0.0100 (14)0.0078 (15)0.0088 (14)
C540.049 (2)0.057 (2)0.058 (2)0.0109 (17)0.0210 (19)0.0021 (18)
C550.0450 (19)0.0490 (19)0.0307 (18)0.0052 (15)0.0106 (15)0.0036 (14)
C560.135 (5)0.091 (4)0.108 (4)0.057 (3)0.010 (4)0.045 (3)
C570.165 (5)0.056 (3)0.077 (3)0.061 (3)0.017 (3)0.027 (2)
C580.065 (7)0.051 (7)0.044 (5)0.013 (6)0.018 (5)0.009 (4)
C590.042 (5)0.055 (5)0.092 (7)0.021 (4)0.021 (5)0.005 (5)
C620.067 (6)0.062 (5)0.083 (6)0.011 (5)0.051 (5)0.002 (5)
C630.093 (12)0.076 (9)0.134 (14)0.023 (9)0.053 (11)0.038 (8)
Geometric parameters (Å, º) top
N1—C31.466 (4)C30—C351.412 (4)
N1—C41.404 (4)C31—C321.392 (4)
N2—C131.470 (4)C31—H3111.000
N2—C141.359 (3)C32—C331.401 (4)
N3—C231.339 (4)C32—C361.514 (4)
N3—C271.351 (4)C33—C341.406 (4)
N4—C351.380 (4)C33—H3311.000
N4—C381.485 (4)C34—C351.402 (4)
N5—C401.354 (4)C34—C371.500 (4)
N5—C441.350 (4)C36—H251.037
N6—C461.453 (4)C36—H301.058
N6—C471.388 (4)C36—H3611.060
O1—C571.441 (5)C37—H141.009
O1—C581.600 (14)C37—H171.107
O1—C621.388 (9)C37—H241.109
C1—C21.541 (4)C38—C391.573 (4)
C1—H111.000C38—H3811.000
C1—H121.000C39—C401.535 (4)
C1—H131.000C39—C451.542 (4)
C2—C31.564 (4)C39—C461.577 (4)
C2—C131.565 (4)C40—C411.393 (4)
C2—C231.518 (4)C41—C421.386 (5)
C3—H311.000C41—H4111.000
C3—H321.000C42—C431.380 (6)
C4—C51.414 (4)C42—H4211.000
C4—C91.430 (4)C43—C441.370 (5)
C5—C61.391 (4)C43—H4311.000
C5—C101.503 (4)C44—H4411.000
C6—C71.388 (4)C45—H4511.000
C6—H611.000C45—H4521.000
C7—C81.377 (4)C45—H4531.000
C7—C111.517 (5)C46—H4611.000
C8—C91.401 (4)C46—H4621.000
C8—H811.000C47—C481.431 (4)
C9—C121.502 (4)C47—C521.430 (4)
C10—H211.041C48—C491.385 (4)
C10—H281.000C48—C531.503 (5)
C10—H291.070C49—C501.392 (5)
C11—H151.057C49—H4911.000
C11—H230.998C50—C511.379 (5)
C11—H271.057C50—C541.504 (5)
C12—H161.065C51—C521.406 (4)
C12—H181.010C51—H5111.000
C12—H191.112C52—C551.501 (5)
C13—H1311.000C53—H341.119
C13—H1321.000C53—H350.972
C14—C151.439 (4)C53—H380.961
C14—C191.450 (4)C54—H31.003
C15—C161.388 (4)C54—H5411.060
C15—C201.513 (4)C54—H5421.090
C16—C171.391 (4)C55—H41.034
C16—H1611.000C55—H51.045
C17—C181.387 (4)C55—H61.004
C17—C211.512 (4)C56—C571.470 (7)
C18—C191.408 (4)C56—H5611.000
C18—H1811.000C56—H5621.000
C19—C221.518 (4)C56—H5631.000
C20—H331.059C57—H5711.000
C20—H361.112C57—H5721.000
C20—H370.993C58—C591.514 (15)
C21—H80.923C58—H5811.000
C21—H90.950C58—H5821.000
C21—H221.046C59—H5911.000
C22—H21.096C59—H5921.000
C22—H71.056C59—H5931.000
C22—H201.060C62—C631.467 (16)
C23—C241.408 (4)C62—H6211.000
C24—C251.373 (5)C62—H6221.000
C24—H2411.000C63—H6311.000
C25—C261.382 (5)C63—H6321.000
C25—H2511.000C63—H6331.000
C26—C271.387 (4)O2—C60i1.7553 (7)
C26—H2611.000O2—C64i0.9421 (3)
C27—C281.512 (4)O2—O2i0.8722 (3)
C28—C291.536 (4)O2—C601.4205 (6)
C28—C301.531 (4)O2—C641.4197 (3)
C28—C381.599 (4)C60—C65i0.9122 (3)
C29—H2911.000C60—C64i0.9092 (3)
C29—H2921.000C60—C611.5398 (3)
C29—H2931.000C61—C65i0.8594 (3)
C30—C311.383 (4)C64—C651.5396 (6)
C3—N1—C4115.8 (2)H25—C36—H30113.529
C13—N2—C14122.3 (2)C32—C36—H361106.537
C23—N3—C27120.7 (3)H25—C36—H361106.592
C35—N4—C38105.6 (2)H30—C36—H361106.592
C40—N5—C44118.6 (3)C34—C37—H14109.350
C46—N6—C47120.6 (2)C34—C37—H17117.537
C57—O1—C58130.7 (6)H14—C37—H17101.091
C57—O1—C6297.6 (6)C34—C37—H24109.678
C2—C1—H11109.446H14—C37—H24118.077
C2—C1—H12109.615H17—C37—H24101.108
H11—C1—H12109.476N4—C38—C28105.9 (2)
C2—C1—H13109.339N4—C38—C39116.2 (2)
H11—C1—H13109.476C28—C38—C39119.0 (2)
H12—C1—H13109.476N4—C38—H381104.737
C1—C2—C3106.2 (2)C28—C38—H381104.926
C1—C2—C13104.9 (3)C39—C38—H381104.631
C3—C2—C13114.8 (3)C38—C39—C40115.8 (2)
C1—C2—C23110.3 (3)C38—C39—C45107.2 (2)
C3—C2—C23108.9 (2)C40—C39—C45110.0 (2)
C13—C2—C23111.5 (2)C38—C39—C46110.3 (2)
C2—C3—N1116.2 (2)C40—C39—C46108.7 (2)
C2—C3—H31107.856C45—C39—C46104.1 (2)
N1—C3—H31107.572C39—C40—N5117.4 (2)
C2—C3—H32107.739C39—C40—C41122.3 (3)
N1—C3—H32107.888N5—C40—C41120.2 (3)
H31—C3—H32109.467C40—C41—C42120.1 (3)
N1—C4—C5119.2 (2)C40—C41—H411119.683
N1—C4—C9124.4 (3)C42—C41—H411120.255
C5—C4—C9116.3 (3)C41—C42—C43119.3 (3)
C4—C5—C6121.8 (3)C41—C42—H421120.416
C4—C5—C10120.6 (2)C43—C42—H421120.315
C6—C5—C10117.7 (3)C42—C43—C44118.1 (3)
C5—C6—C7121.9 (3)C42—C43—H431120.785
C5—C6—H61118.912C44—C43—H431121.118
C7—C6—H61119.160C43—C44—N5123.6 (3)
C6—C7—C8116.7 (3)C43—C44—H441118.411
C6—C7—C11120.9 (3)N5—C44—H441117.944
C8—C7—C11122.3 (3)C39—C45—H451109.124
C7—C8—C9123.8 (3)C39—C45—H452109.650
C7—C8—H81118.020H451—C45—H452109.475
C9—C8—H81118.135C39—C45—H453109.625
C4—C9—C8119.3 (3)H451—C45—H453109.477
C4—C9—C12122.2 (3)H452—C45—H453109.475
C8—C9—C12118.4 (3)C39—C46—N6115.0 (2)
C5—C10—H21104.472C39—C46—H461108.127
C5—C10—H28110.553N6—C46—H461108.328
H21—C10—H28110.838C39—C46—H462107.732
C5—C10—H29110.748N6—C46—H462108.089
H21—C10—H29114.436H461—C46—H462109.467
H28—C10—H29105.877N6—C47—C48115.0 (3)
C7—C11—H15117.562N6—C47—C52129.0 (3)
C7—C11—H23109.217C48—C47—C52116.0 (3)
H15—C11—H23103.878C47—C48—C49122.3 (3)
C7—C11—H27108.389C47—C48—C53119.0 (3)
H15—C11—H27116.128C49—C48—C53118.7 (3)
H23—C11—H2799.862C48—C49—C50122.0 (3)
C9—C12—H16111.273C48—C49—H491118.971
C9—C12—H18108.312C50—C49—H491119.020
H16—C12—H18105.104C49—C50—C51115.9 (3)
C9—C12—H19112.757C49—C50—C54121.7 (3)
H16—C12—H19103.679C51—C50—C54122.4 (3)
H18—C12—H19115.387C50—C51—C52125.2 (3)
C2—C13—N2117.8 (3)C50—C51—H511117.676
C2—C13—H131107.901C52—C51—H511117.154
N2—C13—H131107.427C47—C52—C51118.6 (3)
C2—C13—H132107.130C47—C52—C55125.2 (3)
N2—C13—H132106.950C51—C52—C55116.2 (3)
H131—C13—H132109.467C48—C53—H34111.414
N2—C14—C15115.7 (2)C48—C53—H35111.663
N2—C14—C19130.6 (3)H34—C53—H35104.529
C15—C14—C19113.7 (2)C48—C53—H38112.697
C14—C15—C16123.3 (3)H34—C53—H38114.636
C14—C15—C20119.1 (2)H35—C53—H38101.133
C16—C15—C20117.5 (3)C50—C54—H3113.934
C15—C16—C17122.5 (3)C50—C54—H541108.541
C15—C16—H161118.754H3—C54—H541108.679
C17—C16—H161118.765C50—C54—H542108.587
C16—C17—C18115.6 (3)H3—C54—H542108.312
C16—C17—C21122.1 (3)H541—C54—H542108.679
C18—C17—C21122.3 (3)C52—C55—H4110.286
C17—C18—C19124.8 (3)C52—C55—H5110.507
C17—C18—H181117.857H4—C55—H5108.207
C19—C18—H181117.376C52—C55—H6111.175
C14—C19—C18120.0 (3)H4—C55—H6108.320
C14—C19—C22124.6 (2)H5—C55—H6108.254
C18—C19—C22115.4 (3)C57—C56—H561111.023
C15—C20—H33111.311C57—C56—H562108.617
C15—C20—H36105.509H561—C56—H562109.476
H33—C20—H36114.811C57—C56—H563108.749
C15—C20—H37109.936H561—C56—H563109.476
H33—C20—H37102.833H562—C56—H563109.476
H36—C20—H37112.531C56—C57—O1114.9 (4)
C17—C21—H8108.560C56—C57—H571107.950
C17—C21—H9111.728O1—C57—H571107.987
H8—C21—H9101.456C56—C57—H572107.818
C17—C21—H22106.811O1—C57—H572108.603
H8—C21—H22111.941H571—C57—H572109.467
H9—C21—H22116.180O1—C58—C59107.9 (8)
C19—C22—H2114.440O1—C58—H581111.049
C19—C22—H7101.608C59—C58—H581111.346
H2—C22—H7113.884O1—C58—H582111.158
C19—C22—H20107.382C59—C58—H582105.834
H2—C22—H20108.913H581—C58—H582109.467
H7—C22—H20110.282C58—C59—H591113.835
C2—C23—N3115.3 (2)C58—C59—H592104.478
C2—C23—C24124.7 (3)H591—C59—H592109.476
N3—C23—C24120.0 (3)C58—C59—H593109.947
C23—C24—C25119.1 (3)H591—C59—H593109.476
C23—C24—H241120.173H592—C59—H593109.476
C25—C24—H241120.773O1—C62—C63102.9 (10)
C24—C25—C26120.4 (3)O1—C62—H621112.365
C24—C25—H251119.507C63—C62—H621115.945
C26—C25—H251120.074O1—C62—H622111.383
C25—C26—C27118.2 (3)C63—C62—H622104.364
C25—C26—H261121.011H621—C62—H622109.467
C27—C26—H261120.744C62—C63—H631111.868
C26—C27—N3121.3 (3)C62—C63—H632102.419
C26—C27—C28124.7 (3)H631—C63—H632109.476
N3—C27—C28114.0 (2)C62—C63—H633113.860
C27—C28—C29112.7 (2)H631—C63—H633109.476
C27—C28—C30111.6 (2)H632—C63—H633109.476
C29—C28—C30107.4 (2)C60i—O2—C64i137.69 (2)
C27—C28—C38111.6 (2)C60i—O2—O2i53.44 (3)
C29—C28—C38114.0 (2)C64i—O2—O2i102.91 (3)
C30—C28—C3898.6 (2)C60i—O2—C60150.449 (18)
C28—C29—H291109.328C64i—O2—C6039.05 (2)
C28—C29—H292109.616O2i—O2—C6097.01 (4)
H291—C29—H292109.475C60i—O2—C6431.049 (14)
C28—C29—H293109.456C64i—O2—C64143.213 (15)
H291—C29—H293109.476O2i—O2—C6440.300 (13)
H292—C29—H293109.476C60—O2—C64126.18 (3)
C28—C30—C31129.7 (3)O2—C60—O2i29.551 (17)
C28—C30—C35107.9 (2)O2—C60—C65i147.255 (17)
C31—C30—C35121.9 (3)O2i—C60—C65i123.59 (3)
C30—C31—C32120.3 (3)O2—C60—C64i40.746 (16)
C30—C31—H311119.736O2i—C60—C64i53.643 (19)
C32—C31—H311119.946C65i—C60—C64i115.40 (3)
C31—C32—C33117.5 (3)O2—C60—C61119.78 (3)
C31—C32—C36120.9 (3)O2i—C60—C6194.97 (4)
C33—C32—C36121.6 (3)C65i—C60—C6128.684 (13)
C32—C33—C34123.7 (3)C64i—C60—C6198.22 (3)
C32—C33—H331118.299C60—C61—C65i30.627 (18)
C34—C33—H331117.999O2—C64—O2i36.79 (2)
C33—C34—C35117.5 (3)O2—C64—C60i95.31 (3)
C33—C34—C37121.6 (3)O2i—C64—C60i100.21 (3)
C35—C34—C37120.9 (3)O2—C64—C65107.28 (4)
C30—C35—C34119.0 (3)O2i—C64—C65127.64 (2)
C30—C35—N4114.1 (2)C60i—C64—C6532.357 (16)
C34—C35—N4126.9 (2)C64—C65—C60i32.240 (13)
C32—C36—H25110.027C64—C65—C61i100.65 (4)
C32—C36—H30113.047C60i—C65—C61i120.69 (3)
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank B. R. Tyrrell for help with the data collection, and Dr D. J. Watkin for help in modelling the disorder.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFriedrich, S., Schubart, M., Gade, L. H., Scowen, I. J., Edwards, A. J. & McPartlin, M. (1997). Chem. Ber./Recueil, 130, 1751–1759.  CrossRef CAS Google Scholar
First citationGade, L. H. & Mountford, P. (2001). Coord. Chem. Rev. 216–217, 65–97.  Web of Science CrossRef CAS Google Scholar
First citationMehrkhodavandi, P., Bonitatebus, P. J. Jr & Schrock, R. R. (2000). J. Am. Chem. Soc. 122, 7841–7842.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 80–82. New York, Heidelberg, Berlin: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany.  Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar
First citationWatkin, D. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds