metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl isocyanide-1κC-di-μ-carbonyl-2:3κ4C-nona­carbonyl-1κ3C,2κ3C,3κ3C-triangulo-diironosmium

CROSSMARK_Color_square_no_text.svg

aWest CHEM, Department of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: cevans@chem.gla.ac.uk

(Received 24 January 2006; accepted 3 February 2006; online 10 February 2006)

The preparation of the mixed-metal cluster, [Fe2Os(C5H9N)(CO)11], and its crystal structure at 100 K are reported. This complex, along with the cluster reported in the following paper, are the first structurally characterized substitution derivatives of Fe2Os(CO)12. The isonitrile ligand adopts an axial position on the osmium centre and the cluster is isostructural with the Fe2Ru analogue.

Comment

The structures of the mixed metal clusters Fe2M(CO)12 (M = Ru and Os) have been examined in detail (Churchill & Fettinger, 1990[Churchill, M. R. & Fettinger, J. C. (1990). Organometallics, 9, 446-452.]; Braga et al., 1995[Braga, D., Farrugia, L. J., Grepioni, F. & Senior, A. (1995). J. Chem. Soc. Chem. Commun. pp. 1219-1220.], 1996[Braga, D., Farrugia, L. J., Gillon, A. L., Grepioni, F. & Tedesco, E. (1996). Organometallics, 15, 4684-4686.]; Farrugia et al., 1996[Farrugia, L. J., Senior, A., Braga, D., Grepioni, F., Orpen, A. G. & Crossley, J. G. (1996). J. Chem. Soc. Dalton Trans. pp. 631-641.]), with particular focus on dynamic disorder within the metal triangle. In addition, various phosphine-, phosphite- (Venalainen & Pakkanen, 1984[Venalainen, T. & Pakkanen, T. (1984). J. Organomet. Chem. 266, 269-283.]) and isonitrile-substituted (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]) derivatives of Fe2Ru(CO)12 have been structurally characterized. Phosphine and phosphite derivatives of Fe2Os(CO)12 have been reported (Shojaie & Atwood, 1988[Shojaie, R. & Atwood, J. D. (1988). Inorg. Chem. 27, 2558-2560.]) though, to date, no derivatives have been structurally characterized. We report here (and in Evans et al., 2006[Evans, C., Farrugia, L. J. & Tegel, M. (2006). Acta Cryst. E62, m478-m479.]) the synthesis and structures of Fe2Os(CO)12−n(CNBut)n (n = 1 and 2).

Fe2Os(CO)11(CNBut), (I)[link], was prepared by carbonyl substitution of the parent Fe2Os(CO)12 cluster using standard methods (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]). The complex was characterized spectroscopically, by FAB mass spectrometry, and by single-crystal X-ray structure determination. The structure was determined at room temperature and 100 K with no discernible metal atom disorder at either temperature. As the structures at different temperatures are essentially identical, only the more precise low-temperature structure will be discussed here.

[Scheme 1]

The structure of (I)[link] is shown in Fig. 1[link]. The isonitrile ligand adopts an axial position on the Os atom, equivalent to the orientation observed for Fe2Ru(CO)11(CNBut) (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]) and isomer B of Fe3(CO)11PPh3 (Dahm & Jacobson, 1968[Dahm, D. J. & Jacobson, R. A. (1968). J. Am. Chem. Soc. 90, 5106-5112.]) but contrasting with the equatorial positions adopted by the phosphine and phosphite ligands in Fe2Ru(CO)11(PR3) (R = Ph and OMe; Venalainen & Pakkanen, 1984[Venalainen, T. & Pakkanen, T. (1984). J. Organomet. Chem. 266, 269-283.]). The average Os—Fe distance [2.7495 (8) Å] is marginally longer than that observed (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]) for Ru—Fe in the ruthenium analogue [2.7441 (7) Å], while the Fe—Fe distance [2.5675 (8) Å] is slightly shorter [2.5724 (6) Å]. The C—Os distance [2.042 (4) Å] and N—C—Os angle [177.9 (4)°] are comparable to those reported for the ruthenium analogue [2.045 (3) Å and 177.9 (2)°] and Os3(CO)11(CNMe) [2.074 (23) Å and 173.6 (17)°; Dawson et al., 1982[Dawson, P. A., Johnson, B. F. G., Lewis, J., Puga, J., Raithby, P. R. & Rosales, M. J. (1982). J. Chem. Soc. Dalton Trans. pp. 233-235.]]. Two carbonyl ligands symmetrically bridge the Fe—Fe bond [δ(M—C) = 0.018 and 0.023 Å for C14 and C24, respectively].

The crystal of (I)[link] is affected by twinning in a manner similar to that reported for the ruthenium analogue (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]). The twin axis is [101] and the non-merohedral twinning results in a significant number of seriously overlapped reflections, which were removed from the data file used for refinement. At 100 K, the proportion of the second component refines to 0.207 (1) compared with 0.172 (2) at room temperature.

[Figure 1]
Figure 1
A view of Fe2Os(CO)11(CNBut) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, with H atoms represented by circles of arbitrary size.

Experimental

Complex (I)[link] was prepared in the same manner as reported for the ruthenium analogue (Farrugia & Mertes, 2002[Farrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199-213.]), by reaction of the parent carbonyl with a 1:1 molar ratio of isonitrile. The product was purified by chromatography on Florisil using hexane/CH2Cl2 mixtures as eluant. Crystals were obtained from a concentrated hexane solution at 253 K. Analysis calculated for C16H9Fe2NO11Os: C 27.73, H 1.31, N 2.02%; found: C 27.72, H 1.30, N 1.97%. IR [ν(CN), cm−1] 2200 (vw); IR [ν(CO), cm−1] 2042 (vs), 2033 (vs), 2019 (m), 1994 (w), 1984 (w), 1895 (vw), 1856 (vw), 1813 (w). 1H NMR: δ 1.54 (s, CH3). Mass spectrum, m/z = 695.1 [M+], 667.2 [M+ − CO], 639.2 [M+ − 2CO], 611.1 [M+ − 3CO], 583.1 [M+ − 4CO], 555.1 [M+ − 5 CO], 527.1 [M+ − 6CO], 499.1 [M+ − 7CO], 471.2 [M+ − 8CO], 443.1 [M+ − 9 CO].

Crystal data
  • [Fe2Os(C5H9N)(CO)11]

  • Mr = 693.14

  • Monoclinic, P 21 /n

  • a = 11.6861 (2) Å

  • b = 11.6142 (2) Å

  • c = 15.5189 (2) Å

  • β = 107.829 (1)°

  • V = 2005.14 (6) Å3

  • Z = 4

  • Dx = 2.296 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8960 reflections

  • θ = 2.2–35.0°

  • μ = 7.81 mm−1

  • T = 100 (2) K

  • Prism, black

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ or ω scans

  • Absorption correction: multi-scan(Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.215, Tmax = 0.452

  • 40723 measured reflections

  • 4158 independent reflections

  • 4019 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 27.6°

  • h = −15 → 15

  • k = −15 → 14

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.12

  • 4158 reflections

  • 282 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0019P)2 + 10.979P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.55 e Å−3

  • Δρmin = −1.23 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00067 (8)

All H atoms were placed in calculated positions and refined using a riding model [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C)]. The highest features in the difference map are associated with the Os atom.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

tert-Butyl isocyanide-1κC-di-µ-carbonyl-2:3κ4C-nonacarbonyl- 1κ3C,2κ3C,3κ3C-triangulo-diironosmium top
Crystal data top
[Fe2Os(C5H9N)(CO)11]F(000) = 1312
Mr = 693.14Dx = 2.296 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8960 reflections
a = 11.6861 (2) Åθ = 2.2–35.0°
b = 11.6142 (2) ŵ = 7.81 mm1
c = 15.5189 (2) ÅT = 100 K
β = 107.829 (1)°Prism, black
V = 2005.14 (6) Å30.3 × 0.2 × 0.1 mm
Z = 4
Data collection top
KappaCCD
diffractometer
4158 independent reflections
Radiation source: Enraf Nonius FR5904019 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
CCD rotation images, thick slices scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1515
Tmin = 0.215, Tmax = 0.452k = 1514
40723 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0019P)2 + 10.979P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
4158 reflectionsΔρmax = 1.55 e Å3
282 parametersΔρmin = 1.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00067 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0863 (4)0.1792 (4)0.1082 (3)0.0125 (8)
C110.8759 (4)0.5245 (4)0.1518 (3)0.0140 (8)
C120.9341 (4)0.3731 (3)0.0368 (3)0.0132 (8)
C130.7239 (4)0.3506 (4)0.0697 (3)0.0162 (9)
C141.0483 (4)0.3761 (4)0.2118 (3)0.0145 (8)
C211.0292 (4)0.3552 (3)0.3803 (3)0.0134 (8)
C221.1308 (4)0.1910 (4)0.3052 (3)0.0152 (8)
C230.9238 (4)0.1467 (4)0.3302 (3)0.0166 (9)
C240.8239 (4)0.3338 (3)0.2418 (3)0.0142 (8)
C310.9743 (4)0.0146 (4)0.1611 (3)0.0159 (8)
C320.8590 (4)0.1093 (4)0.0026 (3)0.0143 (8)
C330.7690 (4)0.1149 (4)0.1436 (3)0.0140 (8)
C1001.2935 (4)0.2314 (4)0.0850 (3)0.0138 (8)
C1011.3028 (4)0.3629 (4)0.0842 (3)0.0199 (9)
H10A1.30250.39350.1430.03*
H10B1.23420.39430.03650.03*
H10C1.37770.38510.07260.03*
C1021.3899 (4)0.1792 (4)0.1650 (3)0.0205 (9)
H10D1.38010.09540.16440.031*
H10E1.3820.21040.22160.031*
H10F1.46950.19810.16040.031*
C1031.2950 (4)0.1802 (4)0.0054 (3)0.0189 (9)
H10G1.29010.09610.00280.028*
H10H1.36960.20220.01730.028*
H10I1.22610.20950.05390.028*
N11.1767 (3)0.2023 (3)0.0969 (2)0.0131 (7)
O110.8763 (3)0.6214 (3)0.1617 (2)0.0191 (7)
O120.9639 (3)0.3781 (3)0.0264 (2)0.0198 (7)
O130.6252 (3)0.3433 (3)0.0286 (2)0.0232 (7)
O141.1403 (3)0.4232 (3)0.2157 (2)0.0174 (6)
O211.0583 (3)0.4115 (3)0.4435 (2)0.0205 (7)
O221.2228 (3)0.1478 (3)0.3243 (2)0.0253 (8)
O230.8907 (3)0.0728 (3)0.3652 (2)0.0235 (7)
O240.7414 (3)0.3486 (3)0.2664 (2)0.0184 (6)
O311.0013 (3)0.1066 (3)0.1831 (3)0.0268 (8)
O320.8180 (3)0.0910 (3)0.0788 (2)0.0224 (7)
O330.6785 (3)0.0980 (3)0.1540 (2)0.0185 (6)
Fe10.88075 (5)0.37081 (5)0.13486 (4)0.01044 (12)
Fe20.98706 (5)0.26332 (5)0.28223 (4)0.01091 (12)
Os10.923356 (15)0.139606 (12)0.123351 (11)0.00966 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.014 (2)0.0116 (18)0.0107 (18)0.0013 (15)0.0022 (15)0.0031 (15)
C110.0128 (19)0.018 (2)0.0123 (19)0.0020 (16)0.0049 (15)0.0012 (15)
C120.014 (2)0.0104 (18)0.014 (2)0.0002 (15)0.0028 (16)0.0004 (15)
C130.022 (2)0.0119 (19)0.016 (2)0.0028 (17)0.0077 (18)0.0004 (16)
C140.020 (2)0.0130 (19)0.0090 (18)0.0076 (16)0.0017 (16)0.0031 (15)
C210.015 (2)0.0121 (18)0.014 (2)0.0020 (15)0.0045 (16)0.0034 (16)
C220.023 (2)0.0128 (19)0.0116 (19)0.0019 (17)0.0080 (16)0.0014 (15)
C230.014 (2)0.020 (2)0.013 (2)0.0016 (17)0.0002 (16)0.0003 (17)
C240.019 (2)0.0091 (18)0.0133 (19)0.0011 (16)0.0040 (17)0.0006 (15)
C310.014 (2)0.019 (2)0.017 (2)0.0004 (16)0.0077 (16)0.0007 (16)
C320.0108 (19)0.0159 (19)0.017 (2)0.0010 (15)0.0054 (16)0.0024 (16)
C330.018 (2)0.0127 (19)0.0110 (18)0.0010 (16)0.0040 (16)0.0002 (16)
C1000.0106 (19)0.0155 (19)0.018 (2)0.0006 (15)0.0081 (16)0.0002 (16)
C1010.020 (2)0.016 (2)0.027 (2)0.0029 (17)0.0129 (19)0.0004 (18)
C1020.015 (2)0.025 (2)0.020 (2)0.0023 (18)0.0027 (17)0.0034 (18)
C1030.024 (2)0.016 (2)0.020 (2)0.0002 (17)0.0131 (19)0.0014 (17)
N10.0138 (17)0.0129 (16)0.0122 (16)0.0012 (13)0.0036 (13)0.0001 (13)
O110.0234 (17)0.0122 (15)0.0212 (16)0.0019 (12)0.0061 (13)0.0004 (12)
O120.0257 (18)0.0196 (16)0.0164 (16)0.0008 (13)0.0101 (13)0.0012 (13)
O130.0193 (18)0.0243 (18)0.0216 (17)0.0002 (14)0.0001 (14)0.0041 (14)
O140.0154 (15)0.0176 (15)0.0200 (15)0.0027 (12)0.0064 (12)0.0011 (12)
O210.0239 (17)0.0217 (16)0.0166 (16)0.0045 (14)0.0072 (13)0.0039 (13)
O220.0185 (18)0.0304 (19)0.0271 (18)0.0084 (14)0.0068 (14)0.0025 (15)
O230.0237 (18)0.0233 (17)0.0233 (17)0.0058 (14)0.0069 (14)0.0051 (14)
O240.0170 (16)0.0226 (16)0.0186 (16)0.0032 (13)0.0100 (13)0.0019 (13)
O310.0277 (19)0.0151 (16)0.041 (2)0.0052 (14)0.0152 (16)0.0084 (15)
O320.0232 (17)0.0274 (18)0.0174 (16)0.0000 (14)0.0072 (13)0.0046 (14)
O330.0151 (15)0.0218 (16)0.0202 (16)0.0015 (13)0.0079 (12)0.0010 (13)
Fe10.0122 (3)0.0099 (3)0.0092 (3)0.0013 (2)0.0033 (2)0.0003 (2)
Fe20.0128 (3)0.0102 (3)0.0096 (3)0.0007 (2)0.0032 (2)0.0006 (2)
Os10.00983 (9)0.00890 (8)0.01084 (8)0.00011 (6)0.00403 (6)0.00070 (6)
Geometric parameters (Å, º) top
C1—N11.154 (6)C31—Os11.922 (4)
C1—Os12.042 (4)C32—O321.150 (5)
C11—O111.136 (5)C32—Os11.901 (4)
C11—Fe11.807 (4)C33—O331.135 (5)
C12—O121.139 (5)C33—Os11.944 (4)
C12—Fe11.813 (4)C100—N11.472 (5)
C13—O131.138 (6)C100—C1021.524 (6)
C13—Fe11.817 (5)C100—C1031.528 (6)
C14—O141.191 (6)C100—C1011.531 (6)
C14—Fe11.958 (5)C101—H10A0.98
C14—Fe21.976 (5)C101—H10B0.98
C21—O211.141 (5)C101—H10C0.98
C21—Fe21.799 (4)C102—H10D0.98
C22—O221.140 (6)C102—H10E0.98
C22—Fe21.814 (5)C102—H10F0.98
C23—O231.144 (6)C103—H10G0.98
C23—Fe21.810 (5)C103—H10H0.98
C24—O241.154 (6)C103—H10I0.98
C24—Fe21.991 (5)Fe1—Fe22.5675 (8)
C24—Fe12.014 (4)Fe1—Os12.7467 (6)
C31—O311.136 (5)Fe2—Os12.7522 (6)
N1—C1—Os1177.9 (4)C13—Fe1—C2484.27 (19)
O11—C11—Fe1177.7 (4)C14—Fe1—C2491.44 (18)
O12—C12—Fe1177.0 (4)C11—Fe1—Fe2112.27 (13)
O13—C13—Fe1176.9 (4)C12—Fe1—Fe2123.90 (14)
O14—C14—Fe1139.8 (4)C13—Fe1—Fe2124.31 (14)
O14—C14—Fe2138.7 (3)C14—Fe1—Fe249.55 (13)
Fe1—C14—Fe281.50 (18)C24—Fe1—Fe249.75 (13)
O21—C21—Fe2178.2 (4)C11—Fe1—Os1171.57 (14)
O22—C22—Fe2176.3 (4)C12—Fe1—Os181.01 (13)
O23—C23—Fe2175.5 (4)C13—Fe1—Os190.56 (13)
O24—C24—Fe2140.7 (4)C14—Fe1—Os184.42 (12)
O24—C24—Fe1139.5 (4)C24—Fe1—Os187.53 (12)
Fe2—C24—Fe179.74 (17)Fe2—Fe1—Os162.273 (18)
O31—C31—Os1178.2 (4)C21—Fe2—C2397.84 (19)
O32—C32—Os1178.8 (4)C21—Fe2—C2296.4 (2)
O33—C33—Os1178.2 (4)C23—Fe2—C2292.48 (19)
N1—C100—C102106.8 (3)C21—Fe2—C1491.34 (18)
N1—C100—C103107.3 (3)C23—Fe2—C14170.81 (19)
C102—C100—C103112.3 (4)C22—Fe2—C1486.81 (18)
N1—C100—C101107.6 (3)C21—Fe2—C2490.61 (19)
C102—C100—C101111.5 (4)C23—Fe2—C2488.0 (2)
C103—C100—C101111.1 (4)C22—Fe2—C24172.84 (18)
C100—C101—H10A109.5C14—Fe2—C2491.58 (18)
C100—C101—H10B109.5C21—Fe2—Fe1113.43 (13)
H10A—C101—H10B109.5C23—Fe2—Fe1125.69 (14)
C100—C101—H10C109.5C22—Fe2—Fe1124.50 (13)
H10A—C101—H10C109.5C14—Fe2—Fe148.95 (13)
H10B—C101—H10C109.5C24—Fe2—Fe150.51 (13)
C100—C102—H10D109.5C21—Fe2—Os1174.99 (13)
C100—C102—H10E109.5C23—Fe2—Os186.86 (14)
H10D—C102—H10E109.5C22—Fe2—Os185.08 (13)
C100—C102—H10F109.5C14—Fe2—Os183.95 (12)
H10D—C102—H10F109.5C24—Fe2—Os187.82 (12)
H10E—C102—H10F109.5Fe1—Fe2—Os162.058 (18)
C100—C103—H10G109.5C32—Os1—C3197.42 (18)
C100—C103—H10H109.5C32—Os1—C3392.55 (18)
H10G—C103—H10H109.5C31—Os1—C3391.67 (18)
C100—C103—H10I109.5C32—Os1—C190.72 (17)
H10G—C103—H10I109.5C31—Os1—C191.88 (17)
H10H—C103—H10I109.5C33—Os1—C1174.83 (17)
C1—N1—C100178.5 (4)C32—Os1—Fe1103.04 (13)
C11—Fe1—C1298.15 (18)C31—Os1—Fe1159.51 (13)
C11—Fe1—C1397.87 (19)C33—Os1—Fe186.44 (12)
C12—Fe1—C1394.71 (19)C1—Os1—Fe188.92 (11)
C11—Fe1—C1487.18 (18)C32—Os1—Fe2158.70 (13)
C12—Fe1—C1488.53 (19)C31—Os1—Fe2103.87 (13)
C13—Fe1—C14173.54 (19)C33—Os1—Fe286.67 (13)
C11—Fe1—C2493.35 (17)C1—Os1—Fe288.83 (11)
C12—Fe1—C24168.48 (18)Fe1—Os1—Fe255.669 (17)
O14—C14—Fe1—C1156.5 (5)Os1—Fe1—Fe2—C14107.68 (15)
Fe2—C14—Fe1—C11122.73 (17)C11—Fe1—Fe2—C2474.7 (2)
O14—C14—Fe1—C1241.7 (5)C12—Fe1—Fe2—C24167.9 (2)
Fe2—C14—Fe1—C12139.04 (17)C13—Fe1—Fe2—C2442.6 (2)
O14—C14—Fe1—C24149.8 (5)C14—Fe1—Fe2—C24139.9 (2)
Fe2—C14—Fe1—C2429.44 (16)Os1—Fe1—Fe2—C24112.40 (16)
O14—C14—Fe1—Fe2179.2 (6)C11—Fe1—Fe2—Os1172.90 (14)
O14—C14—Fe1—Os1122.8 (5)C12—Fe1—Fe2—Os155.53 (16)
Fe2—C14—Fe1—Os157.93 (9)C13—Fe1—Fe2—Os169.81 (16)
O24—C24—Fe1—C1161.8 (5)C14—Fe1—Fe2—Os1107.68 (15)
Fe2—C24—Fe1—C11116.61 (17)C24—Fe1—Fe2—Os1112.40 (15)
O24—C24—Fe1—C12121.2 (9)C12—Fe1—Os1—C3243.66 (19)
Fe2—C24—Fe1—C1260.4 (10)C13—Fe1—Os1—C3251.02 (19)
O24—C24—Fe1—C1335.8 (5)C14—Fe1—Os1—C32133.05 (18)
Fe2—C24—Fe1—C13145.81 (17)C24—Fe1—Os1—C32135.26 (18)
O24—C24—Fe1—C14149.0 (5)Fe2—Fe1—Os1—C32179.81 (13)
Fe2—C24—Fe1—C1429.35 (16)C12—Fe1—Os1—C31139.3 (4)
O24—C24—Fe1—Fe2178.4 (6)C13—Fe1—Os1—C31126.0 (4)
O24—C24—Fe1—Os1126.6 (5)C14—Fe1—Os1—C3149.9 (4)
Fe2—C24—Fe1—Os155.00 (10)C24—Fe1—Os1—C3141.8 (4)
O14—C14—Fe2—C2158.8 (5)Fe2—Fe1—Os1—C313.2 (4)
Fe1—C14—Fe2—C21120.46 (17)C12—Fe1—Os1—C33135.45 (19)
O14—C14—Fe2—C2237.5 (5)C13—Fe1—Os1—C3340.77 (19)
Fe1—C14—Fe2—C22143.21 (17)C14—Fe1—Os1—C33135.16 (18)
O14—C14—Fe2—C24149.4 (5)C24—Fe1—Os1—C3343.46 (18)
Fe1—C14—Fe2—C2429.81 (16)Fe2—Fe1—Os1—C3388.39 (13)
O14—C14—Fe2—Fe1179.2 (6)C12—Fe1—Os1—C146.83 (18)
O14—C14—Fe2—Os1122.9 (5)C13—Fe1—Os1—C1141.51 (18)
Fe1—C14—Fe2—Os157.83 (10)C14—Fe1—Os1—C142.56 (17)
O24—C24—Fe2—C2157.9 (6)C24—Fe1—Os1—C1134.25 (17)
Fe1—C24—Fe2—C21120.42 (16)Fe2—Fe1—Os1—C189.32 (11)
O24—C24—Fe2—C2339.9 (6)C12—Fe1—Os1—Fe2136.15 (14)
Fe1—C24—Fe2—C23141.76 (17)C13—Fe1—Os1—Fe2129.17 (14)
O24—C24—Fe2—C14149.3 (5)C14—Fe1—Os1—Fe246.76 (13)
Fe1—C24—Fe2—C1429.06 (16)C24—Fe1—Os1—Fe244.93 (13)
O24—C24—Fe2—Fe1178.4 (6)C23—Fe2—Os1—C32134.2 (4)
O24—C24—Fe2—Os1126.8 (5)C22—Fe2—Os1—C32133.1 (4)
Fe1—C24—Fe2—Os154.82 (10)C14—Fe2—Os1—C3245.8 (4)
C11—Fe1—Fe2—C214.7 (2)C24—Fe2—Os1—C3246.1 (4)
C12—Fe1—Fe2—C21122.1 (2)Fe1—Fe2—Os1—C320.5 (3)
C13—Fe1—Fe2—C21112.6 (2)C23—Fe2—Os1—C3145.19 (19)
C14—Fe1—Fe2—C2169.9 (2)C22—Fe2—Os1—C3147.57 (19)
C24—Fe1—Fe2—C2170.0 (2)C14—Fe2—Os1—C31134.88 (18)
Os1—Fe1—Fe2—C21177.59 (15)C24—Fe2—Os1—C31133.30 (18)
C11—Fe1—Fe2—C23124.3 (2)Fe1—Fe2—Os1—C31178.86 (13)
C12—Fe1—Fe2—C23118.3 (2)C23—Fe2—Os1—C3345.70 (19)
C13—Fe1—Fe2—C237.0 (2)C22—Fe2—Os1—C33138.47 (18)
C14—Fe1—Fe2—C23170.5 (2)C14—Fe2—Os1—C33134.23 (18)
C24—Fe1—Fe2—C2349.6 (2)C24—Fe2—Os1—C3342.40 (17)
Os1—Fe1—Fe2—C2362.79 (18)Fe1—Fe2—Os1—C3387.96 (12)
C11—Fe1—Fe2—C22111.7 (2)C23—Fe2—Os1—C1136.84 (19)
C12—Fe1—Fe2—C225.6 (2)C22—Fe2—Os1—C144.08 (17)
C13—Fe1—Fe2—C22131.0 (2)C14—Fe2—Os1—C143.23 (17)
C14—Fe1—Fe2—C2246.5 (2)C24—Fe2—Os1—C1135.05 (17)
C24—Fe1—Fe2—C22173.6 (2)Fe1—Fe2—Os1—C189.49 (12)
Os1—Fe1—Fe2—C2261.16 (17)C23—Fe2—Os1—Fe1133.67 (15)
C11—Fe1—Fe2—C1465.2 (2)C22—Fe2—Os1—Fe1133.57 (13)
C12—Fe1—Fe2—C1452.2 (2)C14—Fe2—Os1—Fe146.26 (13)
C13—Fe1—Fe2—C14177.5 (2)C24—Fe2—Os1—Fe145.56 (12)
C24—Fe1—Fe2—C14139.9 (2)
 

Acknowledgements

CE thanks the New Zealand Foundation for Research, Science and Technology for a Postdoctoral Research Fellowship (contract No. UOGX0201).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBraga, D., Farrugia, L. J., Gillon, A. L., Grepioni, F. & Tedesco, E. (1996). Organometallics, 15, 4684–4686.  CSD CrossRef CAS Web of Science Google Scholar
First citationBraga, D., Farrugia, L. J., Grepioni, F. & Senior, A. (1995). J. Chem. Soc. Chem. Commun. pp. 1219–1220.  CrossRef Google Scholar
First citationChurchill, M. R. & Fettinger, J. C. (1990). Organometallics, 9, 446–452.  CSD CrossRef CAS Web of Science Google Scholar
First citationDahm, D. J. & Jacobson, R. A. (1968). J. Am. Chem. Soc. 90, 5106–5112.  CSD CrossRef CAS Web of Science Google Scholar
First citationDawson, P. A., Johnson, B. F. G., Lewis, J., Puga, J., Raithby, P. R. & Rosales, M. J. (1982). J. Chem. Soc. Dalton Trans. pp. 233–235.  CrossRef Google Scholar
First citationEvans, C., Farrugia, L. J. & Tegel, M. (2006). Acta Cryst. E62, m478–m479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. & Mertes, P. (2002). J. Cluster Sci. 13, 199–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J., Senior, A., Braga, D., Grepioni, F., Orpen, A. G. & Crossley, J. G. (1996). J. Chem. Soc. Dalton Trans. pp. 631–641.  CrossRef Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationShojaie, R. & Atwood, J. D. (1988). Inorg. Chem. 27, 2558–2560.  CrossRef CAS Web of Science Google Scholar
First citationVenalainen, T. & Pakkanen, T. (1984). J. Organomet. Chem. 266, 269–283.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds