metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bipyrid­yl)bis­­(pentane-2,4-dionato)vanadium(III) perchlorate di­chloro­methane solvate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 3 February 2006; accepted 6 February 2006; online 15 February 2006)

The title compound is a stoichiometrically solvated salt, [V(C5H7O2)2(C10H8N2)]ClO4·CH2Cl2. The ionic components are linked by three C—H⋯O hydrogen bonds into chains from which the solvent dichloro­methane mol­ecules are pendant, and pairs of anti­parallel (inversion-related) chains are linked by a single ππ stacking inter­action.

Comment

The nitro­gen heterocycles 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy) are among the most widely utilized chelating ligands in coordination chemistry (Lever, 2003[Lever, A. B. P. (2003). Comprehensive Coordination Chemistry II, Vol. 1. Oxford: Elsevier.]). We have recently prepared mixed-ligand vanadium(III) complexes containing both pentane-2,4-dionate (also called acetyl­acetonate; acac) and 1,10-phenanthroline ligands (Kavitha et al., 2006[Kavitha, S. J., Panchanatheswaran, K., Dale, S. H. &Elsegood, M. J. R. (2006). Inorg. Chim. Acta. In the press.]) in order to assess their anti­diabetic activity. Although phen and bipy have similar structures, there is a difference in their chelating ability, which has been attributed to the difference in the geometry of the free mol­ecules (Reyzer & Brodbelt, 1999[Reyzer, M. L. & Brodbelt, J. S. (1999). Int. J. Mass. Spectrom. 182/183, 311-322.]; Oresmaa et al., 2002[Oresmaa, L., Haukka, M., Vainiotalo, P. & Pakkenen, T. P. (2002). J. Org. Chem. 67, 8216-8219.]). The title complex, (I)[link], which contains a 2,2′-bipyridine ligand, has been prepared in order to compare its structure with that of the 1,10-phenanthroline analogue and with the longer term aim of testing its anti­diabetic activity.

[Scheme 1]

In the cation, which has approximate twofold rotational symmetry, the V atom is octa­hedrally coordinated (Table 1[link]) by three bidentate ligands (two acac and one bipy): each cation is thus chiral. The cation in the arbitrarily chosen asymmetric unit (Fig. 1[link]) has a Δ configuration, but space-group symmetry generates a racemic mixture of Λ and Δ enanti­omers. The component species are linked by three independent two-centre C—H⋯O hydrogen bonds and one planar three-centre C—H⋯(O)2 hydrogen bond (Table 2[link]). One further C—H⋯O hydrogen bond links the ionic aggregates into a C(10)C(11)[R22(7)] (Bernstein et al., 1995[Bernstein, J. Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain of rings running parallel to the [010] direction (Fig. 2[link]); the dichloro­methane mol­ecules are pendant from this chain.

A single ππ stacking inter­action links anti­parallel pairs of these chains (Fig. 2[link]). The rings (N21/C22–C26) in the cations at (x, y, z) and (1 − x, 1 − y, 1 − z) are strictly parallel, with an inter­planar spacing of 3.426 (2) Å: the corresponding ring-centroid separation is 3.751 (2) Å, and the ring offset is 1.527 (2) Å. Similar C—H⋯O and ππ inter­actions were identified in the structure of the analogous phen complex [V(acac)2(phen)]ClO4 (Kavitha et al., 2006[Kavitha, S. J., Panchanatheswaran, K., Dale, S. H. &Elsegood, M. J. R. (2006). Inorg. Chim. Acta. In the press.]). Otherwise, the bond lengths and angles of (I)[link] present no unusual features, and they are very similar to those in the analogous phen complex.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing 30% displacement ellipsoids (arbitrary spheres for the H atoms). The C—H⋯O inter­actions are indicated by dashed lines.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of (I)[link], showing the formation of a π-stacked pair of hydrogen-bonded (dashed lines) chains. For clarity, the dichloro­methane mol­ecules have been omitted, as have the H atoms not involved in the hydrogen-bonding motifs shown.

Experimental

A solution of tris­(pentane-2,4-dionato)vanadium(III) (0.30 g) and 2,2′-bipyridinium perchlorate (0.22 g) in methanol (30 ml) was heated under reflux for 3 h under an atmosphere of dinitro­gen. The mixture was cooled to yield an orange solid which was crystallized by vapour diffusion of light petroleum into a solution in dichloro­methane (m.p. 480 K).

Crystal data
  • [V(C5H7O2)2(C10H8N2)]ClO4·CH2Cl2

  • Mr = 589.71

  • Monoclinic, P 21 /c

  • a = 15.0676 (5) Å

  • b = 12.5534 (3) Å

  • c = 14.5533 (5) Å

  • β = 111.4860 (13)°

  • V = 2561.45 (14) Å3

  • Z = 4

  • Dx = 1.529 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5869 reflections

  • θ = 3.2–27.5°

  • μ = 0.75 mm−1

  • T = 120 (2) K

  • Plate, orange

  • 0.50 × 0.20 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.706, Tmax = 0.956

  • 37694 measured reflections

  • 5869 independent reflections

  • 4242 reflections with I > 2σ(I)

  • Rint = 0.058

  • θmax = 27.5°

  • h = −19 → 19

  • k = −16 → 16

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 1.07

  • 5869 reflections

  • 320 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0354P)2 + 2.8417P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

V1—O33 1.9487 (17)
V1—O43 1.9526 (17)
V1—O41 1.9694 (16)
V1—O31 1.9779 (17)
V1—N11 2.116 (2)
V1—N21 2.125 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O4i 0.95 2.51 3.349 (4) 147
C25—H25⋯O1 0.95 2.41 3.285 (4) 153
C26—H26⋯O2 0.95 2.47 3.249 (3) 139
C51—H51A⋯O43 0.99 2.53 3.429 (4) 150
C51—H51B⋯O2 0.99 2.59 3.404 (4) 140
C51—H51B⋯O3 0.99 2.44 3.397 (4) 161
Symmetry code: (i) x, y+1, z.

All H atoms were located in a difference map and then treated as riding atoms, with C—H = 0.95 (ring H), 0.98 (methyl H) or 0.99 Å (CH2), and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(2,2'-Bipyridyl)bis(pentane-2,4-dionato)vanadium(III) perchlorate dichloromethane solvate top
Crystal data top
[V(C5H7O2)2(C10H8N2)]ClO4·CH2Cl2F(000) = 1208
Mr = 589.71Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5869 reflections
a = 15.0676 (5) Åθ = 3.2–27.5°
b = 12.5534 (3) ŵ = 0.75 mm1
c = 14.5533 (5) ÅT = 120 K
β = 111.4860 (13)°Plate, orange
V = 2561.45 (14) Å30.50 × 0.20 × 0.06 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5869 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode4242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.706, Tmax = 0.956l = 1818
37694 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0354P)2 + 2.8417P]
where P = (Fo2 + 2Fc2)/3
5869 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.48 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.71091 (3)0.62674 (3)0.40436 (3)0.01887 (11)
N110.59056 (14)0.72637 (16)0.37634 (14)0.0191 (4)
C120.50629 (17)0.67768 (19)0.36333 (18)0.0209 (5)
C130.42284 (19)0.7349 (2)0.3421 (2)0.0302 (6)
C140.4254 (2)0.8446 (2)0.3349 (2)0.0335 (7)
C150.51090 (19)0.8947 (2)0.34727 (19)0.0276 (6)
C160.59128 (19)0.8328 (2)0.36672 (18)0.0228 (5)
N210.59971 (14)0.51845 (16)0.39565 (14)0.0201 (4)
C220.51166 (17)0.56069 (19)0.37491 (17)0.0208 (5)
C230.43394 (19)0.4968 (2)0.36685 (19)0.0258 (6)
C240.4470 (2)0.3880 (2)0.3813 (2)0.0300 (6)
C250.5367 (2)0.3449 (2)0.4029 (2)0.0289 (6)
C260.61101 (19)0.4125 (2)0.40911 (18)0.0245 (5)
C310.81839 (18)0.6627 (2)0.61603 (18)0.0233 (5)
O310.74506 (12)0.62160 (13)0.54909 (12)0.0224 (4)
C320.87980 (17)0.7349 (2)0.59678 (19)0.0253 (6)
C330.86659 (17)0.7763 (2)0.50439 (19)0.0229 (5)
O330.79843 (12)0.74640 (13)0.42470 (12)0.0234 (4)
C340.8345 (2)0.6315 (2)0.72030 (19)0.0351 (7)
C350.9308 (2)0.8620 (2)0.4930 (2)0.0317 (6)
C410.71562 (17)0.58255 (19)0.20685 (18)0.0203 (5)
O410.67408 (12)0.62704 (13)0.25980 (12)0.0213 (4)
C420.79325 (18)0.51384 (19)0.24419 (19)0.0230 (5)
C430.83089 (17)0.47996 (19)0.34177 (19)0.0213 (5)
O430.80044 (12)0.51241 (14)0.40936 (12)0.0239 (4)
C440.6717 (2)0.6036 (2)0.09848 (19)0.0273 (6)
C450.90869 (19)0.3987 (2)0.3743 (2)0.0297 (6)
Cl10.73123 (5)0.11454 (5)0.42413 (5)0.03025 (16)
O10.64206 (18)0.11127 (18)0.4379 (2)0.0655 (8)
O20.74504 (15)0.21793 (15)0.38921 (16)0.0391 (5)
O30.80694 (18)0.09205 (18)0.51596 (17)0.0543 (6)
O40.73151 (19)0.03468 (17)0.35384 (17)0.0530 (6)
C510.8670 (2)0.3419 (3)0.6071 (2)0.0364 (7)
Cl20.82681 (6)0.33110 (8)0.70602 (6)0.0493 (2)
Cl30.99178 (5)0.35970 (7)0.65157 (6)0.0454 (2)
H130.36450.69930.33260.036*
H140.36890.88530.32160.040*
H150.51410.97000.34240.033*
H160.64970.86680.37360.027*
H230.37250.52730.35160.031*
H240.39460.34320.37630.036*
H250.54700.27050.41330.035*
H260.67270.38290.42350.029*
H320.93460.75720.65080.030*
H34A0.80480.68420.74960.053*
H34B0.90320.62840.75870.053*
H34C0.80610.56140.72080.053*
H35A0.96540.83560.45210.048*
H35B0.97660.88230.55810.048*
H35C0.89260.92420.46110.048*
H420.82220.48870.20030.028*
H44A0.60350.58680.07490.041*
H44B0.70270.55900.06370.041*
H44C0.68010.67880.08570.041*
H45A0.95960.42360.43440.044*
H45B0.93440.38820.32210.044*
H45C0.88310.33120.38770.044*
H51A0.83540.40320.56500.044*
H51B0.84970.27670.56620.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0197 (2)0.0222 (2)0.0139 (2)0.00181 (17)0.00524 (16)0.00108 (17)
N110.0223 (10)0.0219 (10)0.0122 (10)0.0007 (8)0.0053 (8)0.0005 (8)
C120.0224 (12)0.0245 (13)0.0151 (12)0.0016 (10)0.0059 (10)0.0013 (10)
C130.0232 (13)0.0322 (15)0.0342 (16)0.0042 (11)0.0093 (12)0.0014 (12)
C140.0297 (15)0.0322 (15)0.0347 (17)0.0134 (12)0.0073 (13)0.0060 (12)
C150.0372 (15)0.0211 (13)0.0215 (14)0.0071 (11)0.0072 (12)0.0013 (10)
C160.0307 (14)0.0218 (12)0.0152 (12)0.0016 (10)0.0074 (11)0.0009 (10)
N210.0225 (10)0.0224 (10)0.0140 (10)0.0028 (8)0.0048 (9)0.0009 (8)
C220.0226 (12)0.0246 (13)0.0140 (12)0.0016 (10)0.0053 (10)0.0013 (10)
C230.0261 (13)0.0274 (13)0.0248 (14)0.0007 (11)0.0104 (11)0.0010 (11)
C240.0328 (15)0.0299 (15)0.0299 (15)0.0067 (12)0.0147 (12)0.0027 (12)
C250.0386 (15)0.0232 (13)0.0258 (15)0.0009 (11)0.0128 (13)0.0015 (11)
C260.0294 (14)0.0232 (12)0.0198 (13)0.0057 (10)0.0076 (11)0.0018 (10)
C310.0237 (13)0.0282 (13)0.0172 (13)0.0078 (10)0.0065 (11)0.0017 (10)
O310.0238 (9)0.0270 (9)0.0153 (9)0.0007 (7)0.0060 (7)0.0010 (7)
C320.0189 (12)0.0337 (14)0.0192 (13)0.0007 (10)0.0021 (10)0.0039 (11)
C330.0193 (12)0.0255 (13)0.0235 (14)0.0037 (10)0.0073 (11)0.0038 (10)
O330.0229 (9)0.0288 (9)0.0169 (9)0.0018 (7)0.0053 (7)0.0004 (7)
C340.0400 (16)0.0447 (17)0.0164 (14)0.0031 (13)0.0053 (12)0.0008 (12)
C350.0288 (14)0.0369 (16)0.0277 (15)0.0083 (12)0.0084 (12)0.0026 (12)
C410.0243 (12)0.0189 (12)0.0179 (12)0.0062 (10)0.0078 (10)0.0032 (10)
O410.0238 (9)0.0251 (9)0.0145 (8)0.0027 (7)0.0062 (7)0.0010 (7)
C420.0254 (13)0.0240 (13)0.0215 (13)0.0030 (10)0.0109 (11)0.0038 (10)
C430.0190 (12)0.0189 (12)0.0268 (14)0.0029 (9)0.0095 (11)0.0024 (10)
O430.0238 (9)0.0281 (9)0.0194 (9)0.0064 (7)0.0074 (8)0.0012 (7)
C440.0391 (15)0.0244 (13)0.0179 (13)0.0025 (11)0.0097 (12)0.0006 (10)
C450.0280 (14)0.0284 (14)0.0342 (16)0.0060 (11)0.0134 (12)0.0002 (12)
Cl10.0368 (4)0.0213 (3)0.0326 (4)0.0015 (3)0.0127 (3)0.0009 (3)
O10.0581 (16)0.0403 (13)0.117 (2)0.0093 (11)0.0545 (17)0.0239 (14)
O20.0507 (13)0.0224 (10)0.0452 (13)0.0033 (9)0.0187 (11)0.0070 (9)
O30.0660 (16)0.0446 (13)0.0385 (14)0.0026 (12)0.0028 (12)0.0061 (10)
O40.0817 (17)0.0329 (12)0.0459 (14)0.0104 (12)0.0252 (13)0.0161 (10)
C510.0273 (14)0.0440 (17)0.0299 (16)0.0083 (13)0.0007 (13)0.0040 (13)
Cl20.0371 (4)0.0672 (5)0.0473 (5)0.0015 (4)0.0198 (4)0.0126 (4)
Cl30.0273 (4)0.0657 (5)0.0389 (4)0.0050 (3)0.0070 (3)0.0168 (4)
Geometric parameters (Å, º) top
V1—O331.9487 (17)C32—H320.95
V1—O431.9526 (17)C33—O331.292 (3)
V1—O411.9694 (16)C33—C351.496 (4)
V1—O311.9779 (17)C34—H34A0.98
V1—N112.116 (2)C34—H34B0.98
V1—N212.125 (2)C34—H34C0.98
N11—C161.343 (3)C35—H35A0.98
N11—C121.359 (3)C35—H35B0.98
C12—C131.381 (3)C35—H35C0.98
C12—C221.477 (3)C41—O411.285 (3)
C13—C141.383 (4)C41—C421.394 (3)
C13—H130.95C41—C441.494 (3)
C14—C151.385 (4)C42—C431.389 (4)
C14—H140.95C42—H420.95
C15—C161.379 (4)C43—O431.294 (3)
C15—H150.95C43—C451.494 (3)
C16—H160.95C44—H44A0.98
N21—C261.347 (3)C44—H44B0.98
N21—C221.356 (3)C44—H44C0.98
C22—C231.389 (3)C45—H45A0.98
C23—C241.385 (4)C45—H45B0.98
C23—H230.95C45—H45C0.98
C24—C251.380 (4)Cl1—O11.430 (2)
C24—H240.95Cl1—O31.432 (2)
C25—C261.381 (4)Cl1—O41.433 (2)
C25—H250.95Cl1—O21.4366 (19)
C26—H260.95C51—Cl21.759 (3)
C31—O311.284 (3)C51—Cl31.765 (3)
C31—C321.395 (4)C51—H51A0.99
C31—C341.498 (4)C51—H51B0.99
C32—C331.386 (4)
O33—V1—O4398.11 (7)C33—C32—C31124.6 (2)
O33—V1—O4194.07 (7)C33—C32—H32117.7
O43—V1—O4187.81 (7)C31—C32—H32117.7
O33—V1—O3188.04 (7)O33—C33—C32123.1 (2)
O43—V1—O3191.70 (7)O33—C33—C35116.3 (2)
O41—V1—O31177.88 (7)C32—C33—C35120.6 (2)
O33—V1—N1193.33 (7)C33—O33—V1129.18 (16)
O43—V1—N11166.71 (8)C31—C34—H34A109.5
O41—V1—N1184.65 (7)C31—C34—H34B109.5
O31—V1—N1195.44 (7)H34A—C34—H34B109.5
O33—V1—N21167.72 (7)C31—C34—H34C109.5
O43—V1—N2192.92 (7)H34A—C34—H34C109.5
O41—V1—N2191.72 (7)H34B—C34—H34C109.5
O31—V1—N2186.25 (7)C33—C35—H35A109.5
N11—V1—N2176.43 (8)C33—C35—H35B109.5
C16—N11—C12118.4 (2)H35A—C35—H35B109.5
C16—N11—V1124.66 (17)C33—C35—H35C109.5
C12—N11—V1116.88 (15)H35A—C35—H35C109.5
N11—C12—C13121.7 (2)H35B—C35—H35C109.5
N11—C12—C22115.0 (2)O41—C41—C42124.0 (2)
C13—C12—C22123.3 (2)O41—C41—C44115.6 (2)
C12—C13—C14119.1 (3)C42—C41—C44120.3 (2)
C12—C13—H13120.5C41—O41—V1129.15 (16)
C14—C13—H13120.5C43—C42—C41123.9 (2)
C13—C14—C15119.6 (2)C43—C42—H42118.0
C13—C14—H14120.2C41—C42—H42118.0
C15—C14—H14120.2O43—C43—C42123.7 (2)
C16—C15—C14118.4 (2)O43—C43—C45115.4 (2)
C16—C15—H15120.8C42—C43—C45120.8 (2)
C14—C15—H15120.8C43—O43—V1129.45 (16)
N11—C16—C15122.8 (2)C41—C44—H44A109.5
N11—C16—H16118.6C41—C44—H44B109.5
C15—C16—H16118.6H44A—C44—H44B109.5
C26—N21—C22118.7 (2)C41—C44—H44C109.5
C26—N21—V1124.64 (17)H44A—C44—H44C109.5
C22—N21—V1116.67 (16)H44B—C44—H44C109.5
N21—C22—C23121.3 (2)C43—C45—H45A109.5
N21—C22—C12115.0 (2)C43—C45—H45B109.5
C23—C22—C12123.8 (2)H45A—C45—H45B109.5
C24—C23—C22119.2 (2)C43—C45—H45C109.5
C24—C23—H23120.4H45A—C45—H45C109.5
C22—C23—H23120.4H45B—C45—H45C109.5
C25—C24—C23119.6 (2)O1—Cl1—O3109.39 (17)
C25—C24—H24120.2O1—Cl1—O4109.18 (16)
C23—C24—H24120.2O3—Cl1—O4108.58 (15)
C24—C25—C26118.5 (2)O1—Cl1—O2109.92 (13)
C24—C25—H25120.8O3—Cl1—O2109.82 (13)
C26—C25—H25120.8O4—Cl1—O2109.92 (14)
N21—C26—C25122.7 (2)Cl2—C51—Cl3110.46 (16)
N21—C26—H26118.6Cl2—C51—H51A109.6
C25—C26—H26118.6Cl3—C51—H51A109.6
O31—C31—C32124.0 (2)Cl2—C51—H51B109.6
O31—C31—C34116.0 (2)Cl3—C51—H51B109.6
C32—C31—C34120.0 (2)H51A—C51—H51B108.1
C31—O31—V1127.66 (16)
O33—V1—N11—C167.3 (2)C12—C22—C23—C24178.5 (2)
O43—V1—N11—C16142.2 (3)C22—C23—C24—C250.3 (4)
O41—V1—N11—C1686.47 (19)C23—C24—C25—C260.3 (4)
O31—V1—N11—C1695.65 (19)C22—N21—C26—C250.2 (4)
N21—V1—N11—C16179.6 (2)V1—N21—C26—C25179.91 (19)
O33—V1—N11—C12175.51 (17)C24—C25—C26—N210.5 (4)
O43—V1—N11—C1235.0 (4)C32—C31—O31—V111.5 (3)
O41—V1—N11—C1290.70 (17)C34—C31—O31—V1170.41 (17)
O31—V1—N11—C1287.17 (17)O33—V1—O31—C3118.4 (2)
N21—V1—N11—C122.37 (16)O43—V1—O31—C3179.7 (2)
C16—N11—C12—C130.9 (3)N11—V1—O31—C31111.5 (2)
V1—N11—C12—C13178.30 (19)N21—V1—O31—C31172.5 (2)
C16—N11—C12—C22179.8 (2)O31—C31—C32—C334.1 (4)
V1—N11—C12—C222.5 (3)C34—C31—C32—C33174.0 (2)
N11—C12—C13—C140.6 (4)C31—C32—C33—O334.8 (4)
C22—C12—C13—C14178.5 (2)C31—C32—C33—C35173.5 (2)
C12—C13—C14—C151.2 (4)C32—C33—O33—V110.6 (3)
C13—C14—C15—C160.1 (4)C35—C33—O33—V1171.11 (17)
C12—N11—C16—C152.1 (4)O43—V1—O33—C3373.3 (2)
V1—N11—C16—C15179.19 (18)O41—V1—O33—C33161.68 (19)
C14—C15—C16—N111.5 (4)O31—V1—O33—C3318.1 (2)
O33—V1—N21—C26144.0 (3)N11—V1—O33—C33113.5 (2)
O43—V1—N21—C269.9 (2)N21—V1—O33—C3380.4 (4)
O41—V1—N21—C2697.8 (2)C42—C41—O41—V16.9 (3)
O31—V1—N21—C2681.62 (19)C44—C41—O41—V1176.63 (16)
N11—V1—N21—C26178.1 (2)O33—V1—O41—C4184.82 (19)
O33—V1—N21—C2236.0 (4)O43—V1—O41—C4113.15 (19)
O43—V1—N21—C22170.05 (17)N11—V1—O41—C41177.8 (2)
O41—V1—N21—C2282.15 (17)N21—V1—O41—C41106.01 (19)
O31—V1—N21—C2298.44 (17)O41—C41—C42—C434.4 (4)
N11—V1—N21—C221.92 (16)C44—C41—C42—C43171.9 (2)
C26—N21—C22—C230.4 (3)C41—C42—C43—O433.2 (4)
V1—N21—C22—C23179.52 (18)C41—C42—C43—C45174.5 (2)
C26—N21—C22—C12178.8 (2)C42—C43—O43—V19.4 (3)
V1—N21—C22—C121.3 (3)C45—C43—O43—V1172.80 (16)
N11—C12—C22—N210.8 (3)O33—V1—O43—C4379.4 (2)
C13—C12—C22—N21180.0 (2)O41—V1—O43—C4314.4 (2)
N11—C12—C22—C23178.4 (2)O31—V1—O43—C43167.7 (2)
C13—C12—C22—C230.8 (4)N11—V1—O43—C4369.7 (4)
N21—C22—C23—C240.6 (4)N21—V1—O43—C43106.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O4i0.952.513.349 (4)147
C25—H25···O10.952.413.285 (4)153
C26—H26···O20.952.473.249 (3)139
C51—H51A···O430.992.533.429 (4)150
C51—H51B···O20.992.593.404 (4)140
C51—H51B···O30.992.443.397 (4)161
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice.

References

First citationBernstein, J. Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKavitha, S. J., Panchanatheswaran, K., Dale, S. H. &Elsegood, M. J. R. (2006). Inorg. Chim. Acta. In the press.  Google Scholar
First citationLever, A. B. P. (2003). Comprehensive Coordination Chemistry II, Vol. 1. Oxford: Elsevier.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOresmaa, L., Haukka, M., Vainiotalo, P. & Pakkenen, T. P. (2002). J. Org. Chem. 67, 8216–8219.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReyzer, M. L. & Brodbelt, J. S. (1999). Int. J. Mass. Spectrom. 182/183, 311–322.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds